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Abstract: As the strategic task of China’s modernization, the implementation of new-type urbaniza-
tion has an important impact on carbon emissions from the construction industry. To fill the gap in
considering the spatial correlation and threshold characteristics of new-type urbanization on carbon
emissions from the construction industry, this paper constructs a comprehensive evaluation indicator
of new-type urbanization, and the spatial economic model and the threshold regression model are
adopted to analyze the panel data of 30 provinces in China from 2002 to 2020. The results indicate
that (1) carbon emissions from China’s construction industry exhibit a significant positive spatial
correlation, with more than half of provinces distributed as H-H and L-L types. (2) New-type urban-
ization has significant positive direct and indirect effects on carbon emissions in the construction
industry; the labor efficiency, energy intensity, and development level of the construction industry
and trade openness also have a significant spillover effect on carbon emissions from the construction
industry. (3) At this stage, new-type urbanization exhibits a threshold effect on carbon emissions
from the construction industry due to the different levels of development and energy intensity of
the construction industry. After crossing the threshold value, the promotion effect of new-type
urbanization on carbon emissions from the construction industry gradually increases. This paper
provides a reference for promoting carbon emission reduction in the construction industry in the
process of new-type urbanization.

Keywords: new-type urbanization; construction industry; carbon emissions; spatial effects; threshold
effect

1. Introduction

Since the Industrial Revolution, the combustion of fossil fuels and chemical substances
such as petroleum through human activities has released a large amount of greenhouse
gases, resulting in global warming [1]. The climate problems caused by global warming are
serious, posing a huge threat to the human living environment and natural resources [2].
Therefore, several countries have achieved or set carbon neutrality targets in policy docu-
ments or laws [3] and have taken measures to reduce CO2 emissions [4]. During the 75th
United Nations General Assembly, China pledged to peak its carbon emissions by 2030 and
achieve carbon neutrality by 2060 [5].

After more than 40 years of reform and opening up, China’s urban space has expanded
by nearly 8.4 times, and the urbanization rate of the population reached 63.89% in 2020,
indicating that China is experiencing a rapid process of urbanization. In addition, according
to the greenhouse gas emission data released by Maplecroft, a British risk assessment
company [6], China’s carbon emissions exceeded 6 billion tons in 2020, making it one of
the world’s largest carbon emitters, and sustainable development issues such as energy
consumption and environmental pollution have become increasingly prominent [7,8].
Thus, China proposed urbanization with Chinese characteristics as early as 2002. Based
on it, China officially released the “National New-type Urbanization Plan” in March 2014,
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proposing new-type urbanization with human-centered and sustainable development
connotations, requiring the concept of ecological civilization to be fully integrated into
the urbanization process [9]. In addition to the proportion of urban population, new-type
urbanization pursues coordinated and sustainable development of the society, economy,
land, ecology, culture, and other aspects. As a strategic task of China’s modernization,
the implementation of new-type urbanization will create a large number of public service
systems and infrastructure investment space, including medical, educational, service, and
other supporting facilities, and the construction industry will bear the brunt [10].

The construction industry is a high energy-consuming sector and one of the major
sources of carbon emissions in China. According to the “2022 Research Report China
Building Energy Consumption and Carbon Emissions” released by the China Building
Energy Efficiency Association, the total carbon emissions from the whole process of China’s
construction industry in 2020 was 5.08 billion tons, accounting for 50.9% of national carbon
emissions, indicating that the construction industry occupies a major position in China’s
total carbon emissions. With the country’s rapid urbanization and economic development,
the proportion of building energy consumption in China’s total energy consumption will
gradually rise [11]. And the carbon emissions of China ‘s construction industry are expected
to peak after 2030 [12–15].

New-type urbanization has sustainable development connotations, but its promotion
will lead to more demand for buildings and infrastructure, resulting in an increase in carbon
emissions in the construction industry. On the other hand, the construction industry has
the characteristics of large potential and low costs of emission reduction, which has become
a key breakthrough in China’s energy conservation and emission reduction [16]. Hence, in
the current process of new-type urbanization, the impact of new-type urbanization on the
carbon emissions from the construction industry is being explored to reduce energy waste
and carbon emission intensity in the construction industry, which is important to achieve
China’s energy conservation and emission reduction targets.

A large number of previous studies have focused on the impact of new-type urbaniza-
tion on total regional carbon emissions at the macro level, with less attention paid to the
construction sector specifically. Moreover, few studies have considered the spatial effect
of new-type urbanization on carbon emissions from the construction industry. To fill the
research gaps mentioned above, this paper examines the spatial effect and threshold effect
of new-type urbanization on carbon emissions from the construction industry from linear
and nonlinear perspectives.

The rest of this paper is organized as follows: the literature review and research
hypothesis are presented in Section 2. The methods and data are introduced in Section 3.
Section 4 contains the empirical results and discussion. Finally, the conclusion and policy
implications are presented in Section 5.

2. Literature Review and Research Hypothesis
2.1. Research on New-Type Urbanization

With the advancement of Chinese-style urbanization and the continuous enrichment
of its concepts, there is research on new-type urbanization focusing on the following two
aspects: the connotation of new-type urbanization and the measurement of its develop-
ment level. The concept of new-type urbanization was first explicitly put forward in
the Communique of the Central Economic Work Conference in 2012 [17]. However, the
evolution of its conceptual connotation has gone through two phases: from 2002 to 2011,
the road of urbanization with Chinese characteristics was taken, laying the foundation
for the connotation of new-type urbanization; after 2012, the urbanization was given the
construction requirements of “new type”, and the connotation of new-type urbanization
has been continuously enriched [18]. Different from the crude development of traditional
urbanization, which simply pursues the gathering of population and economic activities
in cities and promotes the urbanization of land, new-type urbanization is centered on
human beings [19]. Many scholars have different understandings and expressions of the



Sustainability 2023, 15, 15825 3 of 26

connotation of new-type urbanization, but it is generally considered to be inconsistent with
traditional urbanization [18,20–22]. According to the Communique of the 2012 Central
Economic Work Conference and the National New-Type Urbanization Plan, the concept of
new-type urbanization is “to fully integrate the concept and principles of ecological civiliza-
tion into the whole process of urbanization, and to take the road of new-type urbanization
that is intensive, intelligent, green and low-carbon” [23], with urban-rural integration, in-
dustrial interaction, conservation and intensification, ecological livability, and harmonious
development as its basic features [19].

As for measuring the development level of urbanization, some studies in the past
only used a single indicator for analysis [24–26], ignoring the quality and benefits of the
urbanization process, and the evaluation of urbanization was not comprehensive enough. In
order to reflect the inherent requirements of new-type urbanization, the National New-Type
Urbanization Plan (2014–2020) selects 18 indicators to establish an urbanization indicator
system based on four aspects: urbanization level, basic public services, infrastructure, and
resources and environment, which provides national guidance for the construction of a
composite indicator system for new-type urbanization [23]. Some scholars measured the
development level of comprehensive urbanization from various aspects such as population,
land, and economy [27,28]. Furthermore, some scholars have incorporated aspects related
to the quality of urbanization development, such as ecology and social services, into the
indicator system for the level of new-type urbanization, taking into account the connotation
of new-type urbanization [29–32].

2.2. Research on Carbon Emissions from the Construction Industry

Research related to carbon emissions from the construction industry mainly concen-
trates on the measurement of carbon emissions and the analysis of its impact factors. In
order to measure the carbon emissions from the construction industry, scholars commonly
adopt different measurement methods based on specific research objects, such as the carbon
emission factor method, the input–output method (input–output analysis), and the life
cycle assessment (LCA) method. Some scholars have adopted the carbon emission factor
method for national and regional carbon emissions from the construction industry based
on a macro perspective [14,29,33–35]. Also, some studies have chosen the input–output
method to account for carbon emissions from the construction industry on a regional
scale [36–39]. Since the input–output table required for this method is updated once every
five years in China, it cannot be applied in time for the latest measurement. In addition,
life cycle assessment is mostly applied to single engineering materials or construction
projects [40–42]. Compared with the other two methods, the carbon emission factor method
is suitable for measuring carbon emissions from a macro perspective, whose calculation
process is simple and direct; on the other hand, the data used in this method are more
available, which is why it has become the choice of most scholars to study the carbon
emissions from the construction industry [29].

In terms of the key factors affecting carbon emissions in the construction industry, it can
be seen that the demographic system, technological revolution, industrial system, energy
consumption intensity, and foreign direct investment are the main factors affecting carbon
emissions in the construction industry [4,29,43]. In general, urban population density
or total population is positively correlated with urban carbon emissions, but different
levels of economic development will affect the level of positive correlation between the
two [4,44,45]. The technological revolution has reduced carbon emissions overall [46,47],
and in some regions, the level of technological development may contribute to an increase
in energy consumption and carbon emissions [48,49]. The expansion of urban building area
and building scale will also cause an increase in energy consumption in the construction
industry [50–53]. In addition, some research points out that FDI has a promoting effect on
carbon emissions in various industries (except transportation) [54,55].
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2.3. Research on the Impact of New-Type Urbanization on Carbon Emissions

Existing studies have examined the relationship between urbanization and carbon
emissions based on various methods and research perspectives and have reached different
conclusions. Studies have suggested that urbanization has increased energy consump-
tion and carbon emissions. Al-mulali et al. [56] demonstrated that urbanization, energy
consumption and carbon emissions are positively and stably correlated over time in 84%
of countries, based on a panel of countries around the world from 1980 to 2008. Zhang
et al. [57] used the dynamic panel estimation method to conclude that China’s urbanization
process has had a positive impact on carbon emissions. Other studies have argued that
increased levels of urbanization contribute to carbon reduction [50]. Sharma et al. [58]
analyzed global panel data for 69 countries from 1985–2005 and found that urbanization has
had a negative impact on carbon emissions across countries at different levels of economic
development. Wang et al. [24] found that developed countries have achieved decoupling of
urbanization from carbon emissions and that urbanization has a negative impact on the con-
struction industry. Moreover, some studies have concluded that the impact of urbanization
on carbon emissions shows a staged pattern. There is evidence of an inverted U-shaped
relationship between urbanization and per capita CO2 emissions, i.e., urbanization will
first exacerbate CO2 emissions, but its impact on carbon emissions will turn to a negative
change as carbon emissions peak [45,59,60].

Many previous studies have used a “urbanization rate” as a single indicator to char-
acterize the level of urbanization and explore its impact on carbon emissions [25,26]. As
China’s urbanization progresses and its connotation continues to be enriched, a few schol-
ars have adopted multiple indicators to measure the level of urbanization, considering
the slight deficiency and one-sidedness of a single indicator [7,28]. There are also linear
and nonlinear aspects of research on new-type urbanization on energy consumption and
carbon emissions. As for linear aspects, on the one hand, some studies conclude that new-
type urbanization will still make a significant contribution to carbon emissions, because
new-type urbanization is in the initial stage of low-carbon economic transformation, and
its green and low-carbon features are not yet fully apparent for carbon emission reduc-
tion [61]; on the other hand, some studies show that new-type urbanization can promote
the enhancement of the efficiency of carbon emissions through the urban agglomeration
effect [31,62]. In addition, some scholars have explored the nonlinear relationship between
the two through the EKC model [32,61], the threshold model [30], and the nonparametric
additive model [63]. Research on the relationship between new-type urbanization and
energy consumption and carbon emissions is further refined to specific industries, for
example, such as the construction industry which has become one of the hot topics.

New-type urbanization affects construction carbon emissions by influencing pop-
ulation migration, industrial development, urban construction, and ecological protec-
tion [12,53,62]. (1) New-type urbanization leads to massive rural–urban migration through
the promotion of population urbanization, which increases carbon emissions from the
demand for more buildings and infrastructure [64]. The agglomeration of the urban popula-
tion improves the efficiency of energy use in areas such as public transportation, improves
the consumption structure and consumer attitudes of residents. It promotes cleaner and
more environmentally friendly consumption as well as energy conservation and emission
reduction, among other things, in order to reduce the intensity of carbon emissions [62].
(2) New-type urbanization advocates connotative economic development, which mainly
includes new-type industrialization driven by information technology and the transforma-
tion and upgrading of industrial structures [23,65]. The transformation and development
of industry requires public buildings as space carriers, resulting in an accretion in carbon
emissions from the construction industry. In the meantime, urbanization promotes the gath-
ering of factors and the development of science and technology, which makes it possible to
realize clean production and carbon emission reduction in the construction industry [24,62].
(3) New-type urbanization emphasizes the core of human beings, pays more attention to
the improvement of public service levels and the social security system, and ensures the
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equal allocation of public resources in cities and towns [23,66]. At the present stage, this
involves improving public infrastructure, such as increasing the area of paved roads and
the number of public transportation vehicles in cities, as well as progressively improving
healthcare conditions and facilities, which may generate significant carbon emissions from
the construction sector.

Scholars have come to different conclusions about the relationship between the two.
Guo et al. [29] constructed a comprehensive evaluation index of urbanization from four
aspects, population, economy, society, and land urbanization, by using the entropy method,
and the results showed that comprehensive urbanization plays a significant role in promot-
ing the carbon emissions from urban civil buildings. Xiao et al. [34] explored the impact of
new-type urbanization on urban building carbon emissions from three dimensions: scale,
average and structure, and found that the construction of new-type urbanization reduces
urban buildings’ carbon emissions, industrial upgrading has an obvious reduction effect on
buildings’ carbon emissions, and urban green space significantly inhibits buildings’ carbon
emissions. In summary, there are few studies on the impact of new-type urbanization on
carbon emissions from the construction industry, and few studies have considered the
spatial effect of new-type urbanization on carbon emissions from the construction industry.
Due to the fact that population, technology, and capital will flow between regions [61], the
impact of new-type urbanization on the carbon emissions from the construction industry is
not only limited to the region but also may have an impact on the adjacent regions. Based
on the analysis above, this study proposes Hypothesis 1:

Hypothesis 1 (H1). The construction of new-type urbanization contributes to carbon emissions
from the construction industry in the region and has spatial spillover effects on neighboring regions.

Regarding the nonlinear relationship between new-type urbanization and carbon
emissions, the extent of the impact of new-type urbanization on carbon emissions from the
construction industry may also be affected by factors such as the scale of development and
the energy intensity of the construction industry. It has been shown in the literature that
the scale of development and energy intensity are important factors that significantly affect
carbon emissions in the construction industry [67]. In the pre-development period of the
construction industry, a large amount of energy was consumed due to the large demand for
housing brought about by the rapid advancement of land urbanization, as well as rough
construction production. The development of the construction industry to a certain extent
will attract capital to stimulate innovation and vitality, but also become the focus of carbon
emission reduction regulation. The construction industry tends to be standardized, there
are sufficient funds to develop green energy, and there is the introduction of low-carbon
technology and equipment, so as to promote carbon emission reduction [68]. The impact
of new-type urbanization on carbon emissions in the construction industry may vary
depending on the level of development of the construction industry. Based on the above
analysis, this study proposes Hypothesis 2.

Hypothesis 2 (H2). The impact of new-type urbanization on carbon emissions from the construction
industry has a threshold effect due to different levels of development in the construction industry.

Energy intensity characterizes the technological capacity of building material pro-
duction, construction processes, construction waste treatment, etc. [4]. Improvements in
the level of technology and reductions in energy intensity can reduce the cost of ineffec-
tive emission reductions. In addition, there are regional imbalances in China’s economic
development, which can lead to differences in the level of technological progress [30],
one of which is reflected in different energy intensities. Therefore, the impact of new-
type urbanization on carbon emissions in the construction industry may exhibit threshold
characteristics due to differences in energy intensity. Accordingly, this study proposes
Hypothesis 3.
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Hypothesis 3 (H3). The impact of new-type urbanization on carbon emissions from the construc-
tion industry has a threshold effect due to differences in energy intensity.

3. Methods and Data
3.1. Methods
3.1.1. Method for Measuring Spatial Features

In order to select a suitable model to measure spatial features, global and local Moran’s
indices (Moran’s I) [69] were used to test for spatial correlation. The global and local
Moran’s I are defined as follows:

I =
n

ΣiΣjwij

ΣiΣjwij(xi − x)
(
xj − x

)
Σi(xi − x)2 (1)

Ii =
n(xi − x)Σj 6=1wij

(
xj − x

)
Σi(xi − x)2 (2)

where n represents the number of regions included in the study area, xi and xj are the
observations of region i and region j, respectively, and x is the mean of the observations.
The range of global Moran’s I is (−1, 1), while the local Moran’s Ii is not limited to (−1, 1).
(0, 1) means positive autocorrelation, while (−1, 0) is the opposite. Moran’s I is equal to 0,
which means that the observations follow a random distribution where there is no spatial
autocorrelation.

wij represents the elements of the spatial weight matrix. In this paper, the spatial
inverse distance matrix (take the reciprocal of the square of the distance between regions)
was selected as the spatial weight matrix. The distance between region i and region j is dij,
which can be expressed as follows:

Wij =
1

dij
2 (3)

3.1.2. Spatial Econometric Models

Considering the possible spatial correlation of carbon emissions from the construction
industry and the fact that econometric tests ignoring spatial correlation would lead to
biased parameter estimates, a spatial econometric model was constructed to explore the
spatial spillover effect of new-type urbanization on carbon emissions from the construction
industry. The spatial econometric model is as follows:

Cit = α + ρWCit + βXit + θWXit + γZit + δWZit + µi + γi + ξit
ξit = ϕWξit + υit

(4)

where Cit means the dependent variable for period t of study region i; Xit and Zit are the
core explanatory variable and control variable for period t of study region i, respectively; α,
ρ, β, θ, γ, δ , and ϕ are the parameters to be estimated; µi and γi denote region and time
effects, respectively; ξit denotes residuals; υit is a random disturbance term; and W is a
spatial weight matrix. Formula (4) is the general nested spatial econometric model (GNS)
and the following three models are the most widely used forms of spatial econometric
models: if ρ 6= 0, θ = 0, δ = 0, and ϕ = 0, then Formula (4) is the spatial autoregressive model
(SAR); if ρ = 0, θ = 0, δ = 0, and ϕ 6= 0, Formula (4) is the spatial error model (SEM); if
ρ 6= 0, θ 6= 0, δ 6= 0, and ϕ = 0, Formula (4) is the spatial Durbin model (SDM). These three
models are the most widely used forms of spatial measurement models. In the following
section, various tests are used to determine and select the optimal model. Since the above
model regression coefficients deviate from the true partial regression coefficients, the direct,
indirect, and total effects need to be decomposed using the partial differential form [70].
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3.1.3. Threshold Panel Models

Considering the possible nonlinear effect of new-type urbanization on carbon emis-
sions from the construction industry, we chose the threshold regression model proposed
by Hansen [71], which is used to test the threshold effect of new-type urbanization on car-
bon emissions from the construction industry by using the development level and energy
intensity of the construction industry as threshold variables. Since there may be multiple
threshold values for the threshold variables, the threshold panel model of this paper was
conducted as follows:

Cit = α0 + β1Xit · I(qit < δ1) + β2Xit · I(δ1 ≤ qit < δ2) + . . .+
βnXit · I(δn−1 ≤ qit < δn) + βn+1Xit · I(qit ≥ δn) + γZit + ζit

(5)

where α0 represents individual fixed effects; qit is the threshold variable; I(·) is the indica-
tive function whose value satisfies the corresponding condition in parentheses and takes 1,
otherwise 0; δ is the threshold value, β and γ are parameters to be estimated; and ξ is the
stochastic disturbance.

3.2. Variables and Data Sources
3.2.1. Dependent Variable

The explained variable of this paper is carbon emissions from the construction in-
dustry (CEC), which includes direct carbon emissions from on-site construction activities
and indirect carbon emissions from the upstream industrial chain in the production and
transportation stage of building materials [36,38]. Direct carbon emissions are measured
by taking into account 17 types of energy sources (including raw coal, washed coal, other
washed coal, shaped coal, coke, coke oven gas, other gas, other coking products, crude oil,
gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas, dry gas from refineries, natural
gas, and other petroleum products), electricity and heat consumption. The data on energy
consumption were obtained from the “China Energy Statistical Yearbook” from 2003 to
2021. Indirect carbon emissions were calculated based on the consumption of five types
of building materials, including cement, steel, glass, wood, and aluminum. Material con-
sumption data were obtained from the “China Construction Industry Statistical Yearbook”
from 2003 to 2021. Due to the lack of continuous updating of China’s input–output table
and missing data, the estimated results may have deviations. Thus, the carbon emissions
calculation model of China’s construction industry is based on the accounting method
provided by the IPCC. The model is as follows:

Cit = C1
it + C2

it

=
17
∑

r=1
Eitr × δr +

[
Eite × δe + Eith × δh +

l
∑

j=1
Mitj × ρj ×

(
1− ε j

)]
× 12

44
(6)

In Formula (5), subscripts i (t = 1, . . ., 30) and t (t = 2002, . . ., 2020) represent the ith
province and the t year, respectively. Cit represents the total carbon emissions from the
construction industry; C1

it and C2
it represent the total direct and indirect carbon emissions

from the construction industry, respectively. Eitr is the total direct energy consumption from
energy source r (r = 1, . . ., 17). δr is the carbon emission coefficient of energy combustion
from energy source r, which is calculated based on the carbon emission factor, lower heating
value, and carbon oxidation ratio of different energy sources, as shown in Table 1.

Eite and Eith represent the total direct consumption of electricity and heat by the
construction industry, respectively. δe is the carbon dioxide emission coefficient of electricity,
reported in Table 2; δh is the carbon dioxide emission coefficient of heat. According to
the atomic weight of carbon (12) and the molecular weight of carbon dioxide (44), in
Equation (5), the carbon emissions can be calculated by multiplying the carbon dioxide
emissions by 12/44. And the carbon dioxide emission coefficient of heating in each province
is from the relevant literature [72].
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Table 1. Carbon emission conversion factors of different energy sources.

Energy Sources
Carbon

Emission Factor
(TC/TJ)

Low Calorific
Value (GJ/T)

Carbon
Oxidation

Rate

Carbon Emission
Coefficient

(t CO2/t)

Raw Coal 25.8 20.908 0.899 0.484944
Cleaned Coal 25.8 26.344 0.899 0.611028

Other Washed Coal 25.8 9.409 0.899 0.218234
Briquettes 25.8 16.8 0.899 0.389663

Coke 29.2 28.435 0.97 0.805393
Coke Oven Gas 12.1 17.981 0.99 2.153944

Other Gas 12.1 8.429 0.99 1.00971
Other Coking

Products 29.2 28.435 0.97 0.805393

Crude Oil 20 41.816 0.98 0.819594
Gasoline 18.9 43.07 0.98 0.797743
Kerosene 19.5 43.07 0.98 0.823068
Diesel Oil 20.2 42.652 0.98 0.844339
Fuel Oil 21.1 41.816 0.98 0.864671

LPG 17.2 50.179 0.99 0.854448
Refinery Gas 15.7 45.998 0.99 0.714947
Natural Gas 15.3 38.931 0.99 5.896879

Other Petroleum
Products 20 40.19 0.98 0.787724

Other Energy 25.8 29.3076 1.00 0.756136
Note: The carbon emission factor and the carbon oxidation rate are the data given in the 2006 edition of the “IPCC
National Greenhouse Gas Inventory Compilation Guidelines”; the average low calorific value uses the data from
the appendix of the “China Energy Statistical Yearbook”.

Table 2. CO2 emission coefficient of electricity of 30 provinces in China’s mainland.

Province Region of China CO2 Emission Coefficient
(t CO2/M Wh)

Beijing, Tianjin, Hebei, Shanxi,
Shandong, and Inner Mongolia North China 0.9419

Liaoning, Jilin, and Heilongjiang Northeast China 1.0826
Shanghai, Jiangsu, Zhejiang, Anhui,

and Fujian East China 0.7921

Henan, Hubei, Hunan, Jiangxi,
Sichuan, and Chongqing Central China 0.8587

Shaanxi, Gansu, Qinghai, Ningxia,
and Xinjiang Northwest China 0.8922

Guangdong, Guangxi, Yunnan,
Guizhou, and Hainan South China 0.8042

Note: The CO2 emission coefficient of electricity is from the “2019 Baseline Emission Factors for China Regional
Power Grids for Emissions Reduction Projects”.

Mitj is the total consumption of the j-th type of building materials; ρj represents the car-
bon dioxide emission coefficient of the j-th type of building materials. The building materi-
als considered in this paper include cement, steel, glass, timber, and aluminum, and the cor-
responding emission coefficients for each type of material are as follows: 0.822 kgCO2/kg,
1.789 kgCO2/kg, 0.966 kgCO2/kg, −842.8 kgCO2/m3, and 2.6 kgCO2/kg [46]. ε j repre-
sents the recycling coefficient of the j-th type of building materials: 0.80 (steel), 0.2 (timber),
0.45 (cement), 0.17 (glass), and 0.85 (aluminum) [46].

3.2.2. Core Explanatory Variable

Drawing on the relevant literature [29,73,74] and based on the connotation charac-
teristics of new-type urbanization (NU), a comprehensive evaluation index system is
constructed from five dimensions: the economy, population, land, society, and ecology.
To measure new-type urbanization, an improved entropy method [62,63,75] was adopted
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considering the time variable, which can avoid the errors caused by subjective judgment in
the subjective weighting method. The specific measurement steps are as follows:

(1) Standardize the positive and negative indicators of the data used.

x′ij =
xij −min

(
x.j
)

max
(

x.j
)
−min

(
x.j
) (7)

x′ij is the j standardized indicator of the i sample; i = 1, . . ., n (n = 570), j = 1, . . ., m
(m = 24); max

(
x.j
)

is the maximum value of indicator j; min
(

x.j
)

is the minimum value of
indicator j.

(2) Calculate the entropy weight of each indicator according to the principle of the entropy
value method.

wj =
1+k∑n

i=1 yij ln(yij)
∑m

j=1(1+k∑n
i=1 yij ln(yij))

yij =
x′ij

∑n
i=1 x′ij

, k = 1
ln(n)

(8)

wj is the weight of indicator j; yij is the weight of the i sample value under the j
indicator for that indicator.

(3) Calculate the composite score for each sample.

NUi =
m

∑
j=1

xijwj, i = 1 . . . n (9)

The specific indices are shown in Table 3. Moreover, the year 2002 is one of the nodal
points in the development of urbanization and the germination stage of the core concept of
new-type urbanization, which began to focus on the legal rights of migrants [65]. On the
premise of data availability, we selected the period of 2002–2020 for the study.

Table 3. New-type urbanization index system.

Classification Variables Unit Positive/
Negative Weights

Population
urbanization

Proportion of urban population % + 0.035
The proportion of employment in
the secondary and tertiary sectors % + 0.019

Urban population density people/square
kilometer + 0.044

Higher education institution
students per 1000 population

people per
thousand + 0.035

Unemployment rate of registered
urban residents % − 0.008

Economy
urbanization

Per capita GDP Yuan + 0.079
Ratio of Engel coefficients

between urban and rural areas % − 0.011

GDP share of secondary and
tertiary industries % + 0.011

Per capita disposable income of
urban residents Yuan/person + 0.082

Per capita fiscal revenue Yuan/person + 0.128

Land
urbanization

Built-up area square
kilometers + 0.075

Urban construction land area hm2 + 0.072
Per capita urban road area m2 + 0.037
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Table 3. Cont.

Classification Variables Unit Positive/
Negative Weights

Society
urbanization

Per capita education expenditure Yuan + 0.078
Number of public buses per ten

thousand people vehicle + 0.028

Water coverage rate % + 0.004
Gas coverage rate % + 0.007

Number of medical beds per
capita

beds per
thousand

people
+ 0.046

Proportion of urban employee
basic endowment insurance

participants to total population
% + 0.067

Proportion of basic medical
insurance participants in urban

areas to total population
% + 0.065

Ecological
urbanization

Green coverage rate of built-up
area % + 0.012

Per capita public green space area m2 + 0.024
Harmless treatment rate of

household garbage % + 0.018

Centralized treatment rate of
wastewater % + 0.015

Note: The weights in the table were calculated by the authors based on panel data.

3.2.3. Control Variables

Based on existing relevant studies [4,46,51,76], a series of variables that could po-
tentially affect carbon emissions from the construction industry were selected to control
from the aspects of economics, policies, and the environment. Specifically, these variables
included: the level of development in the construction industry (CD), measured by the
ratio of the value added from the construction industry to GDP; labor efficiency in the con-
struction industry (LE), represented by the per capita value added by the industry (using
the ratio of constant value added in 2002) to the number of employees in the construction
industry as a proxy variable; the technological level of the construction industry (TL), rep-
resented by the construction industry’s equipment technology rate; the energy intensity of
the construction industry (EI), represented by the ratio of the construction industry’s energy
consumption in terms of standard coal to the value of increased construction output; trade
openness (FDI), represented by the ratio of foreign direct investment to GDP; government
intervention (GOV), represented by the ratio of general public budget expenditure to GDP;
and the natural population growth rate (CP), which reflects the trend and speed of natural
population growth.

3.2.4. Data Source

The data in this paper are panel data of 30 provinces, municipalities and autonomous
regions of China (excluding Hong Kong, Macao, Taiwan, and Tibet) from 2002 to 2020,
obtained from the China Energy Statistical Yearbook, the China Construction Statistical
Yearbook, the China Urban Statistical Yearbook, the China Labor and Employment Statis-
tical Yearbook, the China Urban and Rural Construction Statistical Yearbook, the China
Education Statistical Yearbook, the China Statistical Yearbook, and the Statistical Yearbook
of each province. Missing data are filled by interpolation; some variables are logarithmically
treated in order to attenuate the effect of data heteroskedasticity. The descriptive statistics
of each variable are shown in Table 4.
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Table 4. Variable descriptions.

Variable Label Num Mean Median Standard
Deviation Min Max

lnCEC Carbon emissions in construction industry 570 7.317 7.376 1.524 2.728 11.69
lnNU New-type urbanization level 570 0.255 0.258 0.101 0.0480 0.554

lnCD The level of development in the
construction industry 570 2.489 2.534 0.390 1.357 3.343

lnLE Labor productivity in the construction
industry 570 6.395 6.339 0.574 5.165 8.531

lnTL The technological level of the construction
industry 570 4.731 4.718 0.498 1.985 7.203

lnEI Energy intensity 570 5.833 5.636 1.111 2.753 8.784
lnFDI Trade openness 570 0.430 0.625 1.105 −4.534 2.794

lnGOV Government intervention 570 3.021 2.983 0.519 1.845 5.002
CP The natural population growth rate 570 4.999 5.045 2.943 −4.480 11.78

Note: Organized by the authors.

4. Results and Discussion
4.1. Spatiotemporal Distribution of CEC and NU in China

In this study, we selected four sample years—2002, 2008, 2014, and 2020. The raw data
were categorized into four levels based on intensity, ranging from low to high, using ArcGIS
10.7 software. The spatiotemporal distribution of CEC and NU in China’s 30 provinces
from 2002 to 2020 are shown in Figures 1 and 2.

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 27 
 

4. Results and Discussion 
4.1. Spatiotemporal Distribution of CEC and NU in China 

In this study, we selected four sample years—2002, 2008, 2014, and 2020. The raw 
data were categorized into four levels based on intensity, ranging from low to high, using 
ArcGIS 10.7 software. The spatiotemporal distribution of CEC and NU in China’s 30 prov-
inces from 2002 to 2020 are shown in Figures 1 and 2. 

  
(a) (b) 

  
(c) (d) 

Figure 1. Spatial distribution of carbon emissions from the construction industry for: (a) 2002; (b) 
2008; (c) 2014; (d) 2020. (Source: calculated and organized by the authors). 

 
Figure 2. 2002–2020 carbon emissions from China’s construction industry (Source: calculated and 
organized by the authors). 

Figures 1 and 2 illustrate the overall trend of increasing and then decreasing carbon 
emissions from China’s construction industry from 2002 to 2020, revealing evident spatial 

Figure 1. Spatial distribution of carbon emissions from the construction industry for: (a) 2002;
(b) 2008; (c) 2014; (d) 2020. (Source: calculated and organized by the authors).



Sustainability 2023, 15, 15825 12 of 26

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 27 
 

4. Results and Discussion 
4.1. Spatiotemporal Distribution of CEC and NU in China 

In this study, we selected four sample years—2002, 2008, 2014, and 2020. The raw 
data were categorized into four levels based on intensity, ranging from low to high, using 
ArcGIS 10.7 software. The spatiotemporal distribution of CEC and NU in China’s 30 prov-
inces from 2002 to 2020 are shown in Figures 1 and 2. 

  
(a) (b) 

  
(c) (d) 

Figure 1. Spatial distribution of carbon emissions from the construction industry for: (a) 2002; (b) 
2008; (c) 2014; (d) 2020. (Source: calculated and organized by the authors). 

 
Figure 2. 2002–2020 carbon emissions from China’s construction industry (Source: calculated and 
organized by the authors). 

Figures 1 and 2 illustrate the overall trend of increasing and then decreasing carbon 
emissions from China’s construction industry from 2002 to 2020, revealing evident spatial 
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Figures 1 and 2 illustrate the overall trend of increasing and then decreasing carbon
emissions from China’s construction industry from 2002 to 2020, revealing evident spatial
heterogeneity. During the study period, the carbon emissions from the construction indus-
try in the Jiangsu, Zhejiang, and Guangdong provinces remained at medium–high- and
high-intensity levels, while those in North China (excluding Hebei Province), Northeast
China, Northwest China, Southwest China (excluding Sichuan Province), and South China
(excluding Guangdong Province) remained at low and medium–low levels. The carbon
emissions from the construction industry in Anhui Province, Jiangxi Province, Shandong
Province in East China, and Guizhou Province in Southwest China continued to trend
upwards. Meanwhile, the other provinces and regions initially experienced an increase,
followed by a decrease in carbon emissions.

In 2002, 26.7% of the 30 provinces had high and medium–high levels of carbon emis-
sions. This proportion decreased to 16.7% in 2008, remained the same in 2014, and increased
to 36.7% in 2020. Overall, the provinces with high and medium–high construction carbon
emissions are mostly concentrated in East and Central China in terms of spatial distribution.

As seen from Figure 3, China’s new-type urbanization level retains obvious spatial
heterogeneity and unevenness in different provinces. In 2002, provinces with high
and medium–high levels of new-type urbanization are mainly located in the eastern
coastal areas, significantly exceeding the levels of most central and western provinces
and regions. In 2008, the levels of NU increased to different extents in all provinces.
However, upon comparison, it can be observed that the number of provinces with low
levels of NU decreased significantly. Moreover, we can see that the spatial scope of
provinces with higher levels has expanded from eastern to central and western areas,
suggesting a narrowing of the gap between their urbanization levels. In 2020, the level
of NU in all provinces improved, while the spatial distribution of provinces with the
new-type urbanization level in the low range narrowed. Generally speaking, the level
of China’s new-type urbanization has the spatial characteristics of high in the east and
low in the west, with the inter-provincial gap showing a trend of narrowing, implying
strengthening of the balance of spatial distribution.
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4.2. Spatial Autocorrelation Analysis

To accurately measure the spatial correlation between the provinces, it was essential to
construct an appropriate spatial weight matrix [70]. Thus, this research adopted the three
most commonly used spatial weight matrices to test the spatial correlation: (1) the Rook
contiguity based spatial weight matrix (W1); (2) the spatial inverse distance matrix (W2);
and (3) the economic geographic spatial weight matrix (W3) [77].

The results of global Moran’s I calculation under different spatial weight matrices are
shown in Table 5: the global Moran’s I is significantly positive in most years, and generally
enhanced although there are fluctuations in the degree of significance, indicating that the
carbon emissions from the construction industry in China’s 30 provinces are positively
autocorrelated. Therefore, it is necessary to study the impact of spatial effects on carbon
emissions from the construction industry. As seen in Table 5, the global Moran’s I based on
W2 from 2002 to 2020 passed the significance test in 16 years and failed it in 3 years with
a positive value. The global Moran’s I calculated using W2 has more years that pass the
significance test than other weight matrices. This suggests that the carbon emissions from
the construction industry have relatively robust positive spatial effect.
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Table 5. The Moran’s I of CEC from 2002 to 2020.

Year
W1 W2 W3

I p-Value I p-Value I p-Value

2002 0.056 0.173 0.13 0.044 ** 0.024 0.149
2003 0.043 0.242 0.108 0.079 * 0.017 0.2
2004 0.079 0.081 * 0.044 0.329 −0.007 0.487
2005 0.167 0.002 *** 0.137 0.033 ** 0.035 0.083 *
2006 0.19 0.001 *** 0.114 0.065 * 0.025 0.137
2007 0.211 0.000 *** 0.144 0.026 ** 0.033 0.089 *
2008 0.216 0.000 *** 0.16 0.016 ** 0.041 0.058 *
2009 0.224 0.000 *** 0.185 0.007 *** 0.048 0.039 **
2010 0.164 0.003 *** 0.113 0.068 * 0.018 0.191
2011 0.166 0.002 *** 0.124 0.050 * 0.017 0.199
2012 0.056 0.170 0.087 0.137 0.009 0.282
2013 0.161 0.003 *** 0.163 0.015 ** 0.051 0.033 **
2014 0.04 0.258 0.014 0.547 −0.012 0.577
2015 0.106 0.034 ** 0.146 0.026 ** 0.034 0.087 *
2016 0.137 0.009 *** 0.144 0.028 ** 0.038 0.069 *
2017 0.145 0.007 *** 0.148 0.026 ** 0.048 0.041 **
2018 0.176 0.001 *** 0.188 0.006 *** 0.058 0.021 **
2019 0.181 0.001 *** 0.224 0.002 *** 0.083 0.004 ***
2020 0.235 0.000 *** 0.238 0.001 *** 0.082 0.004 ***

Note: ***, **, and * denote the statistical significance at 1%, 5%, and 10% confidence levels, respectively. Organized
by the authors.

By calculating the local Moran’s I, this study further explores the spatial aggregation
characteristics of carbon emissions from the construction industry in different geographical
locations. Scatterplots of three years (2002, 2011, and 2020 of the study period) were selected
for analysis. The Moran scatterplot contains four types of spatial aggregation, in order from
the first quadrant to the fourth quadrant: H-H type (high–high), L-H type (low–high), L-L
type (low–low), and H-L type (high–low). The Moran scatterplots are shown in Figure 4,
with more than half of the 30 provinces located in the first and third quadrants, indicating
that there is spatial aggregation of carbon emissions from China’s construction industry in
some regions. Lisa cluster maps and significance maps are shown in Figures 5 and 6. At
the beginning of the study period, for example, in 2002, H-H type provinces are clustered
in some provinces in Northeast, North, and East China, and the clustering characteristics
of L-L type provinces are not significant; in the middle of the study period, for example, in
2011, H-H type provinces are distributed in the eastern coastal area of the Yangtze River
delta, and the L-L type provinces are distributed in Northwest China and some provinces
in Southwest China; at the end of the study period, for example, in 2020, the area of H-H
type provinces expanded and is mostly concentrated in the middle and lower reaches of
the Yangtze River and the Pearl River Delta region, while the area of L-L type provinces
can be narrowed down to the Northwest China region. Combining the local Moran’s I and
Lisa cluster map, there is an obvious spatial correlation of carbon emissions from China’s
construction industry.
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4.3. Spatial Correlations
4.3.1. Statistical Testing of Model Selection

We further selected the best form of spatial econometric model to deeply explore the
spatial spillover effect of new-type urbanization on carbon emissions from the construction
industry. In Table 6, for the LM test, the results showed that the p values of LM-lag and
LM-error are significant at the level of 1%, and the p-value of robust LM-error is significant
at the level of 1%. This suggests that the OLS model should be rejected in order to adopt
the SDM model.

Table 6. Test results.

Tests Test Statistics p-Value

LM-Lag 275.864 0.000 ***
Robust LM-Lag 35.662 0.011 **

LM-Error 268.574 0.000 ***
Robust LM-Error 28.371 0.000 ***
LR test for SEM 48.16 0.000 ***
LR test for SAR 31.96 0.000 ***

Wald test for SEM 49.99 0.000 ***
Wald test for SAR 51.32 0.000 ***

Hausman test 62.17 0.000 ***
Note: *** and ** denote the statistical significance at 1% and 5% confidence levels, respectively. Calculated and
organized by the authors.
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For the Wald test, the p-values of Wald-SAR and Wald-SEM are both significant at the
1% level, rejecting the hypothesis that SDM can degenerate into the SAR model or SEM
model. The LR test results are consistent with the Wald test results.

The Hausman test was further applied and passed the 1% significance test, indicating
that a fixed effects model should be used for estimation. In addition, SDM models with
fixed effects are classified into three types of spatial fixed effects, time period fixed effects
and spatial–temporal fixed effects. Comparing the two indicators of goodness of fit and
log-likelihood values with each fixed effects model, the spatial Durbin model under spatial
fixed effects was finally chosen.

4.3.2. Spatial Panel Model Regression Analysis

As shown in Table 7, based on the three different weight matrices, the spatial autore-
gressive coefficients of carbon emissions from the construction industry are all significantly
positive at the level of 1%, indicating that there is a significant positive spillover effect
on carbon emissions from the construction industry. These results suggest that adopting
spatial econometric models is reasonable and necessary.

Table 7. Model estimated results.

Variables Model 1 Model 2 Model 3

lnNU 3.4641 ** 4.3991 * 5.1255 ***
(1.97) (1.85) (2.92)

lnLE −0.7136 *** −0.6031 *** −0.7104 ***
(−6.97) (−4.69) (−7.40)

lnTL 0.1422 ** 0.1840 ** 0.1798 ***
(2.07) (2.24) (2.69)

lnEI 0.2573 *** 0.2255 *** 0.2245 ***
(8.50) (5.93) (7.65)

lnCD 1.4032 *** 1.4897 *** 1.5596 ***
(7.71) (6.28) (9.46)

lnGOV −0.1676 0.0911 0.0634
(−0.70) (0.26) (0.28)

lnFDI 0.0738 * 0.0621 * 0.0477
(1.95) (1.71) (1.33)

CP 0.0672 *** 0.0484 0.0522 ***
(3.18) (1.49) (2.62)

W lnNU −1.3645 −0.0942 0.3826
(−0.68) (−0.03) (0.13)

W lnLE 0.8551 *** 0.5579 ** 0.2422
(3.04) (2.22) (0.55)

WlnTL −0.3177 −0.3585 * −0.1354
(−1.62) (−1.87) (−0.47)

WlnEI 0.0678 0.1820 ** 0.1974 *
(0.72) (2.10) (1.72)

WlnCD −1.0911 ** −1.6336 *** −1.7093 ***
(−2.37) (−4.24) (−2.67)

WlnGOV 0.3647 −0.3177 −0.5714
(0.93) (−0.72) (−0.93)

WlnFDI 0.1696 ** 0.3184 ** 0.3164
(2.49) (2.41) (1.38)

W CP −0.0826 ** −0.0560 −0.0782 **
(−2.13) (−1.00) (−1.97)

rho 0.7103 *** 0.5022 *** 0.7187 ***
(18.75) (14.46) (17.19)

sigma2_e 0.1899 *** 0.2075 *** 0.1771 ***
(16.68) (7.17) (16.71)

R2 0.566 0.525 0.533
N 570 570 570

Log-likelihood −353.1559 −343.8340 −329.3693
Note: ***, **, and * denote the statistical significance at 1%, 5%, and 10% confidence levels, respectively. The
numbers in the brackets of the coefficient are z statistics. Calculated and organized by the authors.

Since using point estimation is inaccurate for the measurement of spatial spillover
effects [70], this paper therefore adopted the partial differential method for a spatial re-
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gression model to decompose the spill-over effects of new-type urbanization on carbon
emissions from the construction industry into three components: direct effects, indirect
effects, and total effects. The estimated results are shown in Table 8.

Table 8. Estimation of direct, indirect, and total effects.

Variables Direct Effects Indirect Effects Total Effects

lnNU 4.9305 ** 8.5745 * 13.5050 ***
(2.09) (1.88) (3.00)

lnLE −0.5828 *** 0.4713 −0.1115
(−4.36) (0.64) (−0.14)

lnTL 0.1552 −0.7127 −0.5576
(1.61) (−1.13) (−0.80)

lnEI 0.2756 *** 0.9726 *** 1.2482 ***
(7.32) (4.79) (5.91)

lnCD 1.4106 *** −1.8253 −0.4148
(5.52) (−1.56) (−0.32)

lnGOV 0.0565 −0.8515 −0.7951
(0.17) (−0.83) (−0.72)

lnFDI 0.1171 ** 1.0453 *** 1.1624 ***
(2.57) (3.26) (3.33)

CP 0.0450 −0.0548 −0.0097
(1.58) (−0.42) (−0.08)

Note: ***, **, and * denote the statistical significance at 1%, 5%, and 10% confidence levels, respectively. The
numbers in the brackets of the coefficient are z statistics. Calculated and organized by the authors.

From the perspective of the core explanatory variable, the direct effect and indirect
effect of new-type urbanization (lnNU) are positive, with them being significant at the
levels of 5% and 10%, respectively. Moreover, the coefficient of the indirect effect is greater
than the direct effect, indicating that the improvement of the new-type urbanization level
in both the local and adjacent areas promotes the increase in carbon emissions from the
local construction industry. For the total effect, a 1% increase in new-type urbanization
will increase the carbon emissions from the construction industry by 13.5050%. And H1
was tested. Contrary to the findings of some studies in that new-type urbanization can
promote carbon emission efficiency [31,62], this paper found that new-type urbanization
still has a positive effect on carbon emissions from the construction industry at this stage.
The reason is that the promotion of urbanization in the region has triggered the demand
for residential housing, industrial upgrading and expansion, and equalization of social
services, which require the gradual improvement of infrastructure to promote the rapid
development of the construction industry. On the other hand, the improvement of the level
of new-type urbanization in adjacent areas has promoted the flow of technology and capital
to the local area to drive local economic and social development, stimulate the demand for
the construction industry, and thus increase the carbon emissions from the construction
industry. These results are consistent with the available literature [29,34].

The spatial effect decomposition of controlled variables is shown as follows: (1) the
direct effects of labor efficiency (lnLE) in the construction industry is negative with a
coefficient of −0.5828, and the indirect effect is positive with a coefficient of 0.4713. This
means that labor efficiency improvements can improve energy efficiency, thereby reducing
carbon emissions from the construction industry. (2) The direct effect of the construction
industry technology level (lnTL) is positive and the indirect effect is negative, both of
which are not statistically significant. This shows that the technical level does not have a
significant impact on the carbon emissions from the construction industry in the provinces,
reflecting the weaknesses in China’s technical equipment policy, construction industry
technology development level, and technical equipment funding source. (3) The energy
intensity (lnEI) characterizes the energy-saving technical factors, and the results show that
the direct effect and indirect effect coefficient are significantly positive, illustrating that
the energy intensity of both the local and adjacent areas will have a positive impact on
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the carbon emissions from the local construction industry. (4) The direct effect coefficient
of the development level (lnCD) of the construction industry is significantly positive,
and the indirect effect coefficient is negative but not significant. This shows that the
improvement of the development level in the local areas will promote carbon emissions
from the construction industry, and it in adjacent areas, it has no significant impact on
carbon emissions. (5) The direct effect of government intervention (lnGOV) is positive
and the indirect effect is negative, both of which are not significant. This shows that the
level of fiscal expenditure in the local and adjacent areas does not have a significant impact
on the carbon emissions from the construction industry. (6) Trade openness (lnFDI) has
positive direct and indirect effects on carbon emissions from the construction industry,
and the regression coefficients are 0.1171 and 1.0453, respectively. This shows that there
is a “pollution haven” for carbon emissions from China’s construction industry. In other
words, it is possible that in order to attract foreign investment and promote development,
developing countries lower the standards of environmental regulations so that developed
countries transfer highly polluting industries to the developing countries, which means
that the ecological environment will worsen in those developing countries. (7) The effect
of the natural population growth rate (CP) on carbon emissions from the construction
industry is insignificant and does not pass the significance test. The effect of CP on carbon
emissions from the construction industry is not yet captured in the model.

In addition, the indirect effects of each control variable are significantly higher than
the direct effects, which further indicates that the spatial spillover effect has an important
role in the carbon emissions from the construction industry in local areas.

4.4. Threshold Effect Analysis

Considering the large gap between the development level and energy intensity of the
construction industry in the different provinces of China, this paper establishes a threshold
model with lnCD and lnEI as threshold variables to further test for a nonlinear relationship
between new-type urbanization and carbon emissions from the construction industry.

4.4.1. Threshold Effect Test and Estimation

The test results are shown in Table 9. This shows that there is a single threshold at
the development level of the construction industry (lnCD) at a significance level of 1%,
and a double threshold at the significance level of 5% in the energy intensity (lnEI) of the
construction industry. To clearly display the threshold effect in different model settings,
likelihood ratio function (LR) graphs were drawn. The LR test results are displayed in
Figures 7 and 8.
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Table 9. Significance test of the threshold effect.

Threshold Variable Threshold F-Statistic p-Value BS-Frequency 1% 5% 10%

lnCD
Single 26.91 0.010 ** 300 23.638 19.108 15.900

Double 15.83 0.106 300 22.975 18.765 16.080
Triple 4.02 0.953 300 41.160 30.931 23.988

lnEI
Single 43.06 0.003 *** 300 33.385 26.969 23.460

Double 41.16 0.000 *** 300 22.398 15.850 13.314
Triple 5.56 0.813 300 96.914 78.091 65.176

Note: *** and ** denote the statistical significance at 1% and 5% confidence levels, respectively. Calculated and
organized by the authors.

The estimated results are shown in Table 10. Regardless of whether the threshold
variable is lnCD or lnEI, the coefficients of new-type urbanization (lnNU) on the carbon
emissions from the construction industry (lnCEC) are positive and significant at the 1%
level, indicating that NU played a role in promoting the carbon emissions from the CEC in
different sample intervals. When the lnCD is lower than 2.2023, the elasticity of the lnCD
rate is 7.120, and when the lnCD exceeds this first threshold value, the promoting effect
of the NU on the CEC will be enhanced and the positive elasticity of the urbanization will
increase to 9.270. The results indicate that there exist differences in the relationship between
NU and CEC owing to the different development levels of the construction industry. Thus,
H2 was tested. Possible explanations for the above results are as follows. The increased
level of development of the construction industry and the expansion of the scale of the
construction industry will not only increase its own direct carbon emissions, but will also
generate a large demand for construction materials and stimulate the carbon emissions
from construction-related industries, thus increasing the total carbon emissions from the
construction industry [52]. On the other hand, China’s construction industry is still in the
upward phase of the inverted U-curve [14,47], and as the construction industry develops,
its economic output will also grow, which will lead to an increase in carbon emissions from
the construction industry.

When taking energy intensity (lnEI) as the threshold variable, there exist double
thresholds, and the relationship between NU and CEC can be decomposed into three stages,
as displayed in Table 10. When lnEI is lower than 4.7418, the elasticity of the lnNU on the
lnCEC is 7.657. And when lnEI exceeds the first and second threshold values (i.e., 4.7418
and 7.9407), the new-type urbanization rate increases and its positive correlation coefficient
with the lnCEC is 10.267 and 14.010, respectively, both at the 1% significance level. And
H3 was tested. The results imply that the influence of new-type urbanization on carbon
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emissions from the construction industry varies in different stages of energy intensity.
There are possible explanations for the above results. The reduction in the level of building
energy consumption indicates that the application of energy-saving and emission reduction
technologies in the construction industry has achieved a carbon reduction effect [4]. In the
process of new-type urbanization, all kinds of buildings serve as a carrier for realizing the
industrial transformation and equalization of social and public services, etc. The effective
application of energy-saving and emission reduction technologies has contributed to a
reduction in carbon emissions in the construction process of buildings.

Table 10. Threshold effect coefficient estimation (the core explanatory variable is NU).

Threshold Value Coefficient t-Value

lnCD ≤ 2.2023 7.120 6.75 ***
lnCD > 2.2023 9.270 7.33 ***
lnEI ≤ 4.7418 7.657 7.52 ***

4.7418 < lnEI ≤ 7.9407 10.267 10.27 ***
lnEI > 7.9407 14.010 12.49 ***

Note: *** denotes the statistical significance at 1% confidence levels, respectively. Calculated and organized by
the authors.

4.4.2. Statistical Analysis of Regional Differences in Threshold Effects

This study uses data from 2020 to classify China’s provinces into different groups
based on the threshold values, as shown in Table 11. When lnCD is used as the threshold
variable, two groups of high value areas and low value areas are divided; when using
lnEI as the threshold variable, two groups are divided into medium value and low value
zones. From the viewpoint of the development level of the construction industry, most
of the provinces are in high value areas, and the carbon emissions from the construction
industry brought by the improvement of the new-type urbanization level in these provinces
increase more compared with the low value areas. From the perspective of energy intensity,
most of the provinces are in the medium value areas, and the promotion effect of new-type
urbanization development on carbon emissions from the construction industry in these
provinces is more significant than the low value areas, and a few provinces are in the high
value areas of energy consumption intensity.

Table 11. Different threshold ranges and their provinces in 2020.

Threshold Value Provinces

lnCD ≤ 2.2023 Tianjin, Inner Mongolia, Heilongjiang, Shanghai, Jiangxi,
Shandong, Henan, Guangdong, Hainan, and Gansu.

lnCD > 2.2023
Beijing, Hebei, Shanxi, Liaoning, Jilin, Jiangsu, Zhejiang,

Anhui, Fujian, Hubei, Hunan, Guangxi, Chongqing, Sichuan,
Guizhou, Yunnan, Shaanxi, Qinghai, Ningxia, and Xinjiang.

lnEI ≤ 4.7418 Beijing, Heilongjiang, Jiangxi, Guangxi, Chongqing,
and Yunnan.

4.7418 < lnEI ≤ 7.9407

Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin,
Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Shandong, Henan,

Hubei, Hunan, Guangdong, Hainan, Sichuan, Guizhou,
Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.

Note: Calculated and organized by the authors.

5. Conclusions and Policy Implications

Based on the panel data of 30 provinces in China from 2002 to 2020, this paper
first measures the carbon emissions of China’s construction industry and constructs a
comprehensive index system of new-type urbanization, uses a spatial econometric model
and a panel threshold regression model, and empirically analyzes the impact of new-type
urbanization on carbon emissions from the construction industry from both linear and
nonlinear perspectives. The main conclusions are as follows:
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(1) The carbon emissions from China’s construction industry exhibit a significant positive
spatial correlation, with more than half of provinces distributed as H-H and L-L
types. High-carbon emission provinces tend to concentrate in the east and central
regions, while low-carbon emission provinces are primarily located in the northwest
and northeast of China.

(2) New-type urbanization not only increases carbon emissions from the construction
industry in local regions, but also has a spatial spillover effect on neighboring regions.
This indirect effect is greater than the direct effect. Additionally, factors such as labor
efficiency, energy intensity, industrial structure, and trade openness also significantly
impact carbon emissions from the construction industry, with the indirect effect being
greater than the direct effect.

(3) There is a multi-threshold nonlinear relationship between new-type urbanization and
carbon emissions from the construction industry. The estimated coefficients of new-
type urbanization increase to different degrees when the development level and the
energy consumption intensity of the construction industry cross the threshold values.

This paper is complementary to research on the impact of new-type urbanization
on carbon emissions from the construction industry, which considers the spatial effect
and threshold effect on the impact of new-type urbanization on carbon emissions from
the construction industry. However, there remains scope for improvement. Firstly, this
paper conducted a preliminary empirical study on the impact of new-type urbanization
on carbon emissions from the construction industry, and the relationship between the two
needs further research. Secondly, considering the availability of data, the dynamic effect
is not taken into account when exploring the impact of new-type urbanization on carbon
emissions from the construction industry.

The policy implications of this study are as follows:

(1) Due to the significant spatial correlation between carbon emissions from the con-
struction industry and the various aggregation types present in different regions, it
is crucial to enhance collaboration and exchange between provinces for low-carbon
development in the construction industry based on local circumstances. For instance,
H-H type regions of carbon emissions such as the middle and lower reaches of the
Yangtze River and the Pearl River Delta can establish a stable and effective industry
linkage mechanism with L-L type regions in the west. This can entail signing contracts
between the eastern provinces, which have a sizeable construction industry economic
volume, and the western provinces, which are driving the development of new en-
ergy. Such collaboration can strengthen resource sharing and facilitate the flow of
technology, capital and clean energy to jointly promote the low-carbon development
of the construction industry.

(2) The promotion of new-type urbanization processes is an important factor affecting
the carbon emissions from the construction industry. The development of new-type
urbanization requires the integration of urban and rural areas, as well as equitable
access to public services, which rely on the construction industry to realize the exten-
sion of infrastructure and public services to the countryside [10], which will bring a
large amount of carbon emissions to the construction industry; on the other hand,
new-type urbanization is at the initial stage of the transition to a low-carbon economy,
and the construction industry is still suffering from the problem of the crude mode
of production, which results in significant energy consumption [78]. Hence, in the
process of new-type urbanization, the government should pay more attention to the
coordinated development of society and the environment, promote the development
of green building and enhance the ability of construction enterprises to implement
green construction, encourage technological innovation in building construction, and
seize the opportunity to promote the further development of the low-carbonization,
industrialization, and informatization of the construction industry.

(3) The specific impact of new-type urbanization on carbon emissions from the con-
struction industry is also subject to factors such as the level of development and the



Sustainability 2023, 15, 15825 23 of 26

intensity of energy consumption in the construction industry. The level of devel-
opment of the construction industry has a significant impact on carbon emissions.
Thus, the government should deepen the supply-side reform of the construction
industry, accelerate the pace of industrial restructuring, pay attention to moderate
scale control, break through the existing shackles of industrial development, eliminate
backward high-energy-consuming enterprises, and strongly support the development
of energy-saving, innovative, and eco-friendly high-tech enterprises.

Reducing the energy intensity of the construction industry will help China’s provinces
improve carbon emission efficiency. Construction industry stakeholders should enhance
the construction capacity of green buildings and improve the recycling and reuse capacity
of construction waste by improving the production process level of building materials such
as recyclable timber structures and steel structures. In addition, technological innovation
should be valued and encouraged, especially green low-carbon technologies, such as
introducing low-carbon technical talents and capital, incubating low-carbon green projects,
and enhancing the innovation vitality and initiative of talents and construction enterprises
through innovation subsidies, so as to improve the carbon emission efficiency of the
construction industry.
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