Testing the Feasibility of Usumacinta River Sediments as a Renewable Resource for Landscaping and Agronomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Usumacinta River Sediments
2.2. Potting Soil
2.3. Rye Grass
2.4. Greenhouse Testing Conditions
2.5. Soil–Sediment Mix
2.6. Sowing of Ryegrass
3. Results and Discussion
3.1. Sediments and Soil
3.2. Germination and Growth of Ryegrass
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AFNOR NF EN ISO 11885; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Association Française de Normalisation: Paris, France, 2016.
- AFNOR NF ISO 10390; Qualité du Sol—Détermination du pH. Association Française de Normalisation: Paris, France, 2016.
- AFNOR NF ISO 11265; Qualité du Sol—Détermination de la Conductivité Électrique Spécifique. Association Française de Normalisation: Paris, France, 2016.
- AFNOR NF P 94-048; Sols: Reconnaissance et Essais. Détermination de la Teneur en Carbonate. Méthode du Calcimètre. Association Française de Normalisation: Paris, France, 2016.
- AFNOR NF P 94-068; Sols Reconnaissance Et Essais—Mesure de la Capacité D’adsorption de Bleu de Méthylène d’un sol ou d’un Matériau Rocheux—Détermination de la Valeur de Bleu de Méthylène d’un sol ou d’un Matériau Rocheux par L’essai à la tâche. Association Française de Normalisation: Paris, France, 2016.
- AFNOR NF X31-107; Qualité du Sol—Détermination de la Distribution Granulométrique des Particules du Sol—Méthode à la Pipette. Association Française de Normalisation: Paris, France, 2016.
- AFNOR XP P94-011; Sols: Reconnaissance et Essais, Description—Identification—Dénomination des Sols. Terminologie—Éléments de Classification. Association Française de Normalisation: Paris, France, 2016.
- AFNOR XP P94-047; Sols: Reconnaissance et Essais—Détermination de la Teneur Pondérale en Matières Organiques d’un Matériau—Méthode par Calcination. Association Française de Normalisation: Paris, France, 2016.
- AFNOR XP X33-012; Caractérisation des Boues—Dosage des Hydrocarbures Aromatiques Polycycliques (HAP) et des Polychlorobiphényles (PCB). Association Française de Normalisation: Paris, France, 2016.
- SEDIBRIC. Valorisation de Sédiments en Briques et Tuiles. Transition Ecologique et Valorisation Economique; Les Assises du Port du Futur: Paris, France, 2018; Available online: https://www.portdufutur.fr/sites/portdufutur/files/fichiers/2019/02/SEDIBRIC_bourdin.pdf (accessed on 16 October 2023).
- Anger, B. Caractérisation des Sédiments Fins des Retenues Hydroélectriques en Vue D’une Orientation Vers des Filières de Valorisation Matière. Ph.D. Thesis, Université de Caen Normandie, Caen, France, 2014; p. 302. Available online: https://hal-normandie-univ.archives-ouvertes.fr/tel-01938082 (accessed on 16 October 2023).
- Arnot, R. The effect of seed weight and depth of sowing on the emergence and early seedling growth of perennial ryegrass (Lolium perenne). J. Br. Grassl. Soc. 1969, 24, 104–110. [Google Scholar] [CrossRef]
- Baran, A.; Tarnawski, M.; Koniarz, T.; Jasiewicz, C. Agricultural use of sediments from narożniki reservoir—Yield and concentration of macronutrients and trace elements in the plant. Infrastruct. Ecol. Rural Areas 2016, 4, 1217–1228. [Google Scholar] [CrossRef]
- Bénédicte, D. La Faisabilité de la Valorisation des Sédiments de Dragage de L’estuaire de la Vilaine, une Démarche Territoriale. Master’s Thesis, Ecole des Métiers de l’Environnement, Institution d’Aménagement de la Vilaine, Vilaine, France, 2017. Available online: https://www.eaux-et-vilaine.bzh/_BDU/20171221134553_Rapport-Valorisation-Vases-2017_VF.pdf (accessed on 16 October 2023).
- Brigham, R.D.; Pelini, S.; Xu, Z.; Vázquez-Ortega, A. Assessing the effects of lake-dredged sediments on soil health: Agricultural and environmental implications for northwestern Ohio. J. Environ. Qual. 2021, 50, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Canet, R.; Chaves, C.; Pomares, F.; Albiach, R. Agricultural use of sediments from the Albufera Lake (eastern Spain). Agric. Ecosyst. Environ. 2003, 95, 29–36. [Google Scholar] [CrossRef]
- Del Negro, R. Characterization of Usumacinta River’s Sediments. Master’s Thesis, Université de Nantes-IFSTTAR Nantes, Univ Lyon-INSA Lyon, Nantes, France, 2019; 18p. [Google Scholar]
- EC (European Commission); van Beek, C.; Toth, G. Risk Assessment Methodologies of Soil Threats in Europe—Status and Options for Harmonization for Risks by Erosion, Compaction, Salinization, Organic Matter Decline and Landslides; JRC Scientific and Policy Reports, EUR 24097 EN; European Commission: Brussels, Belgium, 2012; 84p.
- Fonseca, R.M.; Barriga, F.J.; Conceicao, P.I. Clay minerals in sediments of Portuguese reservoirs and their significance as weathering products from over-eroded soils: A comparative study of the Maranhão, Monte Novo and Divor Reservoirs (South Portugal). Int. J. Earth Sci. (Geol. Rundsch.) 2010, 99, 1899–1916. [Google Scholar] [CrossRef]
- Fourvel, G. Valorisation Agronomique des Sédiments Fins de Retenues Hydroélectriques en Construction D’anthroposols Fertiles. Ph.D. Thesis, Agrocampus Ouest, Rennes, France, 2018; 397p. Available online: https://tel.archives-ouvertes.fr/tel-02136422 (accessed on 16 October 2023).
- GTR. Réalisation des Remblais et des Couches de Forme, les Principes Généraux et les Annexes Techniques, 2nd ed.; Guide Technique; CEREMA: Bron, France, 2000; 211p, ISBN 211085707-2. [Google Scholar]
- Guihéneuf, S. Valorisation de Déchets et de Co-Produits bio et Géo-Sourcés Dans la Formulation de Matériaux De Construction en Terre Crue; Batylab Conference Presentation: Rennes, France, 2023; Available online: https://www.batylab.bzh/wp-content/uploads/simon-guiheuneuf-valorisation-de-dechets-et-de-co-produits-bio-et-geo-sources.pdf (accessed on 16 October 2023).
- GNIS. Cultivons la Diversité des Plantes Cultivées, Ryegrass Anglais. Techniques de Culture et Activités Pédagogiques, France. 2008. Available online: https://www.semencemag.fr/images/fiches_bo/cultiver-jardiner-ray-grass-anglais.pdf (accessed on 16 October 2023).
- Javaid, M.M.; Mahmood, A.; Alshaya, D.S.; AlKahtani, M.D.F.; Waheed, H.; Wasaya, A.; Khan, S.A.; Naqve, M.; Haider, I.; Shahid, M.A.; et al. Influence of environmental factors on seed germination and seedling characteristics of perennial ryegrass (Lolium perenne L.). Sci. Rep. 2022, 12, 9522. [Google Scholar] [CrossRef] [PubMed]
- Kiani, K.; Raave, H.; Simojoki, A.; Tammeorg, O.; Tammeorg, P. Recycling lake sediment to agriculture: Effects on plant growth, nutrient availability, and leaching. Sci. Total Environ. 2021, 753, 141984. [Google Scholar] [CrossRef] [PubMed]
- Kotuby-Amacher, J.; Koenig, R.; Kitchen, B. Salinity and Plant Tolerance. Utah State University Extension 2000, AG-SO-03, 8p. Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1042&context=extension_histall (accessed on 16 October 2023).
- Lembke, W.D.; Mitchell, J.K. Dewatering dredged sediment for agriculture: Lake Paradise, Mattoon, Illinois. Trans. ASAE 1983, 26, 0805–0808. [Google Scholar] [CrossRef]
- Michallet, I.; Charruau, P.; Monzón Alvarado, C. (Eds.) Les Sédiments du Bassin Versant de l’Usumacinta en 12 Questions; GRAIE: Lyon, France; ECOSUR Mexique: Chiapas, Mexico, 2022; 49p, ISBN 978-2-917199-11-49782917199114. [Google Scholar]
- Macía, P.; Fernández-Costas, C.; Rodríguez, E.; Sierpc, P.; Pazos, M.; Sanromána, M.A. Technosols as a novel valorization strategy for an ecological management of dredged marine sediments. Ecol. Eng. 2014, 67, 182–189. [Google Scholar] [CrossRef]
- Martínez-Nicolás, J.J.; Legua, P.; Núñez-Gómez, D.; Martínez-Font, R.; Hernández, F.; Giordani, E.; Melgarejo, P. Potential of dredged bioremediated marine sediment for strawberry cultivation. Sci. Rep. 2020, 10, 19878. [Google Scholar] [CrossRef] [PubMed]
- McManus, J. Grain size distribution and interpretation. In Techniques in Sedimentology; Tucker, M.E., Ed.; Blackwell Scientific Publications Ltd.: Chichester, UK, 1988; pp. 63–85. ISBN 0-632-01372-9. [Google Scholar]
- MEDD. Gestion des Sediments Extraits de Cours D’eau et des Canaux; Direction de L’eau et Direction de la Prévention des Pollutions et des Risques. Ministère de l’Ecologie et du Développement Durable: Paris, France, 2020. [Google Scholar]
- Nikafkar, N.; Alroaia, Y.V.; Heydariyeh, S.A.; Schleiss, A.J. Economic and commercial analysis of reusing dam reservoir sediments. Ecol. Econ. 2023, 204, 107668. [Google Scholar] [CrossRef]
- Renella, G. Recycling and Reuse of Sediments in Agriculture: Where Is the Problem? Sustainability 2021, 13, 1648. [Google Scholar] [CrossRef]
- Safhi, A.M. Valorisation des Sédiments de Dragages dans des Bétons Autoplaçants: Optimisation de la Formulation et Étude de la Durabilité. Ph.D. Thesis, Ecole Nationale Supérieure Mines-Télécom Lille Douai, Université de Sherbrooke, Québec, QC, Canada, 2020. Available online: https://theses.hal.science/tel-03161520 (accessed on 16 October 2023).
- Sheehan, C.; Harrington, J.; Murphy, J.D. Dredging and Dredged Material Beneficial Reuse in Ireland. Terra et Aqua 2009, Number 115. Available online: https://sword.cit.ie/cgi/viewcontent.cgi?article=1031&context=dptcivstengart (accessed on 16 October 2023).
- Sun, C.; Feng, D.; Yu, C.; Sun, J.; Han, X.; Zhang, M.; Zhang, P.; Han, H.; Mao, W.; Shen, X. The dynamics characteristics of soil water infiltration and capillary rise for saline–sodic soil mixed with sediment. Water 2022, 14, 481. [Google Scholar] [CrossRef]
- UNPG. Granulats: Parution des Chiffres clés 2019; L’industrie Française des Granulats: Paris, France, 2021; Available online: https://www.unicem.fr/wp-content/uploads/2021/12/unpg-chiffres-2019-web.pdf (accessed on 16 October 2023).
- USDA-NRCS. Guide to Texture by Feel. U.S. Department of Agriculture, National Resources and Conservation Service, USA; 1999. Available online: www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/edu/?cid=nrcs142p2_054311 (accessed on 16 October 2023).
- USSLS. Diagnosis and Improvement of Saline and Alkali Soils. In Agriculture Handbook; Richards, L.A., Ed.; n°60; United States Salinity Laboratory Staff, Department of Agriculture: Washington, DC, USA, 1954; 166p. [Google Scholar]
- Urbaniak, M.; Lee, S.; Takazawa, M.; Mierzejewska, E.; Baran, A.; Kannan, K. Effects of soil amendment with PCB-contaminated sediment on the growth of two cucurbit species. Environ. Sci. 2020, 27, 8872–8884. [Google Scholar] [CrossRef] [PubMed]
- Westerberg, V. Meeting the demands of the construction industry—The economic case for re-using sediment from the Tuyamuyun Hydropower Complex. European Union project “Central Asia Nexus Dialogue Project: Fostering Water, Energy and Food Security Nexus and Multi-Sector Investment. 2022. Available online: https://uploads.water-energy-food.org/resources/Cost-and-benefit-analysis-on-sediment-removal-and-recycling-at-THC.pdf (accessed on 16 October 2023).
- Zhou, Z.C.; Shangguan, Z.P. The effects of ryegrass roots and shoots on loess erosion under simulated rainfall. Catena 2007, 70, 350–355. [Google Scholar] [CrossRef]
Sediments | Sediments (%) | Crops | Conditions | T * (°C) | RH ** (%) | Time | Reference |
---|---|---|---|---|---|---|---|
Lake | 75 cm thick layer | Ryegrass | Farmland | - | - | 243 days | [10] |
Reservoir | 5, 10, 30, 50, 100 | Maize | Farmland | - | - | 70 days | [12] |
Lake | 0, 10, 20, 100 | Soybean | Greenhouse | 31.5 | 43.6 | 123 days | [13] |
River | 0, 10, 25, 50, 75, 100 | Cucumber | Chamber | 25 | - | 4 weeks | [14] |
Lake | 5, 10, 20 | Lettuce | Greenhouse | - | - | 2 months | [28] |
Lake | 12–18 inch layers | Corn | Farmland | - | 4 months | [29] |
PAHs (mg/kg) | J | N1 | N2 | PCB (mg/kg) | J | Metals (mg/kg) | S1 | J |
---|---|---|---|---|---|---|---|---|
Naphtalene | 0.002 | 0.16 | 1.13 | PCB c 28 | <0.001 | As | 30 | 5.19 |
Acenaphtylene | <0.002 | 0.02 | 0.26 | PCB c 52 | <0.001 | Cd | 2 | <0.4 |
Acenaphtene | <0.002 | 0.04 | 0.34 | PCB c 101 | <0.001 | Cr | 150 | 131 |
Fluorene | <0.002 | 0.02 | 0.28 | PCB c 118 | <0.001 | Cu | 100 | 20.5 |
Phenanthene | 0.003 | 0.08 | 0.59 | PCB c 138 | <0.001 | Hg | 1 | <0.1 |
Anthracene | 0.004 | 0.24 | 0.87 | PCB c 153 | <0.001 | Ni | 50 | 256 |
Fluoranthene | <0.002 | 0.6 | 2.85 | PCB c 180 | <0.001 | Pb | 100 | 11.3 |
Pyrene | 0.004 | 0.5 | 1.5 | Zn | 300 | 40.2 | ||
Benzo anthracene | <0.002 | 0.26 | 0.93 | |||||
Chrysene | <0.002 | 0.38 | 1.59 | |||||
Benzo pyrene | <0.002 | 0.43 | 1.01 | |||||
Benzo perylene | <0.002 | 1.7 | 5.56 | |||||
Indono pyrene | <0.003 | 1.7 | 5.56 |
Usumacinta Sediments | ||||||||||
J | pH | OM (%) | EC (mS/cm) | CaCO3 (%) | Clay (%) | Silt (%) | Sand (%) | CEC (meq/100g) | ||
8.5 ± 0.1 | 5.7 ± 0.2 | 0.02 ± 0.0 | 8.5 ± 0.2 | 13.4 ± 0.0 | 62.5 ± 2.2 | 24.1 ± 2.3 | 35.7 ± 1.5 | |||
Oxides and SAR of Sediments | ||||||||||
J | SiO2 (%) | Al2O3 (%) | CaO (%) | TiO2 (%) | Fe2O3 (%) | K2O (%) | Na (mg/kg) | Ca (g/kg) | Mg (g/kg) | SAR (-) |
56.3 ± 1.4 | 16.1 ± 2.1 | 6.4 ± 0.5 | 1.9 ± 0.3 | 16.1 ± 2.8 | 2.6 ± 0.7 | 241.0 ± 27.0 | 59.8 ± 5.1 | 15.4 ± 0.5 | 1.2 ± 0.1 |
Sediment | Mnt (%) | Ilt (%) | Vrm (%) | Kao (%) | Qz (%) | Cal (%) | Dol (%) | Bt (%) | Crs (%) | Or (%) | Ano (%) | Ab (%) | Others (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J | 10 ± 0.7 | 6.4 ± 1.5 | 17.1 ± 0.4 | 4.9 ± 0.2 | 21.4 ± 1.3 | 2.2 ± 0.7 | 10.1 ± 2.2 | 7 ± 0.1 | 1.6 ± 0.6 | 5.3 ± 0.4 | 9.6 ± 1.7 | 4.3 ± 0.3 | 5 ± 2.8 |
Soil | Dry Matter (%) | OM (%) | EC (mS/cm) | WRC (mL/L) | pH |
---|---|---|---|---|---|
Potting soil | 38.0 | 72.0 | 0.36 | 780 | 6.5 |
J4 sediments | 78.1 | 5.7 | 0.02 | - | 8.5 |
Days | hC1 (cm) | hC2 (cm) | hC3 (cm) |
---|---|---|---|
0 | 0 | 0 | 0 |
5 | Germination | Germination | Germination |
9 | 4 | 3 | 3 to 4 |
12 | 7 | 6 | 4 to 5 |
15 | 9 | 7 | 5 to 6 |
17 | 11 * | 10 * | 6 to 7 |
19 | 8 | 7 | 6 to 7 |
22 | 15 * | 13 * | 7 to 9 |
23 | 7 | 6 | 9 to 11 * |
24 | 11 * | 10 * | 5 to 6 |
27 | 9 | 8 | 7 to 8 |
29 | 12 * | 11 * | 9 to 10 |
36 | 14 * | 12 * | 10 to 11 * |
38 | 9 | 8 | 5 to 6 |
43 | 16 * | 15 * | 6 to 7 |
45 | 8 | 7 | 7 to 8 |
47 | 13 * | 12 * | 9 to 11 * |
55 | 12 * | 11 * | 6.5 |
60 | 9 | 9 | 7.5 |
66 | 12 * | 11 * | 7.5 |
Yield of Ryegrass (g) | ||||||||
---|---|---|---|---|---|---|---|---|
Cutting | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Composition C1 | 8.27 | 9.34 | 10.6 | 11.24 | 38.4 | 24.3 | 11.72 | 34.41 |
Composition C2 | 6.25 | 9.75 | 7.85 | 9.83 | 27.83 | 21.06 | 8.79 | 26.3 |
Composition C3 | 3.49 | 5.06 | 6.88 | - | - | - | - | - |
The final height of ryegrass and biomass yield | ||||||||
Composition | Mass (g) | Average height (cm) | Yield (kg/m2) | |||||
Composition C1 | 34.41 | 11.5 ± 0.5 | 0.25 ± 0.018 | |||||
Composition C2 | 26.3 | 11.5 ± 0.5 | 0.18 ± 0.014 | |||||
Composition C3 | 6.88 | 7.5 ± 0.5 | 0.05 ± 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Levacher, D.; Leblanc, N.; Zmamou, H.; Djeran-Maigre, I.; Razakamanantsoa, A. Testing the Feasibility of Usumacinta River Sediments as a Renewable Resource for Landscaping and Agronomy. Sustainability 2023, 15, 15859. https://doi.org/10.3390/su152215859
Hussain M, Levacher D, Leblanc N, Zmamou H, Djeran-Maigre I, Razakamanantsoa A. Testing the Feasibility of Usumacinta River Sediments as a Renewable Resource for Landscaping and Agronomy. Sustainability. 2023; 15(22):15859. https://doi.org/10.3390/su152215859
Chicago/Turabian StyleHussain, Mazhar, Daniel Levacher, Nathalie Leblanc, Hafida Zmamou, Irini Djeran-Maigre, and Andry Razakamanantsoa. 2023. "Testing the Feasibility of Usumacinta River Sediments as a Renewable Resource for Landscaping and Agronomy" Sustainability 15, no. 22: 15859. https://doi.org/10.3390/su152215859
APA StyleHussain, M., Levacher, D., Leblanc, N., Zmamou, H., Djeran-Maigre, I., & Razakamanantsoa, A. (2023). Testing the Feasibility of Usumacinta River Sediments as a Renewable Resource for Landscaping and Agronomy. Sustainability, 15(22), 15859. https://doi.org/10.3390/su152215859