A Sustainable Superhydrophobic and Photothermal Coatings for Anti-Icing Application on Concrete with a Simple Method for CNTs/SiO2 Modification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Functionalized Nanoparticles
2.3. Preparation of Composite Coatings
2.4. Characterization
2.5. Contact Angle Test
2.6. Mechanical Durability
2.7. Anti-Icing and De-Icing Experiments
3. Results and Discussion
3.1. Characterization of Functionalized Nanoparticles
3.2. Surface Properties of Coatings
3.3. Superhydrophobicity of the Coatings
3.4. Stability of Coatings
3.5. Photothermal and De-Icing Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laforte, C.; Tremblay, M.M. Comparative Evaluation of the Anti-Icing Protection Time of Runway Deicers Using Infrared Thermography. Cold Reg. Sci. Technol. 2017, 138, 57–62. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Ceylan, H.; Kim, S.; Gopalakrishnan, K.; Sassani, A.; Sundararajan, S.; Taylor, P.C. Superhydrophobic Coatings on Portland Cement Concrete Surfaces. Constr. Build. Mater. 2017, 141, 393–401. [Google Scholar] [CrossRef]
- Young, L.M.; Durham, S.A. Performance of an Anti-Icing Epoxy Overlay on Asphalt Surfaces. J. Perform. Constr. Facil. 2013, 27, 836–840. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Sha, A.; Xiao, J.; Wu, W.; Wang, T. Technology Method and Functional Characteristics of Road Thermoelectric Generator System Based on Seebeck Effect. Appl. Energy 2023, 331, 120459. [Google Scholar] [CrossRef]
- Horgnies, M.; Chen, J.J. Superhydrophobic Concrete Surfaces with Integrated Microtexture. Cem. Concr. Compos. 2014, 52, 81–90. [Google Scholar] [CrossRef]
- Tabatabai, H.; Aljuboori, M. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges. Sensors 2017, 17, 2912. [Google Scholar] [CrossRef]
- Montoya, M.A.; Rahbar-Rastegar, R.; Haddock, J.E. Incorporating Phase Change Materials in Asphalt Pavements to Melt Snow and Ice. Int. J. Pavement Eng. 2022, 23, 1–14. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Shan, J.; Ye, W.; Lu, H.; Sha, A. Experimental Study of the Performance of Porous Ultra-Thin Asphalt Overlay. Int. J. Pavement Eng. 2022, 23, 2049–2061. [Google Scholar] [CrossRef]
- Xu, K.; Ren, S.; Song, J.; Liu, J.; Liu, Z.; Sun, J.; Ling, S. Colorful Superhydrophobic Concrete Coating. Chem. Eng. J. 2021, 403, 126348. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, D.; Zhang, D.; Ma, L.; Wang, J.; Huang, Y.; Chen, M.; Qian, H.; Li, X. A Durable and Photothermal Superhydrophobic Coating with Entwinned CNTs-SiO2 Hybrids for Anti-Icing Applications. Chem. Eng. J. 2021, 423, 130238. [Google Scholar] [CrossRef]
- Hossain, K.; Fu, L.; El-Hakim, M. Determination of Optimum Salting Rates for Asphalt Pavements in a Canadian Climate. J. Cold Reg. Eng. 2022, 36, 04022003. [Google Scholar] [CrossRef]
- Yener, E. A New Frost Salt Scaling Mechanism for Concrete Pavements Based on Brine Rejection from Ice Layer Adhered to Concrete Surface. Road Mater. Pavement Des. 2015, 16, 89–100. [Google Scholar] [CrossRef]
- Abohassan, A.; El-Basyouny, K.; Kwon, T.J. Factors Influencing Pavement Friction during Snowstorms. J. Cold Reg. Eng. 2023, 37, 04023009. [Google Scholar] [CrossRef]
- Heymsfield, E.; Daniels, J.W.; Saunders, R.F.; Kuss, M.L. Developing Anti-Icing Airfield Runways Using Surface Embedded Heat Wires and Renewable Energy. Sustain. Cities Soc. 2020, 52, 101712. [Google Scholar] [CrossRef]
- Jiang, W.; Li, P.; Sha, A.; Li, Y.; Yuan, D.; Xiao, J.; Xing, C. Research on Pavement Traffic Load State Perception Based on the Piezoelectric Effect. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8264–8278. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Waghmare, P.R. Eco-Friendly Preparation of Superhydrophobic Copper Surfaces for Oil/Water Separation. Environ. Chem. Lett. 2020, 18, 505–510. [Google Scholar] [CrossRef]
- Afrin, S.; Fox, D.; Zhai, L. Organic Superhydrophobic Coatings with Mechanical and Chemical Robustness. MRS Commun. 2020, 10, 346–352. [Google Scholar] [CrossRef]
- Saji, V.S. Carbon Nanostructure-Based Superhydrophobic Surfaces and Coatings. Nanotechnol. Rev. 2021, 10, 518–571. [Google Scholar] [CrossRef]
- Kiraz, A.; Karadag, Y.; Yorulmaz, S.C.; Muradoglu, M. Reversible Photothermal Tuning of a Salty Water Microdroplet. Phys. Chem. Chem. Phys. 2009, 11, 2597–2600. [Google Scholar] [CrossRef]
- Kwak, Y.; Jun, H.Y.; Lee, Y.; Kang, M.; Oh, J.S.; Kim, S.; Song, Y.H.; Choi, C.-H. Multiprocessible and Durable Superhydrophobic Coating Suspension Enabling Printed Patterning, Internal Tubular Coating, and Planar Surface Coating. Ind. Eng. Chem. Res. 2021, 60, 8743–8752. [Google Scholar] [CrossRef]
- Lahiri, S.K.; Zhang, P.; Zhang, C.; Liu, L. Robust Fluorine-Free and Self-Healing Superhydrophobic Coatings by H3BO3 Incorporation with SiO2–Alkyl-Silane@PDMS on Cotton Fabric. ACS Appl. Mater. Interfaces 2019, 11, 10262–10275. [Google Scholar] [CrossRef] [PubMed]
- Tee, S.Y.; Ye, E.; Teng, C.P.; Tanaka, Y.; Tang, K.Y.; Win, K.Y.; Han, M.-Y. Advances in Photothermal Nanomaterials for Biomedical, Environmental and Energy Applications. Nanoscale 2021, 13, 14268–14286. [Google Scholar] [CrossRef] [PubMed]
- Balou, S.; Shandilya, P.; Priye, A. Carbon Dots for Photothermal Applications. Front. Chem. 2022, 10, 1023602. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Chen, L.; Zhang, S.; Huang, H. Superhydrophobic SiC/CNTs Coatings with Photothermal De-icing and Passive Anti-Icing Properties. ACS Appl. Mater. Interfaces 2018, 10, 36505–36511. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Liu, Y.; Xu, R.; Liu, S.; Zhou, F. Robust Photothermal Coating Strategy for Efficient Ice Removal. ACS Appl. Mater. Interfaces 2020, 12, 46981–46990. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, C.; Zhong, L.; Zhu, L.; Chen, H.; Hou, Y.; Zheng, Y. Robust Photothermal Superhydrophobic Coatings with Dual-Size Micro/Nano Structure Enhance Anti-/de-Icing and Chemical Resistance Properties. Chem. Eng. J. 2022, 446, 137461. [Google Scholar] [CrossRef]
- Hooda, A.; Goyat, M.S.; Pandey, J.K.; Kumar, A.; Gupta, R. A Review on Fundamentals, Constraints and Fabrication Techniques of Superhydrophobic Coatings. Prog. Org. Coat. 2020, 142, 105557. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Tran, H.N.; Plamondon, C.O.; Tuduri, L.; Vo, D.-V.N.; Nanda, S.; Mishra, A.; Chao, H.-P.; Bajpai, A.K. Recent Progress in the Preparation, Properties and Applications of Superhydrophobic Nano-Based Coatings and Surfaces: A Review. Prog. Org. Coat. 2019, 132, 235–256. [Google Scholar] [CrossRef]
- Wang, L.; Yin, K.; Zhu, Z.; Deng, Q.; Huang, Q. Femtosecond Laser Engraving Micro/Nanostructured Poly (Ether-Ether-Ketone) Surface with Superhydrophobic and Photothermal Ability. Surf. Interfaces 2022, 31, 102013. [Google Scholar] [CrossRef]
- Hussain, S.; Wan, X.; Fang, Z.; Peng, X. Superhydrophilic and Photothermal Fe-TCPP Nanofibrous Membrane for Efficient Oil-in-Water Nanoemulsion Separation. Langmuir 2021, 37, 12981–12989. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, H.; Geng, Y.; Li, M.; Deng, Q.; Tian, Y.; Chen, R.; Zhu, X.; Liao, Q. Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the Anti-Icing and Photothermal De-icing Properties. ACS Appl. Mater. Interfaces 2021, 13, 48308–48321. [Google Scholar] [CrossRef] [PubMed]
- Mnoyan, A.; Choi, M.; Hyun Kim, D.; Ku, B.-J.; Kim, H.; Jin Lee, K.; Yasin, A.S.; Nam, S.; Lee, K. Cheap, Facile, and Upscalable Activated Carbon-Based Photothermal Layers for Solar Steam Generation. RSC Adv. 2020, 10, 42432–42440. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xu, Y.; Zhu, Z.; Liu, Y.; Xie, J.; Zhang, B.; Zhang, H.; Zhang, Q. Hierarchical Micro/Nano/Porous Structure PVDF/Hydrophobic GO Photothermal Membrane with Highly Efficient Anti-Icing/ de-Icing Performance. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 651, 129586. [Google Scholar] [CrossRef]
- Soni, R.; Joshi, S.R.; Karmacharya, M.; Min, H.; Kim, S.-K.; Kumar, S.; Kim, G.-H.; Cho, Y.-K.; Lee, C.Y. Superhydrophobic and Self-Sterilizing Surgical Masks Spray-Coated with Carbon Nanotubes. ACS Appl. Nano Mater. 2021, 4, 8491–8499. [Google Scholar] [CrossRef]
- Dash, S.; de Ruiter, J.; Varanasi, K.K. Photothermal Trap Utilizing Solar Illumination for Ice Mitigation. Sci. Adv. 2018, 4, eaat0127. [Google Scholar] [CrossRef]
- Wang, X.; Dai, L.; Jiao, N.; Tung, S.; Liu, L. Superhydrophobic Photothermal Graphene Composites and Their Functional Applications in Microrobots Swimming at the Air/Water Interface. Chem. Eng. J. 2021, 422, 129394. [Google Scholar] [CrossRef]
- Yeong, Y.H.; Wang, C.; Wynne, K.J.; Gupta, M.C. Oil-Infused Superhydrophobic Silicone Material for Low Ice Adhesion with Long-Term Infusion Stability. ACS Appl. Mater. Interfaces 2016, 8, 32050–32059. [Google Scholar] [CrossRef]
- Tondro, G.H.; Behzadpour, N.; Keykhaee, Z.; Akbari, N.; Sattarahmady, N. Carbon@polypyrrole Nanotubes as a Photosensitizer in Laser Phototherapy of Pseudomonas Aeruginosa. Colloids Surf. B Biointerfaces 2019, 180, 481–486. [Google Scholar] [CrossRef]
- Jamil, M.I.; Zhan, X.; Chen, F.; Cheng, D.; Zhang, Q. Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Appl. Mater. Interfaces 2019, 11, 31532–31542. [Google Scholar] [CrossRef]
- Niu, H.; Li, J.; Wang, X.; Luo, F.; Qiang, Z.; Ren, J. Solar-Assisted, Fast, and In Situ Recovery of Crude Oil Spill by a Superhydrophobic and Photothermal Sponge. ACS Appl. Mater. Interfaces 2021, 13, 21175–21185. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, L.; He, S.; Jiang, S.; Wang, W.; Wu, Y. Rewritable Superhydrophobic Coatings Fabricated Using Water-Soluble Polyvinyl Alcohol. Mater. Des. 2020, 196, 109112. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, W.; Zhu, Q.; Sun, Y.; Li, Y. Mechanically Robust Superhydrophobic Porous Anodized AA5083 for Marine Corrosion Protection. Corros. Sci. 2019, 158, 108083. [Google Scholar] [CrossRef]
- Masood, M.T.; Heredia-Guerrero, J.A.; Ceseracciu, L.; Palazon, F.; Athanassiou, A.; Bayer, I.S. Superhydrophobic High Impact Polystyrene (HIPS) Nanocomposites with Wear Abrasion Resistance. Chem. Eng. J. 2017, 322, 10–21. [Google Scholar] [CrossRef]
- Luo, X.; Wei, M.; Cao, M.; Ren, H.; Feng, J. Wear-Resistant and Conductive Superhydrophobic Coatings with Nest-like Structure Prepared by a One-Step Spray-Drying Method. Chem. Eng. Process. -Process Intensif. 2018, 131, 27–33. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Chen, Y.-Q.; Hu, J.-M. Robust Superhydrophobic SiO2/Polydimethylsiloxane Films Coated on Mild Steel for Corrosion Protection. Corros. Sci. 2020, 166, 108452. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, A.; Tan, X.; Tu, Y.; Sabin, S.; Xiang, P.; Wang, M.; Guo, R.; Chen, X. A Veil-over-Sprout Micro-Nano PMMA/SiO2 Superhydrophobic Coating with Impressive Abrasion, Icing, and Corrosion Resistance. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124998. [Google Scholar] [CrossRef]
- Liu, H.; Geng, W.; Jin, C.-J.; Wu, S.-M.; Lu, Y.; Hu, J.; Yu, H.-Z.; Chang, G.-G.; Zhao, T.; Wan, Y.; et al. Silica Coating with Well-Defined Micro-Nano Hierarchy for Universal and Stable Surface Superhydrophobicity. Chem. Phys. Lett. 2019, 730, 594–599. [Google Scholar] [CrossRef]
- Barthwal, S.; Lim, S.-H. A Durable, Fluorine-Free, and Repairable Superhydrophobic Aluminum Surface with Hierarchical Micro/Nanostructures and Its Application for Continuous Oil-Water Separation. J. Membr. Sci. 2021, 618, 118716. [Google Scholar] [CrossRef]
- Guo, J.; Wang, C.; Yu, H.; Li, X. Preparation of a Wear-Resistant, Superhydrophobic SiO2/Silicone-Modified Polyurethane Composite Coating through a Two-Step Spraying Method. Prog. Org. Coat. 2020, 146, 105710. [Google Scholar] [CrossRef]
- Qu, M.; Liu, S.; He, J.; Feng, J.; Yao, Y.; Ma, X.; Hou, L.; Liu, X. Fabrication of Recyclable and Durable Superhydrophobic Materials with Wear/Corrosion-Resistance Properties from Kaolin and Polyvinylchloride. Appl. Surf. Sci. 2017, 410, 299–307. [Google Scholar] [CrossRef]
- Xie, J.; Hu, J.; Lin, X.; Fang, L.; Wu, F.; Liao, X.; Luo, H.; Shi, L. Robust and Anti-Corrosive PDMS/SiO2 Superhydrophobic Coatings Fabricated on Magnesium Alloys with Different-Sized SiO2 Nanoparticles. Appl. Surf. Sci. 2018, 457, 870–880. [Google Scholar] [CrossRef]
- Xiao, S.; Hao, X.; Yang, Y.; Li, L.; He, N.; Li, H. Feasible Fabrication of a Wear-Resistant Hydrophobic Surface. Appl. Surf. Sci. 2019, 463, 923–930. [Google Scholar] [CrossRef]
- Neelgund, G.M.; Okolie, M.C.; Williams, F.K.; Oki, A. Ag2S Nanocrystallites Deposited over Polyamidoamine Grafted Carbon Nanotubes: An Efficient NIR Active Photothermal Agent. Mater. Chem. Phys. 2019, 234, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, J.S.; Pollack, K.A.; Smedley, S.; Raymond, J.E.; Link, L.A.; Pavía-Sanders, A.; Hickner, M.A.; Wooley, K.L. Investigation of Intricate, Amphiphilic Crosslinked Hyperbranched Fluoropolymers as Anti-Icing Coatings for Extreme Environments. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 238–244. [Google Scholar] [CrossRef]
- Puretskiy, N.; Chanda, J.; Stoychev, G.; Synytska, A.; Ionov, L. Anti-Icing Superhydrophobic Surfaces Based on Core-Shell Fossil Particles. Adv. Mater. Interfaces 2015, 2, 1500124. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, Y.; Tan, Y.; Li, J.; Wang, D.; Yuan, D.; Zhang, J. A Sustainable Superhydrophobic and Photothermal Coatings for Anti-Icing Application on Concrete with a Simple Method for CNTs/SiO2 Modification. Sustainability 2023, 15, 15865. https://doi.org/10.3390/su152215865
Li S, Li Y, Tan Y, Li J, Wang D, Yuan D, Zhang J. A Sustainable Superhydrophobic and Photothermal Coatings for Anti-Icing Application on Concrete with a Simple Method for CNTs/SiO2 Modification. Sustainability. 2023; 15(22):15865. https://doi.org/10.3390/su152215865
Chicago/Turabian StyleLi, Shuai, Yanwei Li, Yiqiu Tan, Jilu Li, Di Wang, Dongdong Yuan, and Jianli Zhang. 2023. "A Sustainable Superhydrophobic and Photothermal Coatings for Anti-Icing Application on Concrete with a Simple Method for CNTs/SiO2 Modification" Sustainability 15, no. 22: 15865. https://doi.org/10.3390/su152215865
APA StyleLi, S., Li, Y., Tan, Y., Li, J., Wang, D., Yuan, D., & Zhang, J. (2023). A Sustainable Superhydrophobic and Photothermal Coatings for Anti-Icing Application on Concrete with a Simple Method for CNTs/SiO2 Modification. Sustainability, 15(22), 15865. https://doi.org/10.3390/su152215865