Competencies Needed for Guiding the Digital Transition of Agriculture: Are Future Advisors Well-Equipped?
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Defining Digitalization and Digital Agriculture
2.2. Farm Advisors’ Digitalization-Related Competencies
3. Methods
3.1. Participants and Procedure
3.2. Measures
3.2.1. Technocentric Competencies
3.2.2. Techno-Visioning Competencies
3.2.3. Farmer-Centered Competencies
3.2.4. Attitude towards Digital Agriculture
3.2.5. Overall Competency in Digital Agriculture
3.3. Data Analysis Overview
4. Results
4.1. Preliminary Results
4.2. Regression Analysis
5. Discussion and Conclusions
5.1. Discussion
5.2. Limitations and Future Research Directions
5.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heitkämper, K.; Reissig, L.; Bravin, E.; Glück, S.; Mann, S. Digital technology adoption for plant protection: Assembling the environmental, labour, economic and social pieces of the puzzle. Smart Agric. Technol. 2023, 4, 100148. [Google Scholar] [CrossRef]
- Meng, Y.; Li, W.J.; Shan, J.; Jing, C.; Chang, Q.; Glyn, J.; Cao, Y.Y.; Yang, G.J.; Li, Z.H.; Frewer, L.J. Farmers’ precision pesticide technology adoption and its influencing factors: Evidence from apple production areas in China. J. Integr. Agric. 2023, 22, 292–305. [Google Scholar] [CrossRef]
- Kernecker, M.; Busse, M.; Knierim, A. Exploring actors, their constellations, and roles in digital agricultural innovations. Agric. Syst. 2021, 186, 102952. [Google Scholar] [CrossRef]
- Charatsari, C.; Lioutas, E.D.; Papadaki-Klavdianou, A.; Michailidis, A.; Partalidou, M. Farm advisors amid the transition to Agriculture 4.0: Professional identity, conceptions of the future and future-specific competencies. Sociol. Rural. 2022, 62, 335–362. [Google Scholar] [CrossRef]
- Soma, T.; Nuckchady, B. Communicating the benefits and risks of digital agriculture technologies: Perspectives on the future of digital agricultural education and training. Front. Communic. 2021, 6, 259. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C. Innovating digitally: The new texture of practices in agriculture 4.0. Sociol. Rural. 2022, 62, 250–278. [Google Scholar] [CrossRef]
- Charatsari, C.; Jönsson, H.; Papadopoulos, P. Looking for the missing link: The multiple meanings of sustainability in agricultural knowledge and information systems. In Proceedings of the 24th European Seminar on Extension and Education, Acireale, Italy, 18–21 June 2019; Available online: https://www.nextfood-project.eu/wp-content/uploads/2019/09/nextfood-collection-of-practice-abstract-for-dissemination-on-your-case-25-september-2019.pdf (accessed on 15 August 2023).
- Charatsari, C.; Papadaki-Klavdianou, A.; Koutsouris, A.; Lioutas, E.D. Agronomic education and the quest for sustainability: Is there a link? In Proceedings of the 13th European Symposium of the International Farming Systems Association, Chania, Greece, 1–5 July 2018; Available online: https://ifsa.boku.ac.at/cms/fileadmin/Proceeding2018/1_Charatsari.pdf (accessed on 7 June 2023).
- Papaspyrou, S.; Koutsouris, A. The educational philosophy of Greek extensionists vis-à-vis contemporary extension thinking: A critical appraisal. J. Agric. Educ. Ext. 2018, 24, 345–360. [Google Scholar] [CrossRef]
- Fors, A.C. The beauty of the beast: The matter of meaning in digitalization. AI Soc. 2010, 25, 27–33. [Google Scholar] [CrossRef]
- Ritter, T.; Pedersen, C.L. Digitization capability and the digitalization of business models in business-to-business firms: Past, present, and future. Ind. Mark. Manag. 2020, 86, 180–190. [Google Scholar] [CrossRef]
- Machekhina, O.N. Digitalization of education as a trend of its modernization and reforming. Rev. Espac. 2017, 38, 26–31. [Google Scholar]
- Maxwell, L.; McCain, T.A. Gateway or gatekeeper: The implications of copyright and digitalization on education. Commun. Educ. 1997, 46, 141–157. [Google Scholar] [CrossRef]
- Valenduc, G.; Vendramin, P. Digitalisation, between disruption and evolution. Transf. Eur. Rev. Labour Res. 2017, 23, 121–134. [Google Scholar] [CrossRef]
- Gong, C.; Ribiere, V. Developing a unified definition of digital transformation. Technovation 2021, 102, 102217. [Google Scholar] [CrossRef]
- Hagberg, J.; Sundstrom, M.; Egels-Zandén, N. The digitalization of retailing: An exploratory framework. Int. J. Retail Distrib. Manag. 2016, 44, 694–712. [Google Scholar] [CrossRef]
- Matt, C.; Trenz, M.; Cheung, C.M.; Turel, O. The digitization of the individual: Conceptual foundations and opportunities for research. Electron. Mark. 2019, 29, 315–322. [Google Scholar] [CrossRef]
- Van Veldhoven, Z.; Vanthienen, J. Digital transformation as an interaction-driven perspective between business, society, and technology. Electron. Mark. 2022, 32, 629–644. [Google Scholar] [CrossRef] [PubMed]
- Aamer, A.; Sahara, C.R.; Al-Awlaqi, M.A. Digitalization of the supply chain: Transformation factors. J. Sci. Technol. Policy Manag. 2023, 14, 713–733. [Google Scholar] [CrossRef]
- Wallin, A.; Nokelainen, P.; Kira, M. From thriving developers to stagnant self-doubters: An identity-centered approach to exploring the relationship between digitalization and professional development. Vocat. Learn. 2022, 15, 285–316. [Google Scholar] [CrossRef]
- Charatsari, C.; Lioutas, E.D.; De Rosa, M.; Papadaki-Klavdianou, A. Extension and advisory organizations on the road to the digitalization of animal farming: An organizational learning perspective. Animals 2020, 10, 2056. [Google Scholar] [CrossRef]
- Fielke, S.; Taylor, B.; Jakku, E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agric. Syst. 2020, 180, 102763. [Google Scholar] [CrossRef]
- Ingram, J.; Maye, D.; Bailye, C.; Barnes, A.; Bear, C.; Bell, M.; Cutress, D.; Davies, L.; de Boon, A.; Dinnie, L.; et al. What are the priority research questions for digital agriculture? Land Use Policy 2022, 114, 105962. [Google Scholar] [CrossRef]
- Yong, L.; Xiushan, L.; Degui, Z.; Fu, L. The main content, technical support and enforcement strategy of digital agriculture. Geo-Spat. Inf. Sci. 2002, 5, 68–73. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Grogan, A. Smart farming. Eng. Technol. 2012, 7, 38–40. [Google Scholar] [CrossRef]
- Da Silveira, F.; Lermen, F.H.; Amaral, F.G. An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Comput. Electron. Agric. 2021, 189, 106405. [Google Scholar] [CrossRef]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef]
- Bronson, K.; Knezevic, I. Big Data in food and agriculture. Big Data Soc. 2016, 3, 2053951716648174. [Google Scholar] [CrossRef]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Dela Rue, B. Managing socio-ethical challenges in the development of smart farming: From a fragmented to a comprehensive approach for responsible research and innovation. J. Agric. Environ. Ethics 2019, 32, 741–768. [Google Scholar] [CrossRef]
- Blok, V.; Long, T.B. The role of responsible innovation in the technology assessment of smart farming technologies in Europe. In Food Futures: Ethics, Science and Culture; Olsson, A.S., Araújo, S.M., Fátima Vieira, M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 2–10. [Google Scholar]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- McGrath, K.; Brown, C.; Regan, Á.; Russell, T. Investigating narratives and trends in digital agriculture: A scoping study of social and behavioural science studies. Agric. Syst. 2023, 207, 103616. [Google Scholar] [CrossRef]
- Klingenberg, C.O.; Júnior, J.A.V.A.; Müller-Seitz, G. Impacts of digitalization on value creation and capture: Evidence from the agricultural value chain. Agric. Syst. 2022, 201, 103468. [Google Scholar] [CrossRef]
- Bechtet, N. How do advisory suppliers support farmers in evaluating a digital innovation? A case study on decision support tools for fertilizer application in France. J. Innov. Econ. Manag. 2023, 42, 73–101. [Google Scholar] [CrossRef]
- McCampbell, M.; Schumann, C.; Klerkx, L. Good intentions in complex realities: Challenges for designing responsibly in digital agriculture in low-income countries. Sociol. Rural. 2022, 62, 279–304. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Jorge, L.A.D.C.; Sanches, I.D.A.; Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.D.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Jakku, E.; Taylor, B.; Fleming, A.; Mason, C.; Fielke, S.; Sounness, C.; Thorburn, P. “If they don’t tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming. NJAS-Wagening. J. Life Sci. 2019, 90, 100285. [Google Scholar] [CrossRef]
- Da Silveira, F.; da Silva, S.L.C.; Machado, F.M.; Barbedo, J.G.A.; Amaral, F.G. Farmers’ perception of barriers that hinder the implementation of agriculture 4.0. Agric. Syst. 2023, 208, 103656. [Google Scholar] [CrossRef]
- Higgins, V.; Bryant, M.; Howell, A.; Battersby, J. Ordering adoption: Materiality, knowledge and farmer engagement with precision agriculture technologies. J. Rural Stud. 2017, 55, 193–202. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C.; De Rosa, M. Digitalization of agriculture: A way to solve the food problem or a trolley dilemma? Technol. Soc. 2021, 67, 101744. [Google Scholar] [CrossRef]
- Fleming, A.; Jakku, E.; Lim-Camacho, L.; Taylor, B.; Thorburn, P. Is big data for big farming or for everyone? Perceptions in the Australian grains industry. Agron. Sustain. Dev. 2018, 38, 24. [Google Scholar] [CrossRef]
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric. 2020, 100, 5083–5092. [Google Scholar] [CrossRef]
- Hansen, B.D.; Leonard, E.; Mitchell, M.C.; Easton, J.; Shariati, N.; Mortlock, M.Y.; Schaefer, M.; Lamb, D.W. Current status of and future opportunities for digital agriculture in Australia. Crop Pasture Sci. 2022, 74, 524–537. [Google Scholar] [CrossRef]
- Faure, G.; Toillier, A.; Havard, M.; Rebuffel, P.; Moumouni, I.M.; Gasselin, P.; Tallon, H. Le conseil aux exploitations agricoles pour faciliter l’innovation: Entre encadrement et accompagnement. In Innovation et Développement dans Les Systèmes Agricoles et Alimentaires; Faure, G., Chiffoleau, Y., Goulet, F., Temple, L., Touzard, J.M., Eds.; Editions Quae: Versailles, France, 2018; pp. 163–177. [Google Scholar]
- Ayre, M.; Mc Collum, V.; Waters, W.; Samson, P.; Curro, A.; Nettle, R.; Paschen, J.A.; King, B.; Reichelt, N. Supporting and practising digital innovation with advisers in smart farming. NJAS-Wageningen J. Life Sci. 2019, 90, 100302. [Google Scholar] [CrossRef]
- Oberländer, M.; Beinicke, A.; Bipp, T. Digital competencies: A review of the literature and applications in the workplace. Comput. Educ. 2020, 146, 103752. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, H. Livelihoods, technological constraints, and low-carbon agricultural technology preferences of farmers: Analytical frameworks of technology adoption and farmer livelihoods. Int. J. Environ. Res. Public Health 2021, 18, 13364. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, F.; Ying, R. Farmers’ endowment constraints, technical properties and agricultural technology selection preferences: An analytical framework of farmers’ technology adoption under an incomplete factor market. China Rural Econ. 2018, 34, 105–122. [Google Scholar]
- Neethirajan, S. The significance and ethics of digital livestock farming. AgriEngineering 2023, 5, 488–505. [Google Scholar] [CrossRef]
- Vecchio, Y.; Di Pasquale, J.; Del Giudice, T.; Pauselli, G.; Masi, M.; Adinolfi, F. Precision farming: What do Italian farmers really think? An application of the Q methodology. Agric. Syst. 2022, 201, 103466. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Eastwood, C.; Ayre, M.; Nettle, R.; Rue, B.D. Making sense in the cloud: Farm advisory services in a smart farming future. NJAS-Wageningen J. Life Sci. 2019, 90, 100298. [Google Scholar] [CrossRef]
- Kernecker, M.; Knierim, A.; Wurbs, A.; Kraus, T.; Borges, F. Experience versus expectation: Farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 2020, 21, 34–50. [Google Scholar] [CrossRef]
- Müller, S.D.; Påske, N.; Rodil, L. Managing ambidexterity in startups pursuing digital innovation. Commun. Assoc. Inform. Syst. 2019, 44, 18. [Google Scholar] [CrossRef]
- Eastwood, C.; Edwards, P.; Dela Rue, B. Managing digital cognitive load for farmers and advisory networks in a digital agriculture future. In Proceedings of the 26th European Seminar on Extension & Education, Toulouse, France, 10–13 July 2023. [Google Scholar]
- Van Der Velden, D.; Klerkx, L.; Dessein, J.; De Bruyne, L. Cyborg farmers: Embodied understandings of precision agriculture. Sociol. Rural. 2023, in press. [CrossRef]
- Lioutas, E.D.; Charatsari, C. Big data in agriculture: Does the new oil lead to sustainability? Geoforum 2020, 109, 1–3. [Google Scholar] [CrossRef]
- Zaman, N.B.K.; Raof, W.N.A.A.; Saili, A.R.; Aziz, N.N.; Fatah, F.A.; Vaiappuri, S.K. Adoption of smart farming technology among rice farmers. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 29, 268–275. [Google Scholar] [CrossRef]
- Bahn, R.A.; Yehya, A.A.K.; Zurayk, R. Digitalization for sustainable agri-food systems: Potential, status, and risks for the MENA region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- Visser, O.; Sippel, S.R.; Thiemann, L. Imprecision farming? Examining the (in) accuracy and risks of digital agriculture. J. Rural Stud. 2021, 86, 623–632. [Google Scholar] [CrossRef]
- Hidalgo, F.; Quiñones-Ruiz, X.F.; Birkenberg, A.; Daum, T.; Bosch, C.; Hirsch, P.; Birner, R. Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development. Agric. Syst. 2023, 208, 103660. [Google Scholar] [CrossRef]
- Clapp, J.; Ruder, S.L. Precision technologies for agriculture: Digital farming, gene-edited crops, and the politics of sustainability. Glob. Environ. Polit. 2020, 20, 49–69. [Google Scholar] [CrossRef]
- Regan, Á. ‘Smart farming’ in Ireland: A risk perception study with key governance actors. NJAS-Wageningen J. Life Sci. 2019, 90, 100292. [Google Scholar] [CrossRef]
- Santilli, S.; Ginevra, M.C.; Sgaramella, T.M.; Nota, L.; Ferrari, L.; Soresi, S. Design my future: An instrument to assess future orientation and resilience. J. Career Assess. 2017, 25, 281–295. [Google Scholar] [CrossRef]
- Mulder, M. A five-component future competence (5CFC) model. J. Agric. Educ. Ext. 2017, 23, 99–102. [Google Scholar] [CrossRef]
- Corral-Verdugo, V.; Pinheiro, J.Q. Sustainability, future orientation and water conservation. Eur. Rev. Appl. Psychol. 2006, 56, 191–198. [Google Scholar] [CrossRef]
- Cuff, B.M.; Brown, S.J.; Taylor, L.; Howat, D.J. Empathy: A review of the concept. Emot. Rev. 2016, 8, 144–153. [Google Scholar] [CrossRef]
- Coplan, A. Will the real empathy please stand up? A case for a narrow conceptualization. South. J. Philos. 2011, 49, 40–65. [Google Scholar] [CrossRef]
- Davis, M.H. Measuring individual differences in empathy: Evidence for a multidimensional approach. J. Person. Soc. Psychol. 1983, 44, 113. [Google Scholar] [CrossRef]
- Rust, N.A.; Stankovics, P.; Jarvis, R.M.; Morris-Trainor, Z.; de Vries, J.R.; Ingram, J.; Mills, J.; Glikman, J.A.; Parkinson, J.; Reed, M.S.; et al. Have farmers had enough of experts? Environ. Manag. 2022, 69, 31–44. [Google Scholar] [CrossRef]
- Fuller, M.; Kamans, E.; van Vuuren, M.; Wolfensberger, M.; de Jong, M.D. Conceptualizing empathy competence: A professional communication perspective. J. Bus. Tech. Commun. 2021, 35, 333–368. [Google Scholar] [CrossRef]
- Charatsari, C.; Lioutas, E.D. Is current agronomy ready to promote sustainable agriculture? Identifying key skills and competencies needed. Int. J. Sustain. Dev. World Ecol. 2019, 26, 232–241. [Google Scholar] [CrossRef]
- Moojen, F.G.; Grillot, M.; de Faccio Carvalho, P.C.; Ryschawy, J. Farm advisors play a key role in integrating crop-livestock at the farm level: Perceptions and experiences in Brazil and France. J. Agric. Educ. Ext. 2023, in press. [CrossRef]
- Weltzien, C. Digital agriculture or why agriculture 4.0 still offers only modest returns. Landtechnik 2016, 71, 66–68. [Google Scholar] [CrossRef]
- Cook, S.; Jackson, E.L.; Fisher, M.J.; Baker, D.; Diepeveen, D. Embedding digital agriculture into sustainable Australian food systems: Pathways and pitfalls to value creation. Int. J. Agric. Sustain. 2022, 20, 346–367. [Google Scholar] [CrossRef]
- Zscheischler, J.; Brunsch, R.; Rogga, S.; Scholz, R.W. Perceived risks and vulnerabilities of employing digitalization and digital data in agriculture–Socially robust orientations from a transdisciplinary process. J. Clean. Produc. 2022, 358, 132034. [Google Scholar] [CrossRef]
- Halinen, A.; Nordberg-Davies, S.; Möller, K. Time to look forward: Advocating future orientation in business network research. J. Bus. Ind. Mark. 2023, in press. [CrossRef]
- Platou, R.S.; Aspelund, A.; Johansen, N.B.; Malmedal, M.F. Top managers’ future orientation and corporate strategy under changing environments. In Proceedings of the XXVII ISPIM Innovation Conference–Blending Tomorrow’s Innovation Vintage, Porto, Portugal, 19–22 June 2016. [Google Scholar]
- Miller, K.I. Compassionate communication in the workplace: Exploring processes of noticing, connecting, and responding. J. Appl. Commun. Res. 2007, 35, 223–245. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C. Smart farming and short food supply chains: Are they compatible? Land Use Pol. 2020, 94, 104541. [Google Scholar] [CrossRef]
- Liddell, M.J.; Davidson, S.K. Student attitudes and their academic performance: Is there any relationship? Med. Teach. 2004, 26, 52–56. [Google Scholar] [CrossRef]
- Bernhard, J.; Russmann, U. Digitalization in public relations—Changing competences: A longitudinal analysis of skills required in PR job ads. Public Relat. Rev. 2023, 9, 102283. [Google Scholar] [CrossRef]
- Ivanova, I.A.; Pulyaeva, V.N.; Vlasenko, L.V.; Gibadullin, A.A.; Sadriddinov, M.I. Digitalization of organizations: Current issues, managerial challenges and socio-economic risks. J. Phys. Conf. Ser. 2019, 1399, 033038. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wageningen J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- McGarth, K.; Regan, Á.; Russell, T. Transitioning to Agriculture 4.0: The role of the agricultural advisor. In Proceedings of the 26th European Seminar on Extension & Education, Toulouse, France, 10–13 July 2023. [Google Scholar]
- Reijers, W.; Wright, D.; Brey, P.; Weber, K.; Rodrigues, R.; O’Sullivan, D.; Gordijn, B. Methods for practising ethics in research and innovation: A literature review, critical analysis and recommendations. Sci. Eng. Ethics 2018, 24, 1437–1481. [Google Scholar] [CrossRef]
- Garay-Rondero, C.L.; Thierry-Aguilera, R.; Schneider, A.K.; Bourguet-Diaz, R.E.; Salinas, M.L.; Zavala, G. Designing a cyber-physical-systems and human factors engineering course for Industry 4.0. In Proceedings of the 2021 Machine Learning-Driven Digital Technologies for Educational Innovation Workshop IEEE, Monterrey, Mexico, 15–17 December 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Higgins, V.; Bryant, M. Framing agri-digital governance: Industry stakeholders, technological frames and smart farming implementation. Sociol. Rural. 2020, 60, 438–457. [Google Scholar] [CrossRef]
- Hurst, Z.M.; Spiegal, S. Design thinking for responsible Agriculture 4.0 innovations in rangelands. Rangelands 2023, 45, 68–78. [Google Scholar] [CrossRef]
- Jakku, E.; Fleming, A.; Espig, M.; Fielke, S.; Finlay-Smits, S.C.; Turner, J.A. Disruption disrupted? Reflecting on the relationship between responsible innovation and digital agriculture research and development at multiple levels in Australia and Aotearoa New Zealand. Agric. Syst. 2023, 204, 103555. [Google Scholar] [CrossRef]
- Ogunyiola, A.; Gardezi, M. Restoring sense out of disorder? Farmers’ changing social identities under big data and algorithms. Agric. Hum. Values 2022, 39, 1451–1464. [Google Scholar] [CrossRef]
- Adamashvili, N.; Colantuono, F.; Conto, F.; Fiore, M. Investigating the role of community of practice for sharing knowledge in agriculture sector. J. Glob. Bus. Adv. 2020, 13, 162–184. [Google Scholar] [CrossRef]
- Labarthe, P.; Beck, M. CAP and advisory services: From farm advisory systems to innovation support. EuroChoices 2022, 21, 5–14. [Google Scholar] [CrossRef]
Scale/Items 1 | Eigenvalue | Explained Variance | Cronbach’s Alpha |
---|---|---|---|
Basic technology understanding competencies | 2.09 | 69.6% | 0.86 |
Understanding how technologies work | |||
Understanding the potential of technologies | |||
Handling/using technologies | |||
Technology integration competencies | 5.41 | 67.6% | 0.94 |
Choosing appropriate technologies for farms | |||
Estimating the costs and benefits of new technologies for farms | |||
Introducing new technologies to farms | |||
Properly using technologies | |||
Reorganizing work after technology adoption | |||
Solving problems associated with newly introduced technologies on the farms | |||
Connecting digital agriculture technologies with traditionally used technologies | |||
Integrating technologies in current production systems | |||
Technology exploitation competencies | 4.29 | 61.3% | 0.91 |
Exploiting technologies | |||
Creating value from technologies | |||
Transforming technologies to productive resources | |||
Designing effective technology exploitation plans | |||
Using technologies for improving farm production | |||
Using technologies for improving farming systems | |||
Using technologies for making work easier for farmers |
Scale/Items 1 | Eigenvalue | Explained Variance | Cronbach’s Alpha |
---|---|---|---|
Impact forecasting competencies | 2.04 | 68.2% | 0.86 |
Predicting how technologies will transform farms | |||
Predicting how technologies will transform farming systems | |||
Predicting how technologies will change farmers’ lives | |||
Risk reduction competencies | 2.97 | 74.3% | 0.92 |
Minimizing the financial risks associated with technologies | |||
Minimizing the social risks associated with technologies | |||
Minimizing the environmental risks associated with technologies | |||
Minimizing the ethical risks associated with technologies | |||
Future orientation competencies | 2.18 | 54.6% | 0.82 |
Being able to learn while helping farmers integrate technologies in their farm enterprises | |||
Learning how to learn from technologies | |||
Orienting myself and farm enterprises to the future | |||
Anticipating the potential futures that technologies create |
Scale/Items 1 | Eigenvalue | Explained Variance | Cronbach’s Alpha |
---|---|---|---|
Empathy competency | 2.02 | 67.4% | 0.85 |
Handling emotions when communicating with farmers/technology adopters | |||
Follow a farmer-first approach | |||
Understanding how farmers feel about technologies and resolving potential conflicts | |||
Transition facilitation competency | 1.73 | 57.8% | 0.80 |
Planning how to help farmers effectively exploit the opportunities that technologies offer | |||
Facilitating through my collaboration with farmers the technology-enabled transition of farm enterprises | |||
Facilitating the collaboration of human actors and technologies in farm enterprises |
Variable | β | p |
---|---|---|
Attitude towards digital agricultural technologies | 0.03 | 0.724 |
Basic technology understanding competencies | −0.10 | 0.523 |
Technology integration competencies | 0.45 | 0.046 |
Technology exploitation competencies | −0.23 | 0.330 |
Impact forecasting competencies | −0.01 | 0.943 |
Risk reduction competencies | −0.12 | 0.476 |
Future orientation competencies | 0.05 | 0.741 |
Empathy competency | −0.09 | 0.578 |
Transition facilitation competency | 0.56 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charatsari, C.; Michailidis, A.; Lioutas, E.D.; Bournaris, T.; Loizou, E.; Paltaki, A.; Lazaridou, D. Competencies Needed for Guiding the Digital Transition of Agriculture: Are Future Advisors Well-Equipped? Sustainability 2023, 15, 15815. https://doi.org/10.3390/su152215815
Charatsari C, Michailidis A, Lioutas ED, Bournaris T, Loizou E, Paltaki A, Lazaridou D. Competencies Needed for Guiding the Digital Transition of Agriculture: Are Future Advisors Well-Equipped? Sustainability. 2023; 15(22):15815. https://doi.org/10.3390/su152215815
Chicago/Turabian StyleCharatsari, Chrysanthi, Anastasios Michailidis, Evagelos D. Lioutas, Thomas Bournaris, Efstratios Loizou, Aikaterini Paltaki, and Dimitra Lazaridou. 2023. "Competencies Needed for Guiding the Digital Transition of Agriculture: Are Future Advisors Well-Equipped?" Sustainability 15, no. 22: 15815. https://doi.org/10.3390/su152215815
APA StyleCharatsari, C., Michailidis, A., Lioutas, E. D., Bournaris, T., Loizou, E., Paltaki, A., & Lazaridou, D. (2023). Competencies Needed for Guiding the Digital Transition of Agriculture: Are Future Advisors Well-Equipped? Sustainability, 15(22), 15815. https://doi.org/10.3390/su152215815