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Abstract: Electricity consumption forecasting plays a crucial role in improving energy efficiency,
ensuring stable power supply, reducing energy costs, optimizing facility management, and pro-
moting environmental conservation. Accurate predictions help optimize energy system operations,
reduce energy wastage, cut costs, and decrease carbon emissions. Consequently, the research on
electricity consumption forecasting algorithms is thriving. However, to overcome challenges like data
imbalances, data quality issues, seasonal variations, and event handling, recent forecasting models
employ various approaches, including probability and statistics, machine learning, and deep learning.
This study proposes a short- and medium-term electricity consumption prediction algorithm by
combining the GRU model suitable for long-term forecasting and the Prophet model suitable for
seasonality and event handling. (1) The preprocessed data propose the Prophet model in the first
step for seasonality and event handling prediction. (2) In the second step, seven multivariate data are
experimented with using GRU. Specifically, the seven multivariate data consist of six meteorological
data and the residuals between the predicted data from the proposed Prophet model in Step 1 and
the observed data. These are utilized to predict electricity consumption at 15 min intervals. (3) Elec-
tricity consumption is predicted for short-term (2 days and 7 days) and medium-term (15 days and
30 days) scenarios. The proposed approach outperforms both the Prophet and GRU models, reducing
prediction errors and offering valuable insights into electricity consumption patterns.

Keywords: Prophet; LSTM; GRU; meteorological data; electricity consumption forecasting

1. Introduction

The Building Energy Management System (BEMS) plays a pivotal role in managing the
entire electricity system, encompassing power generation, transmission, distribution, and
consumption. These systems employ energy management software, often implemented in
contexts with high energy consumption like households, buildings, and factories. Their
purpose is to meticulously analyze energy consumption concerning its source, heat genera-
tion, system operation, and major equipment utilization. By doing so, they aim to establish
efficient energy management systems, thereby leading to cost savings through energy
conservation, ensuring the appropriate usage of energy sources, reducing carbon emissions
via optimal operation, decreasing facility operation and maintenance costs, extending
equipment lifespan, and improving overall facility operation efficiency [1,2].

However, the true potential of BEMS can only be harnessed with reliable electricity
consumption forecasting, especially in the short- and medium-term. Accurate forecasting
in these timeframes is critical for energy system operations. It ensures a stable and reliable
supply of power, optimizes resource allocation, and significantly contributes to overall
energy efficiency. In this context, the accurate prediction of electricity consumption patterns
becomes paramount [3]. Electricity consumption forecasting can be categorized into very
short-term, short-term, medium-term, and long-term forecasts [4—6]. Very short-term
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electricity consumption forecasting predicts power consumption and demand in real-time,
often making predictions for short intervals like 1 h, 15 min, and 30 min to ensure the
stable operation of the power grid. Short-term electricity consumption forecasting covers
predictions ranging from hourly forecasts to predictions over several weeks, achieved
using algorithms such as Exponential Smoothing [7] and Auto-Regressive Integrated
Moving Averages (ARIMA) [8]. Medium-term electricity consumption forecasting spans
several weeks to months and leverages numerous variables such as meteorological data,
event information, and economic indicators to predict power consumption. A variety
of algorithms, such as linear regression, multiple regression, polynomial regression [9],
neural networks [10], deep learning [11], and Long Short-term Memory (LSTM) [12],
come into play. Long-term electricity consumption forecasting encompasses predictions
spanning three months to a year, demanding consideration of more variables and system
elements than short- and medium-term forecasts. Time-series analysis, ARIMA models,
and ensemble techniques are often employed to discern trends and patterns of long-term
power consumption.

While existing forecasting methods, like ARIMA and Exponential Smoothing, each
have their strengths, they also face limitations. ARIMA excels at short-term forecasts but
struggles with seasonality and non-stationarity in data, making long-term predictions chal-
lenging. Exponential Smoothing performs well for short-term forecasting but encounters
difficulties when forecasting long-term trends and incorporating additional factors. The
Prophet model suits medium-term forecasting with its ability to handle seasonality and
events but finds long-term trend prediction challenging. LSTM is ideal for long-term fore-
casting, given its capacity to learn long-term dependencies in time-series data. However, it
is sensitive to data quality and quantity and demands substantial computational resources
for training and prediction [13-15].

Recent advancements in electricity consumption forecasting involve combining var-
ious techniques tailored to data characteristics and forecasting objectives [16-25]. For
instance, the synergy between Prophet and LSTM has demonstrated improved accuracy
and performance in short- and long-term electricity consumption predictions [16,17]. Simi-
larly, studies have proposed combining ARIMA with XGBoost for short-term electricity
consumption forecasting [18] and ARIMA with Bi-LSTM models for forecasting smart grid
parameters [19]. Additionally, hybrid models like ARIMA-LSTM and ARIMA-GRU blend
ARIMA for modeling trends and seasonality in time-series data with LSTM or GRU to en-
hance prediction performance [20,21]. It also emphasizes the importance of load and power
demand prediction technology using hierarchical prediction models [22,23]. Furthermore,
research efforts have delved into the usage of multivariate models, such as those based on
multilayered LSTM [24] and ConvLSTM [25], to effectively manage complex time-series
data. While these studies have assessed the strengths, weaknesses, and performance of
these models, the complexity of parameter configuration and the intricacies of the training
process for these combined models can pose challenges. Moreover, their performance can
be contingent on the application domain and data characteristics.

This study proposes a novel approach for short- and medium-term electricity con-
sumption prediction by combining the GRU model, suitable for long-term forecasting, and
the Prophet model, adept at capturing seasonality and events. The proposed methodology
is summarized as follows:

(1) Data Collection and Preprocessing: We gather electricity consumption data and
meteorological data from Manufacturing Company B in Naju, Jeollanam-do, Republic
of Korea. These datasets are meticulously preprocessed to ensure data quality.

(2) Prophet Model for Seasonality: In the first step, we employ the Prophet model to
address seasonality and events in electricity consumption. This step is crucial for
understanding and predicting short-term fluctuations and patterns.

(3) GRU Model for Multivariate Prediction: The second step involves utilizing the GRU
model to predict electricity consumption at 15 min intervals. We experiment with
seven multivariate datasets, including six meteorological variables and the residuals
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derived from comparing the data predicted by the Prophet model in Step 1 with the
observed data.

(4) Short- and Medium-Term Predictions: Our approach is tested for both short-term
(2 days and 7 days) and medium-term (15 days and 30 days) electricity consump-
tion predictions.

The study’s structure is as follows: Section 2 discusses related research on the Prophet
and GRU models. Section 3 addresses the problems of the existing Prophet and proposes
solutions. Section 4 explains the algorithm and experimental results of the proposed
method. Finally, Section 5 concludes the study.

2. Related Works
2.1. Prophet Model

The Prophet model, an open-source time-series forecasting library developed by
Facebook [26], stands as a robust solution for predicting time-series data with dynamic
temporal changes. Its applicability spans across a wide array of domains, including
marketing, advertising, demand projection, energy consumption forecasting, and financial
prediction. The Prophet model is structured with three fundamental components, as
represented by Equation (1).

Y(t) = g(t) + s(t) + h(t) + &(t) 1)

In Equation (1), y(t) signifies the observed value at the time point . The component
g(t) embodies the trend, elucidating the overarching long-term growth or decline trends
within the time series. S(t) characterizes the seasonality component, adept at capturing
recurrent patterns and oscillations. H(t) assumes the role of the holidays component,
adeptly accounting for singular events or exceptional incidents that may influence the time
series. Finally, e(t) represents the error term, accommodating any stochastic or irregular
variations present in the data. Prophet’s versatility and adeptness in accommodating
diverse time series patterns make it an immensely popular and potent tool for time-series
forecasting across a multitude of industries.

Figure 1 depicts the electricity consumption data of Company B collected from
1 July 2018 to 31 October 2019 in this study.
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Figure 1. Electricity consumption data of Company B collected from 1 July 2018 to 31 October 2019.

Figures 2 and 3 illustrate the results of applying the basic Prophet model. The model
was trained on one year of data from July 2018 to June 2019. In Figure 2, the black dots
represent the observed data values from July 2018 to June 2019, while the dark blue line
represents the model’s predicted values from July 2018 to October 2019. The light blue
line indicates the uncertainty interval. Notably, the period up to June 2019 demonstrates
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the in-sample fit, where the model is fitted to the training data. Beyond that point, the
out-of-sample forecast is depicted, representing predictions for the test data.
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Figure 2. A basic Prophet model that only considers the holiday effect on the training data for one
year (July 2018 to June 2019).
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Figure 3. Trend, holidays, weekly, and daily prediction analysis of basic Prophet model. The blue line
shows the trend the model fits from the test data and the light-blue shade shows the predicted trend.

Figure 3 displays the components (trend, holiday, weekly, and daily) of the fitted
model. From Figure 3, we can observe that the trend and holidays exhibit relatively stable
trends every month. The weekly component shows that electricity consumption occurs
from Monday to Friday but not on weekends. The daily component shows that electricity
consumption happens during working hours, from 8 a.m. to 8 p.m., and remains low
during the rest of the day.
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2.2. GRU Model

GRU, which stands for Gated Recurrent Unit, is a type of Recurrent Neural Network
(RNN) used for processing sequence data [27]. It provides similar functionality to LSTM
but has a simpler structure, as depicted in Figure 4. GRU addresses the vanishing gradient
problem while learning long-term dependencies in sequence data and offers the advantage
of reducing computational costs compared to LSTM.

@ @

A A

GRU Unit h
o x——— %}—
he
—» h
Ced— | | &
Iy Z;
A 4
Y ‘ tanh
F

Figure 4. GRU structure.

The components of GRU include the update gate, reset gate, and hidden state.
Equation (2) represents the mathematical formulation of GRU. In Equation (2), r; de-
notes the reset gate, z; represents the update gate, /; is the hidden state, and x; signifies the
current input. W, and W; are the weights for the update and reset gates, respectively.

Zt = U(Wz'[ht—lle])
"t = U(Wr'[htfll Xt])

}Tt = tanh(W-[ry X hy_1, x¢])
ht = (1 —Zt) X ht—l + 2z X ht

@

GRU'’s simplicity and effectiveness in handling long-term dependencies have made it
a popular choice for various sequence data-processing tasks. It overcomes some limitations
of traditional RNNs and is widely used in natural language processing, time-series analysis,
and other fields that involve sequential data processing.

2.2.1. Update Gate

The update gate determines how much information to retain based on the current
input and the previous hidden state. It is represented as a value between 0 and 1, where a
value closer to 0 indicates that more past information will be forgotten and a value closer
to 1 indicates that more information will be retained.

2.2.2. Reset Gate

The reset gate determines how much of the past information to forget based on the
current input and the previous hidden state. It is represented as a value between 0 and
1, where a value closer to 0 indicates that more past information will be discarded and a
value closer to 1 indicates that more past information will be preserved.

2.2.3. Hidden State

GRU computes a new hidden state based on the previous hidden state and the current
input. It uses the update gate and the reset gate to control the combination of past and
current information, resulting in the generation of a new hidden state.
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3. Basic Prophet Model’s Problem and Solution
3.1. Basic Prophet Model’s Problem

The advantage of the Prophet model is its ability to incorporate seasonality and
events (holidays and public holidays) into the predictions. However, as shown in Figure 5,
when applying the Prophet model from 1 September to 30 September 2019, there is a
drawback where the observed values (y) during the 4-day thank-giving day (12 September
to 15 September) are close to zero, but the Prophet model fails to accurately predict this.
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Figure 5. Performance comparison between observed value (y) and basic Prophet model (basic
Prophet) from 1 July to 30 July 2019.

Therefore, when using the basic Prophet model, it is necessary to set parameters
specifically for holiday information (duration, name) and consider the impact of holidays
on electricity consumption before and after the holiday. Adjusting the flexibility of the
trend and setting appropriate parameters for yearly seasonality are also necessary to better
predict electricity consumption accurately.

3.2. Prophet Model’s Solution

Figure 6 illustrates the discrepancies between the Prophet model (Prophet) and the
observed values () for 1 July 2019, represented in 15 min intervals. In response to these
discrepancies, the study incorporates GRU, a model well-suited for mid-term predictions,
along with meteorological data known to influence building electricity consumption.

Comparison the performance between observed value and traditional prophet model
A (June 1, 2019)
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Figure 6. Performance comparison between the observed value () and the basic Prophet model’s
value (Prophet) on 1 July 2019.
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While applying GRU to the collected electricity consumption and meteorological data,
the study openly acknowledges a limitation—the model’s inherent inability to handle
information related to holidays and events. To surmount this constraint, the proposed
approach merges Prophet, noted for its proficiency in managing holidays and events
for long-term predictions, with GRU, tailored for short-term predictions. This strategic
combination harnesses the unique strengths of each model to enhance the accuracy and
overall performance of electricity consumption forecasting.

4. Proposed Methods

The flow chart of the proposed method in this study is shown in Figure 7. Section 4.1
explains how to collect data, Section 4.2 describes the pre-processing method for collected
data, Section 4.3 describes how to divide data for learning and testing, Section 4.4 describes
the proposed method using Prophet and GRU, and finally, the study concludes with error
measurements and visualizations.

I
[ ]

Start

_ B

Data collection

il

Data pre-processing

1

Data partition

StepT

modified prophet

Residual = Prophetpyrea — W

Step2_  _ _ _ _ _ _ _ _ _ R ——

GRU using multivariate

MNeteorofogicalxT—x&) and
residwualix7) data

Error measurement and
wvisualization

1

C_ End P

— ——
[ ]

Figure 7. The flowchart of the proposed method.

4.1. Data Collection

In this study, the electricity consumption data used are collected from a company, B
Corporation (machinery manufacturing), located in Naju, Jeollanam-do, Republic of Korea.
The data spans from 1 July 2018 to 31 October 2019, with a time interval of 15 min.

Various factors, including Korean holidays (alternative holidays, election days, na-
tional holidays, etc.) are considered to enhance the accuracy of electricity consumption
predictions. The workalendar package is utilized to generate the Korean holiday data.
Additionally, meteorological data such as temperature, precipitation, wind speed, humid-
ity, sunshine duration, and cloud cover are collected at hourly intervals from the Korea
Meteorological Administration’s weather data portal (http://www.weather.go.kr, accessed
on 10 November 2023).

4.2. Data Pre-Processing

The meteorological data are then resampled using linear interpolation to match the
15 min intervals of the electricity consumption data. To handle missing values in both
power and meteorological data (temperature, precipitation, wind speed, humidity, sun-
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shine duration, and cloud cover), they are filled with zeros. To reduce the impact of outliers
for stable predictions and minimize the influence of nonlinear transformations, the Ro-
bustScaler method [28] is applied to normalize the data scale, as shown in Equation (3).

_x—Ql(x)
Xscaled = m (3)

In Equation (3), X;qeq is the scaled data, x is the original data, Q1(x) is the first quartile
of the data, and Q3(x) is the third quartile of the data. By using RobustScaler, we ensure
that the data are normalized while being less sensitive to the influence of outliers.

4.3. Data Partition for Training and Test Data

The training data span from 1 July 2018 to 30 June 2019, and the test data cover the
period from 1 July 2019, to 31 October 2019. The data are divided into a 75% (365 days
x 24 h x 15 min) portion for training and a 25% (123 days x 24 h x 15 min) portion for
testing to conduct the experiments. Time-series data are sensitive to temporal order, so
shuffling the data randomly can lead to the model making inaccurate predictions of future
data. Therefore, in this study, we did not apply cross-validation.

4.4. Proposed Prophet Model

The experimental training data used in this study consist of electricity consumption
data collected from 1 July 2018 to 30 June 2019. The modified Prophet model was simulated
with components including trends, seasonality, holidays, flows, and others, as outlined in
Table 1. Notably, the ‘df” variable in the holiday parameters was adjusted to account for
substitute holidays in this study. Both regular holidays and substitute holidays, such as
election days and traditional holidays, within this time frame were taken into consideration
to enhance the accuracy of electricity consumption predictions. The simulation results are
shown in Figures 8 and 9.

Table 1. Proposed Prophet model parameter setting.

Parameter Nature Parameter Name Value
growth linear
changepoints None
Trend Parameters n_changepoints 25
changepoint_range 0.8
changepoint_prior_scale 0.01
yearly_seasonality 10
weekly_seasonality False
Seasonality parameters daily_seasonality False
seasonality_mode multiplicative
seasonality_prior_scale 10
. holidays df
Holidays parameters Holidays_prior_scale 0.25
flow flow
Flow parameters flow_prior_scale 10
mcmc_samples 0

Other parameters interval_width 0.8
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Figure 8. Error forecast of the proposed Prophet model. The black dots represent the historical input
data, the blue line represents the predicted trend line after model fitting, and the light-blue area above
and below the blue curve represents the confidence interval.
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Figure 9. Trend, holidays, weekly, and daily prediction analysis of the proposed Prophet model.
The blue line shows the trend the model fits from the test data and the light-blue shade shows the
predicted trend.
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In this study, the correlation coefficient was used as shown in Equation (4) to evaluate
the accuracy of the long-term and short-term predictions [29].

)= Ly, B W) ?g =7) )

In Equation (4), x and y represent the mean of X and Y, respectively, and o and oy,
represent the standard deviation of X and Y, respectively, while n represents the number of
data points.

For long-term predictions (1-year period) and short-term predictions (2 days), the
correlation coefficients between the predicted electricity consumption and the observed
consumption were found to be 0.67 and 0.87, respectively. This indicates that the modified
Prophet model performs poorly for long-term electricity consumption predictions. How-
ever, the correlation coefficient of 0.87 for short-term predictions indicates that the model
performs better than for long-term predictions. Therefore, the proposed Prophet model
was used for short-term electricity consumption predictions.

4.5. Proposed GRU Model

To reduce the errors between the Prophet’s predictions and observed values, we
propose incorporating GRU, as shown in Figure 10. Among various meteorological data
that influence electricity consumption forecasting, the study adopted and utilized the six
(temperature, precipitation, wind speed, humidity, sunshine duration, and cloud cover)
most impactful variables for this study [30]. The input data consist of multiple variables,
including meteorological data (temperature, precipitation, wind speed, humidity, sunshine
duration, and cloud cover) and the residual (the difference between the predictions and
observed values obtained from the Prophet model in the first step), totaling 7 variables.

GRU Unit b,

> X
—{n, ol
i I 65 I Z
KX

Peoneel bovoose Beboose

Meteorological data  Residual " Métesrological dats esidual Meteorological data Residual

Figure 10. Structure of proposed GRU model.

In Figure 10, x1;_1 to x6;_1 represent the meteorological data from the previous time
point (f — 1), i.e., temperature, precipitation, wind speed, humidity, sunshine duration, and
cloud cover. x7;_1 represents the residual. The traditional GRU prediction model typically
targets the entire consumption data for electricity consumption predictions. However, in
this study, we apply the residuals of the long-term trend (yearly and monthly) predictions
to the GRU model, as shown in Equation (5), to predict electricity consumption and reduce
error rates.

Residual = Prophet .., —y ()

In Equation (5), “Residual” denotes the residual, “Prophet,,.;” represents the predictions
obtained from the original Prophet model, and “y” is the observed consumption value.
The GRU model’s training and validation data are derived from the same dataset. The
input layer of the GRU model consists of 7 variables, which include 6 meteorological data

variables (temperature, precipitation, wind speed, humidity, sunshine duration, cloud
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cover), and 1 residual variable. The hidden layer of the GRU model contains 7 nodes.
Table 2 shows the training and testing options for simulating GRU. The initial learning rate
is set to 0.005, and the maximum number of iterations is 500. The mean square error (MSE)
for the loss function, ADAM [31] for the optimizer, and ReLU [32] for the activity function
are employed during both training and testing.

Table 2. Training and testing option by GRU.

Parameter GRU
Number of layers 7
Number of neurons 7
Number of epochs 500
Learning rate 0.005
Loss function MSE
Optimization ADAM
Weight initializer 1
Activation function ReLU

5. Test Environment and Simulation Results
5.1. Test Environment and Software

To verify the Prophet model, GRU, and proposed methods, the experiments were per-
formed on a workstation computer equipped with an Intel Xeon (R) W-2133 CPU, boasting
a clock speed of 3.60 GHz CPU, and 3.60 GHz, and complemented by a generous 32 GB of
RAM (Dell Precision 5820 Tower Workstation). The operating system was Windows 10 Pro
for the workstations (64-bit). To conduct the experiments in this study, we employed the
following approaches:

(1) Utilizing Time-Series Prediction Libraries: For time-series forecasting, essential li-
braries such as scikit-learn [33], pandas [34], numpy [35], plotly [36], and others were
employed. These libraries offer comprehensive tools for data manipulation, analysis,
visualization, and modeling.

(2) Implementing the Prophet Model: The implementation of the Prophet model was
facilitated by employing the fbprophet library [37]. This dedicated library offers func-
tionalities tailored for the Prophet forecasting framework, streamlining the process of
working with seasonal and event-driven data.

(3) GRU and Proposed Method Implementation: To experiment with GRU and the
proposed hybrid method, we leveraged the Tensorflow [38] and Keras libraries [39].
These libraries are widely used in deep learning research and provide a platform for
building, training, and evaluating neural network models like GRU.

By integrating these tools, we were able to effectively carry out the experiments
outlined in the study, encompassing various aspects of time-series analysis, forecasting,
and model evaluation.

5.2. Evaluation Metrics

To validate the proposed method in this study, error metrics including the correla-
tion coefficient (CC), Root Mean Square (RMSE) [40], Root Mean Squared Scaled Error
(RMSSE) [41], Mean Absolute Percentage Error (MAPE) [42], and Symmetric Mean Abso-
lute Percentage Error (SMAPE) [43] were adopted. These metrics were utilized to assess
the performance and accuracy of the proposed approach compared to other methods.
Equations (6) and (9) are RMSE, MAPE, and SMAPE, respectively.

RMSE = \/ %2?:1(% ~7)° ©6)
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In Equations (6) and (9), y; is the actual value, y; is the predicted value, m is the number
of training data, and # is the number of test data.

5.3. Simulation Results

Table 3 provides the performance comparison of the Prophet, GRU, and proposed
methods. The Prophet model was implemented using the approach proposed in step 1,
while GRU involved seven simulations utilizing six meteorological datasets and one ob-
served consumption dataset. The proposed method is a hybrid combining steps 1 and 2.
The performance evaluation utilized several metrics, including the correlation coefficient
(CC), RMSE, RMSSE, MAPE (%), and SMAPE (%). The correlation coefficient of the Prophet
model decreased as the forecast period lengthened, whereas the correlation coefficients of
GRU and the proposed method were consistently higher than that of the Prophet model
regardless of the forecast period. The RMSE and RMSSE values of the Prophet model were
3-6 times higher than those of GRU and the proposed method, whereas the RMSE and
RMSSE values of GRU and the proposed method were nearly similar. The MAPE of the
Prophet model was 4-9 times higher than that of GRU and 9-23 times higher than that of
the proposed method. Furthermore, the MAPE of GRU was more than twice as high as that
of the proposed method. These results indicate that the proposed method outperformed
both the Prophet and GRU models in terms of forecasting accuracy.

Table 3. Comparison of the performance of modified Prophet, GRU, and proposed method.

Term Metrics Prophet GRU Proposed
CcC 0.88 0.97 0.97
2 days RMSE 7.77 2.97 2.97
(1-2 July) RMESE 49.50 18.92 18.92
MAPE (%) 316.56 25.09 24.57
Short- SMAPE (%) 97.58 20.53 19.72
term cC 0.51 0.97 0.98
7 days RMSE 6.08 1.44 141
(1-7 August) RMSSE 72.52 17.13 16.81
MAPE (%) 526.62 48.07 27.32
SMAPE (%) 123.01 59.07 30.09
CC 0.70 0.98 0.98
15 days RMSE 6.7 1.58 1.56
(1-15 RMSSE 115.88 27.50 27.24
Septermber) MAPE (%) 579.80 42.55 24.61
Medium- SMAPE (%) 125.98 50.76 22.58
term cC 0.67 0.97 0.98
30 days RMSE 7.48 2.25 2.22
(1-30 RMSSE 184.64 55.55 54.78
October) MAPE (%) 348.06 37.66 34.37
SMAPE (%) 103.92 42.48 33.28

Figures 11-14 illustrate the short-term electricity consumption forecasting compar-
isons for 2 days (1 July 2019 to 2 July 2019), 7 days (1 August 2019 to 7 August 2019),
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15 days (1 September 2019 to 15 September 2019), and 30 days (1 October 2019 to 30 Oc-
tober 2019), respectively. In these figures, ‘y’ represents the observed consumption data
measured during the specified periods, ‘Prophet’ denotes the modified Prophet model
in Section 4.4, ‘GRU” indicates the predicted values based on meteorological data and
observed consumption data, and ‘Proposed’ signifies the predicted electricity consumption
using the proposed method.

—— iy

35 Prophet
---- GRU
--- Proposed
30 4
p=)
20 4
15 N

10

W\
O i

s /2 N A e o 2 T N— Y., ||
— S e ——

0

2019-07-01 0:00 2019-07-01 6:15 2019-07-01 12:30 2019-07-01 18:45 2019-07-02 1:00 2019-07-02 7:15 2019-07-02 13:30 2019-07-02 19:45
ds

Figure 11. Comparison of graphic visualization performance between observed values (y) and other
methods (modified Prophet, GRU using multivariate, and Proposed) from 1 July to 2 July 2019. The
area “E” shows the largest prediction error in GRU.

- §
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! — G
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20
15
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2019.08-010:00  2019-08.021:00  2019-08-032:00  2019-08.04 3:00  2019.08-054:00  2019-08.065:00  2019-08-07 6:00
ds
Figure 12. Comparison of graphic visualization performance between observed values (y) and other
methods (modified Prophet, GRU using multivariate, and Proposed) from 1 August to 7 August 2019.
The area “E” shows the largest prediction error in GRU.
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Figure 13. Comparison of graphic visualization performance between observed values (y) and
other methods (modified Prophet, GRU using multivariate, and Proposed) from 1 September to
15 September 2019.

777778

10

L i b W 11

y
Prophet
-- GRU
-- Proposed
2019-10’-01 0:00 2019-10-06 5:00 2019-10-‘11 10:00 2019-10-‘16 15:00 2019-10-’21 20:00 2019-10-27 1:00
ds

Figure 14. Comparison of graphic visualization performance between observed values (y) and other
methods (modified Prophet, GRU using multivariate, and Proposed) from 1 October to 30 October
2019. The area “E” shows the largest prediction error in GRU.

In Figures 11-14, the proposed method and ‘GRU’ closely resemble the observed
consumption data (y), while “Prophet” exhibits significantly high errors compared to the
observed data (). Notably, ‘GRU’ shows intermittent spikes in prediction errors, denoted
in the “E” segment. Even during periods of minimal energy consumption, ‘GRU’ tends
to generate numerous high predictions. This can be attributed to the model’s challenge in
accurately predicting the occurrence of consecutive holidays or events, including substi-
tute holidays, official holidays, and vacation periods. In contrast, the proposed method
closely aligns with the observed consumption data (i), demonstrating superior accuracy in
capturing these consumption patterns.
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6. Conclusions

Electricity consumption forecasting is crucial in the electricity industry and energy
system operations as it helps improve efficiency and stability. It provides valuable infor-
mation to energy companies, power suppliers, network operators, and other stakeholders
involved in energy management. This study proposes a short- and medium-term forecast-
ing algorithm, combining the Prophet and GRU models, for predicting building electricity
consumption over 2 days, 7 days, 15 days, and 30 days. The proposed method outperforms
both the modified Prophet and GRU using multivariate.

Our proposed method offers a versatile and effective solution for optimizing energy
management within Building Energy Management Systems, with the potential for sub-
stantial cost savings, improved energy source utilization, reduced carbon emissions, and
enhanced operational efficiency, ultimately increasing the overall value of the building.
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