An Overview of Dental Solid Waste Management and Associated Environmental Impacts: A Materials Perspective
Abstract
:1. Introduction
2. Composition of Dental Waste
2.1. Solid Dental Waste
2.2. Wastewater from Dental Practices
3. New-Generation Dental Materials and Associated Waste
3.1. Nanomaterials
3.2. Resin-Based Materials
3.3. Ceramics
4. Management of Dental Waste
4.1. Incineration and Thermal Treatments
4.2. Landfilling
4.3. Disposal Challenges for New Dental Materials
4.3.1. Nanomaterials
4.3.2. Resin-Based Materials
4.3.3. Ceramics
4.4. Additional Aspects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kenny, C.; Priyadarshini, A. Review of current healthcare waste management methods and their effect on global health. Healthcare 2021, 9, 284. [Google Scholar] [CrossRef] [PubMed]
- European Union. Decision 2000/532/EC. 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32000D0532 (accessed on 10 September 2023).
- Thakur, V.; Mangla, S.K.; Tiwari, B. Managing healthcare waste for sustainable environmental development: A hybrid decision approach. Bus. Strateg. Environ. 2021, 30, 357–373. [Google Scholar] [CrossRef]
- Li, H.; Dietl, H.; Li, J. Identifying key factors influencing sustainable element in healthcare waste management using the interval valued fuzzy DEMATEL method. J. Mater. Cycles Waste Manag. 2021, 23, 1777–1790. [Google Scholar] [CrossRef]
- NHS Digital, 2019. Estates Return Information Collection (ERIC) 2018/19. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/estates-returnsinformation-collection/england-2018-19 (accessed on 17 September 2023).
- Voudrias, E.A. Healthcare waste management from the point of view of circular economy. Waste Manag. 2018, 75, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Gumus, T.A. Evaluation of hazardous waste transportation firms by using a two-step fuzzy-AHP and TOPSIS methodology. Expert Syst. Appl. 2009, 36, 4067–4074. [Google Scholar] [CrossRef]
- Rizan, C.; Bhutta, M.F.; Reed, M.; Lillywhite, R. The carbon footprint of waste streams in a UK hospital. J. Clean. Prod. 2021, 286, 125446. [Google Scholar] [CrossRef]
- Salkin, I.F.; Kennedy, M.E. Review of Health Impacts from Microbiological Hazards in Health-Care Wastes; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Department of Health Environment and Sustainability Health Technical Memorandum 07-01: Safe Management of Healthcare Waste. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/167976/HTM_07-01_Final.pdf (accessed on 20 September 2023).
- Agency for Toxic Substances and Disease Registry (ATSDR). The Public Health Implications of Medical Waste: A Report to Congress; US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 1990.
- Available online: https://www.unep.org/news-and-stories/story/estimated-126-million-deaths-each-year-are-attributable-unhealthyenvironments (accessed on 19 September 2023).
- Al-Khatib, I.A.; Darwish, R. Assessment of waste amalgam management in dental clinics in Ramallah and al-Bireh cities in Palestine. Int. J. Environ. Health Res. 2004, 14, 179–183. [Google Scholar] [CrossRef]
- MacNeill, A.J.; Lillywhite, R.; Brown, C.J. The impact of surgery on global climate: A carbon foot printing study of operating theatres in three health systems. Lancet Planet Health 2017, 1, e381–e388. [Google Scholar] [CrossRef]
- Department for Environment Food and Public Affairs. Incineration of Municipal Solid Waste. UK Government, London. 2013. Available online: https://www.gov.uk/government/publications/incineration-of-municipal-solid-waste (accessed on 9 September 2023).
- Kizlary, E.; Iosifidis, N.; Voudrias, E.; Panagiotakopoulos, D. Composition and production rate of dental solid waste in Xanthi, Greece: Variability among dentist groups. Waste Manag. 2005, 25, 582–591. [Google Scholar] [CrossRef]
- Jokstad, A. Amalgam waste management. Int. Dent. J. 2006, 56, 147–153. [Google Scholar] [CrossRef]
- Subramanian, A.K.; Thayalan, D.K.; Edwards, A.I.; Almalki, A.; Venugopal, A. Biomedical waste management in dental practice and its significant environmental impact: A perspective. Environ. Technol. Innov. 2021, 24, 101807. [Google Scholar] [CrossRef]
- Davies, R.A.; Ardalan, S.; Mu, W.-H.; Tian, K.; Farsaikiya, F.; Darvell, B.W.; Chass, G.A. Geometric, electronic and elastic properties of dental silver amalgam γ-(Ag3Sn), γ1-(Ag2Hg3), γ2-(Sn8Hg) phases, comparison of experiment and theory. Intermetallics 2010, 18, 756–760. [Google Scholar] [CrossRef]
- Park, B. Nanotechnology: Consequences for Human Health and the Environment; Royal Society of Chemistry: London, UK, 2007; pp. 1–18. [Google Scholar]
- Aggarwal, H.; Kumar, P. Need for biomedical waste management. J. Med. Soc. 2015, 29, 58–59. [Google Scholar] [CrossRef]
- Capoor, M.R.; Bhowmik, K.T. Current perspectives on biomedical waste management: Rules, conventions, and treatment technologies. Indian. J. Med. Microbiol. 2017, 35, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.D.; de Carvalho, M.A.R.; Cussiol, N.A.M.; Alvarez-Leite, M.E.; Dos Santos, S.G.; da Fonseca Gomes, R.M.; Silva, M.X.; de Macêdo Farias, L. Composition analysis of dental solid waste in Brazil. Waste Manag. 2009, 29, 1388–1391. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, S.; Xirogiannopoulou, A.; Karagiannidis, A. Investigating solid waste production and associated management practices in private dental units. Waste Manag. 2008, 28, 1441–1448. [Google Scholar] [CrossRef]
- Yamashita, Y.; Nishi, Y.; Murakami, M.; Harada, K.; Nishimura, M. Impact of Surface Changes and Microbial Adhesion on Mucosal Surface Finishing of Resin Denture Bases by Shot Blast Polishing Using Viscoelastic Media. Materials 2022, 15, 2275. [Google Scholar] [CrossRef]
- Mandalidis, A.; Topalidis, A.; Voudrias, E.A.; Iosifidis, N. Composition, production rate and characterization of Greek dental solid waste. Waste Manag. 2018, 75, 124–130. [Google Scholar] [CrossRef]
- Cailas, M.D.; Drummond, J.L.; Tung-Yi, W.; Ovsey, V.G. Characteristics and Treatment of the Dental Wastewater Stream; (Electronic Version No. RR-97); Illinois Waste Management and Research Center: Champaign, IL, USA, 2002. [Google Scholar]
- Cataldi, M.E.; Al Rakayan, S.; Arcuri, C.; Condò, R. Dental unit wastewater, a current environmental problem: A systematic review. ORAL Implantol. 2017, 10, 354–359. [Google Scholar] [CrossRef]
- Mulligan, S.; Kakonyi, G.; Moharamzadeh, K.; Thornton, S.F.; Martin, N. The environmental impact of dental amalgam and resin-based composite materials. Br. Dent. J. 2018, 224, 7. [Google Scholar] [CrossRef]
- Bonsor, S.J.; Burke, T.; Pearson, G.J. A Clinical Guide to Applied Dental Materials; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- UNEP. Minamata Convention on Mercury; UNEP: Geneva, Switzerland, 2017. [Google Scholar]
- Regulation (EU) 2017/852. Regulation (EU) 2017/852 of the European Parliament and of the Council of 17 May 2017 on mercury and repealing Regulation (EC) No 1102/2008. Off. J Eur. Union 2017, 137, 1–21. [Google Scholar]
- Tibau, A.V.; Grube, B.D. Mercury contamination from dental amalgam. J. Health Pollut. 2019, 9, 190612. [Google Scholar] [CrossRef] [PubMed]
- Jírová, G.; Vlková, A.; Wittlerová, M.; Dvořáková, M.; Kavsparová, L.; Chrz, J.; Kejlová, K.; Wittlingerová, Z.; Zimová, M.; Hošíková, B.; et al. Toxicity of wastewater from health care facilities assessed by different bioassays. Neuro Endocrinol. Lett. 2019, 39, 441–453. Available online: https://pubmed.ncbi.nlm.nih.gov/30796794/ (accessed on 10 September 2023). [PubMed]
- Vandeven, J.A.; Mcginnis, S.L. An assessment of mercury in the form of amalgam in dental wastewater in the United States. Water Air Soil Pollut. 2005, 164, 349–366. [Google Scholar] [CrossRef]
- Hylander, L.D.; Lindvall, A.; Gahnberg, L. High mercury emissions from dental clinics despite amalgam separators. Sci. Total Environ. 2006, 362, 74–84. [Google Scholar] [CrossRef]
- ISO11143:2008; Dentistry—Amalgam Separators. International Organisation for Standardisation: Geneva, Switzerland, 2008. Available online: https://www.iso.org/obp/ui/#iso:std:iso:11143:ed-2:v1:en (accessed on 10 September 2023).
- Drummond, J.L.; Cailas, M.D.; Croke, K. Mercury generation potential from dental waste amalgam. J. Dent. 2003, 31, 493–501. [Google Scholar] [CrossRef]
- Bayne, S.C.; Ferracane, J.L.; Marshall, G.W.; Marshall, S.J.; van Noort, R. The evolution of dental materials over the past century: Silver and gold to tooth color and beyond. J. Dent. Res. 2019, 98, 257–265. [Google Scholar] [CrossRef]
- Kechagias, K.; Anastasaki, P.; Kyriakidou, M.; Dedi, K.D. Bisphenol A in Dentistry. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 3–9. [Google Scholar] [CrossRef]
- Mourouzis, P.; Andreasidou, E.; Arhakis, A.; Kabir, A.; Furton, K.G.; Samanidou, V.; Tolidis, K. Release of monomers in dental wastewater during treatment. A comparative in vitro and in vivo study based on Fabric phase Sorptive extraction. Microchem. J. 2022, 183, 107999. [Google Scholar] [CrossRef]
- Jun, S.K.; Cha, J.R.; Knowles, J.C.; Kim, H.W.; Lee, J.H.; Lee, H.H. Development of Bis- GMA-free biopolymer to avoid estrogenicity. Dent. Mater. 2020, 36, 157–166. [Google Scholar] [CrossRef]
- Polydorou, O.; Schmidt, O.-C.; Spraul, M.; Vach, K.; Schulz, S.D.; König, A.; Hellwig, E.; Gminski, R. Detection of Bisphenol A in dental wastewater after grinding of dental resin composites. Dent. Mater. 2020, 36, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Binner, H.; Kamali, N.; Harding, M.; Sullivan, T. Characteristics of wastewater originating from dental practices using predominantly mercury-free dental materials. Sci. Total Environ. 2022, 814, 152632. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeldt, R.R.; Seitz, F.; Schulz, R.; Bundschuh, M. Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: A factorial approach using Daphnia magna. Environ. Sci. Technol. 2014, 48, 6965–6972. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Nasim, I. Nanotechnology in dentistry: A review. J. Adv. Pharm. Educ. Res. 2017, 7, 43–45. [Google Scholar]
- Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Yu, O.Y.; Lung, C.Y.K.; Chu, C.H. Application of copper nanoparticles in dentistry. Nanomaterials 2022, 12, 805. [Google Scholar] [CrossRef]
- Grass, G.; Rensing, C.; Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef]
- Al Sarraj, Z.S.A.; Atiyah, R.I. Preparation and characterization of high-copper restorative dental alloys corrected. Adv. Mater. Res. 2011, 324, 69–72. [Google Scholar] [CrossRef]
- Aguilar-Perez, D.; Vargas-Coronado, R.; Cervantes-Uc, J.M.; Rodriguez-Fuentes, N.; Aparicio, C.; Covarrubias, C.; Alvarez-Perez, M.; Garcia-Perez, V.; Martinez-Hernandez, M.; Cauich-Rodriguez, J.V. Antibacterial activity of a glass ionomer cement doped with copper nanoparticles. Dent. Mater. J. 2020, 39, 389–396. [Google Scholar] [CrossRef]
- Dannan, A.; Youssef Hanno, Y.H. The relationship between periodontal diseases and plasma level of copper and magnesium. Dentistry 2018, 8, 1000471. [Google Scholar] [CrossRef]
- Gonz’alez, J.P.; Covarrubias, C.; C’adiz, M.; Corral, C.; Cuadra, F.; Fuentevilla, I.; Bittner, M. Design of antimicrobial release systems based on chitosan and copper nanoparticles for localized periodontal therapy. J. Dent. Oral Disord. 2016, 2, 1035. [Google Scholar]
- Zhang, F.; Zhou, M.; Gu, W.; Shen, Z.; Ma, X.; Lu, F.; Yang, X.; Zheng, Y.; Gou, Z. Zinc-/copper-substituted dicalcium silicate cement: Advanced biomaterials with enhanced osteogenesis and long-term antibacterial properties. J. Mater. Chem. 2020, 8, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Kusy, R.P.; Whitley, J.Q. Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires. Am. J. Orthod. Dentofacial Orthop. 2007, 131, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Phukaoluan, A.; Khantachawana, A.; Kaewtatip, P.; Dechkunakorn, S.; Anuwongnukroh, N.; Santiwong, P.; Kajornchaiyakul, J.A. Comparison of friction forces between stainless orthodontic steel brackets and TiNi wires in wet and dry conditions. Int. Orthod. 2017, 15, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Shayani Rad, M.; Kompany, A.; Khorsand Zak, A.; Javidi, M.; Mortazavi, S.M. Microleakage and antibacterial properties of ZnO and ZnO:Ag nanopowders prepared via a sol–gel method for endodontic sealer application. J. Nanopart. Res. 2013, 15, 1925. [Google Scholar] [CrossRef]
- Alves, M.J.; Grenho, L.; Lopes, C.; Borges, J.; Vaz, F.; Vaz, I.P.; Fernandes, M.H. Antibacterial effect and biocompatibility of a novel nanostructured ZnO-coated gutta-percha cone for improved endodontic treatment. Mater. Sci. Eng. C 2018, 92, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Javidi, M.; Gharechahi, M.; Joybari, P.; Tajzadeh, M.; Arefnejad, M. An in vitro evaluation of antimicrobial efficacy of new Nano-zinc oxide Eugenol (NZOE). J. Dent. Mater. Technol. 2018, 7, 167–173. [Google Scholar]
- Porenczuk, A.; Grzeczkowicz, A.; Maciejewska, I.; Gołaś, M.; Piskorska, K.; Kolenda, A.; Gozdowski, D.; Kopeć-Swoboda, E.; Granicka, L.; Olczak-Kowalczyk, D. An initial evaluation of cytotoxicity, genotoxicity and antibacterial effectiveness of a disinfection liquid containing silver nanoparticles alone and combined with a glass-ionomer cement and dentin bonding systems. Adv. Clin. Exp. Med. 2018, 28, 75–83. [Google Scholar] [CrossRef]
- Tuominen, H.; Rautava, J. Oral microbiota and cancer development. Pathobiology 2021, 88, 116–126. [Google Scholar] [CrossRef]
- Odularu, A.T.; Afolayan, A.J.; Sadimenko, A.P.; Ajibade, P.A.; Mbese, J.Z. Multidrug-Resistant biofilm, quorum sensing, quorum quenching, and antibacterial activities of indole derivatives as potential eradication approaches. Bio. Med. Res. Int. 2022, 2022, 9048245. [Google Scholar] [CrossRef]
- Valm, A.M. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J. Mol. Biol. 2019, 431, 2957–2969. [Google Scholar] [CrossRef]
- Chen, Z.; Chu, Z.; Jiang, Y.; Xu, L.; Qian, H.; Wang, Y.; Wang, W. Recent advances on nanomaterials for antibacterial treatment of oral diseases. Mater. Today Bio. 2023, 20, 100635. [Google Scholar] [CrossRef]
- Mahmud, N.; Anik, M.I.; Hossain, M.K.; Khan, M.I.; Uddin, S.; Ashrafuzzaman, M.; Rahaman, M.M. Advances in nanomaterial-based platforms to combat COVID-19: Diagnostics preventions, therapeutics, and vaccine developments. ACS Appl. Bio. 2022, 5, 2431–2460. [Google Scholar] [CrossRef] [PubMed]
- Priyadarsini, S.; Mukherjee, S.; Bag, J.; Nayak, N.; Mishra, M. Application of nanoparticles in dentistry: Current trends. In Nanoparticles in Medicine; Springer: Singapore, 2020; pp. 55–98. [Google Scholar]
- Sanchez, M.C.; Toledano-Osorio, M.; Bueno, J.; Figuero, E.; Toledano, M.; Medina-Castillo, A.L.; Osorio, R.; Herrera, D.; Sanz, M. Antibacterial effects of polymeric PolymP-n Active nanoparticles. An in vitro biofilm study. Dent. Mater. 2019, 35, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Krol, A.; Pomastowski, P.; Rafinska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52. [Google Scholar] [CrossRef]
- Umapathy, V.R.; Natarajan, P.M.; SumathiJones, C.; Swamikannu, B.; Johnson, W.M.S.; Alagarsamy, V.; Milon, A.R. Current trends and future perspectives on dental nanomaterials—An overview of nanotechnology strategies in dentistry. J. King Saud Univ. Sci. 2022, 34, 102231. [Google Scholar] [CrossRef]
- Bapata, R.A.; Chaubal, T.V.; Joshi, C.P.; Bapat, P.R.; Choudhury, H.; Pandey, M.; Gorain, B.; Kesharwani, P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng. C 2018, 91, 881–898. [Google Scholar] [CrossRef]
- Boutsiouki, C.; Frankenberger, R.; Lucker, S.; Kramer, N. Inhibition of secondary caries in vitro by addition of chlorhexidine to adhesive components. Dent Mater. 2019, 35, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, J.M.; Murray, C.M.; Schwass, D.R.; Brosnan, M.; Brunton, P.A.; Lyons, K.S.; Thomson, W.M. The dental amalgam phasedown in New Zealand: A 20-year trend. Operat. Dent. 2020, 45, 255–264. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin composite–state of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Dauvillier, B.S.; Feilzer, A.J.; De Gee, A.; Davidson, C. Visco-elastic parameters of dental restorative materials during setting. J. Dent. Res. 2000, 79, 818–823. [Google Scholar] [CrossRef]
- Braga, R.R.; Ballester, R.Y.; Ferracane, J.L. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent. Mater. 2005, 21, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, F.; Boaro, L.C.; Ferracane, J.L.; Braga, R.R. A comparative evaluation of polymerization stress data obtained with four different mechanical testing systems. Dent. Mater. 2012, 28, 680–686. [Google Scholar] [CrossRef]
- Yoshinaga, K.; Yoshihara, K.; Yoshida, Y. Development of new diacrylate monomers as substitutes for Bis-GMA and UDMA. Dent. Mater. 2021, 37, e391–e398. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Garoushi, S.; Säilynoja, E.; Vallittu, P.K.; Lassila, L. The effect of adding a new monomer “Phene” on the polymerization shrinkage reduction of a dental resin composite. Dent. Mater. 2019, 35, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Fugolin, A.P.; de Paula, A.B.; Dobson, A.; Huynh, V.; Consani, R.; Ferracane, J.L.; Pfeifer, C.S. Alternative monomer for BisGMA-free resin composites formulations. Dent. Mater. 2020, 36, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Kiho, C.; Rajan, G.; Farrar, P.; Prentice, L.; Gangadhara Prusty, B.G. Dental resin composites: A review on materials to product realizations. Compos. Part B 2022, 230, 109495. [Google Scholar]
- Behl, S.; Rajan, G.; Ellakwa, A.; Farrar, P.; Prusty, B.G. Physical and mechanical characterisation of flowable dental composites reinforced with short aspect ratio micro-sized S-Glass fibres. Mater. Sci. Eng. C 2020, 111, 110771. [Google Scholar] [CrossRef]
- Chadda, H.; Satapathy, B.K.; Patnaik, A.; Ray, A.R. Mechanistic interpretations of fracture toughness and correlations to wear behavior of hydroxyapatite and silica/hydroxyapatite filled bis-GMA/TEGDMA micro/hybrid dental restorative composites. Compos. Part B 2017, 130, 132–146. [Google Scholar] [CrossRef]
- Pieniak, D.; Walczak, A.; Walczak, M.; Przystupa, K.; Niewczas, A.M. Hardness and wear resistance of dental biomedical nanomaterials in a humid environment with non-stationary temperatures. Materials 2020, 13, 1255. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.; Zhu, X. Functional fillers for dental resin composites. Acta Biomater. 2021, 122, 50–65. [Google Scholar] [CrossRef]
- Yang, D.-L.; Cui, Y.-N.; Sun, Q.; Liu, M.; Niu, H.; Wang, J.-X. Antibacterial activity and reinforcing effect of SiO2–ZnO complex cluster fillers for dental resin composites. Biomater. Sci. 2021, 9, 1795–1804. [Google Scholar] [CrossRef]
- Alrahlah, A.; Khan, R.; Al-Odayni, A.-B.; Saeed, W.S.; Bautista, L.S.; Vohra, F. Evaluation of synergic potential of rGO/SiO2 as hybrid filler for BisGMA/TEGDMA dental composites. Polymers 2020, 12, 3025. [Google Scholar] [CrossRef]
- Sun, C.; Xu, D.; Hou, C.; Zhang, H.; Li, Y.; Zhang, Q.; Wang, H.; Zhu, M. Core-shell structured SiO2@ ZrO2@ SiO2 filler for radiopacity and ultra-low shrinkage dental composite resins. J. Mech. Behav. Biomed. Mater. 2021, 121, 104593. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; Chang, J. Ca-Doped mesoporous SiO2/dental resin composites with enhanced mechanical properties, bioactivity and antibacterial properties. J. Mater. Chem. B 2018, 6, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Odermatt, R.; Mohn, D.; Wiedemeier, D.B.; Attin, T.; Tauböck, T.T. Bioactivity and physico-chemical properties of dental composites functionalized with nano-vs. micro-sized bioactive glass. J. Clin. Med. 2020, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Cevik, P.; Yildirim-Bicer, A.Z. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. J. Prosthodont. 2018, 27, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Peng, X.; Zhou, X.; Weir, M.D.; Melo, M.A.S.; Tay, F.R.; Imazato, S.; Oates, T.W.; Cheng, L.; Xu, H.H. In vitro evaluation of composite containing DMAHDM and calcium phosphate nanoparticles on recurrent caries inhibition at bovine enamel-restoration margins. Dent. Mater. 2020, 36, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Okulus, Z.; Sandomierski, M.; Zieli´nska, M.; Buchwald, T.; Voelkel, A. Zeolite fillers for resin-based composites with remineralizing potential. Spectrochim. Acta Mol. Biomol. Spectrosc. 2019, 210, 126–135. [Google Scholar] [CrossRef]
- Wang, Y.; Hua, H.; Li, W.; Wang, R.; Jiang, X.; Zhu, M. Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids. J. Dent. 2019, 80, 23–29. [Google Scholar] [CrossRef]
- Huang, Q.; Garoushi, S.; Lin, Z.; He, J.; Qin, W.; Liu, F.; Vallittu, P.K.; Lassila, L.V.J. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions. J. Prosthodont. Res. 2017, 61, 471–479. [Google Scholar] [CrossRef]
- Bukhari, J.H.; Khan, A.S.; Ijaz, K.; Zahid, S.; Chaudhry, A.A.; Kaleem, M. Low-temperature flow-synthesis-assisted urethane-grafted zinc oxide-based dental composites: Physical, mechanical, and antibacterial responses. J. Mater. Sci. Mater. Med. 2021, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.-L.; Sun, Q.; Duan, Y.-H.; Niu, H.; Wang, R.-L.; Wang, D.; Zhu, M.F.; Wang, J.X. Efficient construction of SiO2 colloidal nanoparticle clusters as novel fillers by a spray-drying process for dental composites. Ind. Eng. Chem. Res. 2019, 58, 18178–18186. [Google Scholar] [CrossRef]
- Kinney, J.H.; Marshall, S.J.; Marshall, G.W. The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature. Crit. Rev. Oral. Biol. Med. 2003, 14, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.M.; Sakaguchi, R.L. Craig’s Restorative Dental Materials; Mosby Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Seghi, R.R.; Del Rio, D.L. Biomaterials: Ceramic and adhesive technologies. Dent. Clin. N. Am. 2019, 63, 233–248. [Google Scholar] [CrossRef]
- Ivoclar vivadent. IPS Empress CAD_ Scientific Documentation. 2011. Available online: https://www.ivoclar.com/en_au/products/digital-processes/ips-empress-cad (accessed on 20 September 2023).
- Vita zahnfabrik. Vita Suprinity_ PC Technical and Scientific Documentation. 2016. Available online: https://www.ivoclar.com/en_au/products/digital-processes/ips-empress-cad (accessed on 20 September 2023).
- Vita zahnfabrik. Vita Enamic_ Technical and Scientific Documentation. 2013. Available online: https://www.ivoclar.com/en_au/products/digital-processes/ips-empress-cad (accessed on 20 September 2023).
- Wilson, A.D.; Kent, B. The glass-ionomer cement, a new translucent dental filling material. J. Chem. Technol. 1971, 21, 313. [Google Scholar] [CrossRef]
- Hoshika, S.; Ting, S.; Ahmed, Z.; Chen, F.; Toida, Y.; Sakaguchi, N.; Van Meerbeek, B.; Sano, H.; Sidhu, S.K. Effect of conditioning and 1 year aging on the bond strength and interfacial morphology of glass-ionomer cement bonded to dentin. Dent. Mater. 2021, 37, 106–112. [Google Scholar] [CrossRef]
- Murugan, R.; Yazid, F.; Nasruddin, N.S.; Anuar, N.N.M. Effects of nanohydroxyapatite incorporation into glass ionomer cement (GIC). Minerals 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Topcuoglu, N.; Ozan, F.; Ozyurt, M.; Kulekci, G. In vitro antibacterial effects of glass-ionomer cement containing ethanolic extract of propolis on Streptococcus mutans. Eur. J. Dent. 2012, 6, 428–433. [Google Scholar]
- Xingyun, G.K.; Lung, C.Y.K.; Lam, W.Y.H.; Chu, C.H.; Yu, O.Y. A novel glass ionomer cement with silver zeolite for restorative dentistry. J. Dent. 2023, 133, 104524. [Google Scholar]
- Zhang, Y.; Lawn, B.R. Novel zirconia materials in dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Gali, S.; RaviKumar, K. Zirconia toughened mica glass ceramics for dental restorations: Wear, thermal, optical and cytocompatibility properties. Dent. Mater. 2019, 35, 1706–1717. [Google Scholar] [CrossRef]
- Cebe, A.; Dursun, S.; Mankolli, H. Hospital solid wastes and its effect on environment. J. Int. Environ. Appl. Sci. 2013, 8, 733–737. [Google Scholar]
- Anderton, D.L.; Anderson, A.B.; Rossi, P.H.; Oakes, J.M.; Fraser, M.R.; Weber, E.W.; Calabrese, E.J. Hazardous waste facilities: “Environmental Equity” issues in metropolitan areas. Eval. Rev. 1994, 18, 123–140. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, A. Healthcare waste management: A state-of-the-art literature review. Int. J. Environ. Waste Manag. 2016, 18, 120–144. [Google Scholar] [CrossRef]
- Al-Widyan, M.I.; Oweis, R.J.; Abu-Qdais, H. Composition and energy content of dental solid waste. Resources. Conserv. Recycl. 2010, 55, 155–160. [Google Scholar] [CrossRef]
- Xu, X.; He, L.; Zhu, B.; Li, J.; Li, J. Advances in polymeric materials for dental applications. Polym. Chem. 2017, 8, 807–823. [Google Scholar] [CrossRef]
- Öztürk, B.; Aydınoglu, A.; Hazar, A.B.Y. Emerging Polymers in Dentistry Handbook of Polymers in Medicine; Elsevier Ltd.: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Pratap, B.; Gupta, R.K.; Bhardwaj, B.; Nag, M. Resin based restorative dental materials: Characteristics and future perspectives. Jpn. Dent. Sci. Rev. 2019, 55, 126–138. [Google Scholar] [CrossRef]
- Inventory of Sources of Dioxin in the United States (EPA/600/P-98/002Aa), National + Centre for Environmental Assessment, USEPA, 1998. 2–13. Available online: https://www.epa.gov/dioxin/inventory-dioxin-sources-and-environmental-releases (accessed on 20 September 2023).
- Mercury Study Report to Congress. Volume I: Executive Summary. USEPA. 1997. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/volume1.pdf (accessed on 20 September 2023).
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Cayumil, R.; Khanna, R.; Rajarao, R.; Ikram-ul-Haq, M.; Mukherjee, P.S.; Sahajwalla, V. Environmental impact of processing electronic waste–key issues and challenges. In E-Waste in Transition—From Pollution to Resource; BoD: Norderstedt, Germany, 2016; pp. 9–35. [Google Scholar]
- Li, Y.; Jiang, G.; Wang, Y.; Wang, P.; Zhang, Q. Concentrations, profiles and gas-particle partitioning of PCDD/Fs, PCBs and PBDEs in the ambient air of an E-waste dismantling area, southeast China. Chin. Sci. Bull. 2008, 53, 521–528. [Google Scholar] [CrossRef]
- Aschner, M.; Aschner, J.L. Mercury neurotoxicity: Mechanisms of blood-brain barrier transport. Neurosci. Biobehav. Rev. 1990, 14, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Mutter, J.; Curth, A.; Naumann, J.; Deth, R.; Walach, H. Does inorganic mercury play a role in Alzheimer’s disease? A systematic review and an integrated molecular mechanism. J. Alzheimers. Dis. 2010, 22, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Pourret, O.; Hursthouse, A. It’s Time to replace the term “Heavy Metals” with “Potentially Toxic Elements” when reporting environmental research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Kumar, M.; Singh, E.; Kumar, A.; Singh, L.; Kumar, S.; Keerthanan, S.; Hoang, S.A.; El-Naggar, A.; Vithanage, M.; et al. Antimony contamination and its risk management in complex environmental settings: A review. Environ. Int. 2022, 158, 106908. [Google Scholar] [CrossRef]
- Khanna, R.; Kongkarat, S.; Seetharaman, S.; Sahajwalla, V. Carbothermic reduction of alumina at 1823 K in the presence of molten steel: A sessile drop investigation. ISIJ Int. 2012, 52, 992–999. [Google Scholar] [CrossRef]
- NBS. National Bureau of Statistics of China; China Statistical Yearbook. 2020. Available online: http://www.stats.gov.cn/english/ (accessed on 20 September 2023).
- Ardit, M.; Zanelli, C.; Conte, S.; Molinari, C.; Cruciani, G.; Dondi, M. Ceramisation of hazardous elements: Benefits and pitfalls of the inertization through silicate ceramics. J. Hazard. Mater. 2022, 423, 126851. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, S.; Ji, R.; Liu, L.; Wang, X.; Zhang, Z. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration. Waste Manag. 2017, 68, 221–231. [Google Scholar] [CrossRef]
- Benbrik, B.; Elabed, A.; El Modafar, C.; Douira, A.; Amir, S.; Filali-Maltouf, A.; El Abed, S.; El Gachtouli, N.; Mohammed, I.; Koraichi, S.I. Reusing phosphate sludge enriched by phosphate solubilizing bacteria as biofertilizer: Growth promotion of Zea Mays. Biocatal. Agric. Biotechnol. 2020, 30, 1878–1881. [Google Scholar] [CrossRef]
- Windfeld, E.S.; Brooks, M.S.-L. Medical waste management—A review. J. Environ. Manag. 2015, 163, 98–108. [Google Scholar] [CrossRef]
- Rajoo, K.S.; Karam, D.S.; Ismail, A.; Arifin, A. Evaluating the leachate contamination impact of landfills and open dumpsites from developing countries using the proposed Leachate Pollution Index for Developing Countries (LPIDC). Environ. Nanotechnology. Monit. Manag. 2020, 14, 100372. [Google Scholar] [CrossRef]
- Hussein, I.; Abdel-Shafy Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Odusanya, D.O.; Okonkwo, J.O.; Botha, B. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa. Waste Manag. 2009, 29, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Thongyuan, S.; Khantamoon, T.; Aendo, P.; Binot, A.; Tulayakul, P. Ecological and health risk assessment, carcinogenic and non-carcinogenic effects of heavy metals contamination in the soil from municipal solid waste landfill in Central, Thailand. Hum. Ecol. Risk Assess. 2021, 27, 876–897. [Google Scholar] [CrossRef]
- Zeng, D.; Chen, G.; Zhou, P.; Xu, H.; Qiong, A.; Duo, B.; Lu, X.; Wang, Z.; Han, Z. Factors influencing groundwater contamination near municipal solid waste landfill sites in the Qinghai-Tibetan plateau. Ecotoxicol. Environ. Saf. 2021, 211, 111913. [Google Scholar] [CrossRef]
- Velpandian, T.; Halder, N.; Nath, M.; Das, U.; Moksha, L.; Gowtham, L.; Batta, S.P. Un-segregated waste disposal: An alarming threat of antimicrobials in surface and ground water sources in Delhi. Environ. Sci. Pollut. Res. 2018, 25, 29518–29528. [Google Scholar] [CrossRef] [PubMed]
- Giersc, M.; Montevecchi, F.; Neubauer, C. Waste Management in Europe: Main Problems Identified in EU Petitions and Best Practices. 2018. Available online: http://publications.europa.eu/resource/cellar/8af55d22-3946-11e8-b5fe-01aa75ed71a1.0001.03/DOC_1 (accessed on 13 July 2023).
- McCarthy, S.; Moriarty, J.; O’Riordan, D.; O’Leary, G. Focus on Landfilling in Ireland. Environmental Protection Agency, Ireland. 2010. Available online: Epa.ie/publications/compliance--enforcement/waste/EPA_Focus_on_Landfilling_Ireland.pdf (accessed on 12 July 2023).
- Kamaruddin, M.A.; Yusoff, M.S.; Abdul Aziz, H.; Hung, Y.-T. Sustainable treatment of landfill leachate. Appl. Water Sci. 2015, 5, 113–126. [Google Scholar] [CrossRef]
- Lai, J.C.; Minski, M.J.; Chan, A.W.; Leung, T.K.; Lim, L. Manganese mineral interactions in brain. Neurotoxicology 1999, 20, 433–444. [Google Scholar]
- Costa, M. Carcinogenic metals. Sci. Prog. 1998, 81, 329–339. [Google Scholar]
- Li, Z.; Feng, X.; Tang, S.; Wang, S.; Li, P. Mercury in landfill leachate and its removal by the on-site sewage treatment plant. Earth Environ. 2005, 2, 52–56. [Google Scholar]
- Yan, Z.; Zhu, Z.; Chang, H.; Fan, G.; Wang, Q.; Fu, X.; Qu, F.; Liang, H. Integrated membrane electrochemical reactor-membrane distillation process for enhanced landfill leachate treatment. Water Res. 2023, 230, 119559. [Google Scholar] [CrossRef] [PubMed]
- Musee, N. Nanowastes and the environment: Potential new waste management paradigm. Environ. Intern. 2011, 37, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Faunce, T.; Kolodziejczyk, B. Nanowaste: Need for disposal and recycling standards. G20 Insights Policy Era Agenda 2017, 27, 2030. [Google Scholar]
- Mueller, N.C.; Buha, J.; Wang, J.; Ulrich, A.; Nowack, B. Modeling the flows of engineered nanomaterials during waste handling. Environ. Sci. Process. Impacts. 2013, 15, 251–259. [Google Scholar] [CrossRef]
- Boldrin, A.; Hansen, S.F.; Baun, A.; Hartmann, N.I.; Astrup, T.F. Astrup, Environmental exposure assessment framework for nanoparticles in solid waste. J. Nanopart. Res. 2014, 16, 2394. [Google Scholar] [CrossRef] [PubMed]
- Part, F.; Zecha, G.; Causon, T. Current limitations and challenges in nanowaste detection, characterisation and monitoring. Waste Manag. 2015, 43, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Kotsilkov, S.; Ivanov, E.; Vitanov, N.K. Release of graphene and carbon nanotubes from biodegradable poly(lactic acid) films during degradation and combustion: Risk associated with the end-of-life of nanocomposite food packaging materials. Materials 2018, 11, 2346. [Google Scholar] [CrossRef]
- Nichols, G.P. Exploring the need for creating a standardized approach to managing nanowaste based on similar experiences from other wastes. Environ. Sci. Nano. 2016, 3, 946–952. [Google Scholar] [CrossRef]
- Seemann, R.; Flury, S.; Pfefferkorn, F.; Lussi, A.; Noack, M.J. Restorative dentistry and restorative materials over the next 20 years: A Delphi survey. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2014, 30, 442–448. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Ratnasari, D.K.; Nahil, M.A.; Williams, P.T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J. Anal. Appl. Pyrolysis 2017, 124, 631–637. [Google Scholar] [CrossRef]
- Kongkarat, S.; Khanna, R.; Koshy, P.; Sahajwalla, V. Recycling Waste Polymers in EAF steelmaking: Influence of polymer composition on carbon/slag interactions. ISIJ Int. 2013, 52, 385–393. [Google Scholar] [CrossRef]
- Apaydin-Varol, E.; Polat, S.; Putun, A.E. Pyrolysis kinetics and thermal decomposition behaviour of polycarbonate-a TGA-FTIR study. Therm. Sci. 2014, 18, 833–842. [Google Scholar] [CrossRef]
- Hinton, W.S.; Lane, A.M. Characterisation of municipal solid waste incinerator fly ash promoting the formation of polychlorinated dioxins. Chemosphere 1991, 22, 473–483. [Google Scholar] [CrossRef]
- Khanna, R.; Saini, R.; Park, M.; Ellamparuthy, G.; Biswal, S.K.; Mukherjee, P.S. Factors influencing the release of potentially toxic elements (PTEs) during thermal processing of electronic waste. Waste Manag. 2020, 105, 414–424. [Google Scholar] [CrossRef]
- Fujimori, T.; Itai, T.; Goto, A.; Asante, K.A.; Otsuka, M.; Takahashi, S.; Tanabe, S. Interplay of metals and bromine with dioxin-related compounds concentrated in e-waste open burning soil from Agbogbloshie in Accra, Ghana. Environ. Pollut. 2016, 209, 155–163. [Google Scholar] [CrossRef]
- Cordeiro, V.V.; Rodrigues, A.M.; Pereira da Costa, F. The harnessing of the waste arising from Y-TZP dental ceramics manufactured by CAD/CAM to be used as alternative dental materials. Ceram. Int. 2022, 48, 36149–36155. [Google Scholar] [CrossRef]
- Sieper, K.; Wille, S.; Kern, M. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns. J. Mech. Behav. Biomed. Mater. 2017, 74, 342–348. [Google Scholar] [CrossRef]
- Babu, P.J.; Alla, R.K.; Alluri, V.R.; Datla, S.R.; Konakanchi, A. Dental ceramics: Part I—An overview of composition, structure and properties. Am. J. Mater. Eng. Technol. 2015, 3, 13–18. [Google Scholar]
- Martin, N.; Mulligan, S.; Fuzesi, P.; Hatton, P.V. Quantification of single use plastics waste generated in clinical dental practice and hospital settings. J. Dent. 2022, 118, 103948. [Google Scholar] [CrossRef]
- Ans, M.; Makhdoom, M.A.; Muhammad Faisal Irfan, M.F.; Abir, A.A. Optimized modelling and kinetic analysis of nickel recovery from waste orthodontic implants using response surface methodology. Miner. Eng. 2022, 175, 107279. [Google Scholar] [CrossRef]
- Khanna, R.; Mukherjee, P.S.; Park, M. A critical assessment on resource recovery from electronic waste: Impact of mechanical pre-treatment. J. Clean. Prod. 2020, 268, 122319. [Google Scholar] [CrossRef]
- Joo, J.; Kwon, E.E.; Lee, J. Achievements in pyrolysis process in E-waste management sector. Environ. Pollut. 2021, 287, 117621. [Google Scholar] [CrossRef] [PubMed]
- Hilt, B.; Sletvold, H.; Svendsen, K. The occurrence of delayed adverse health effects in dental personnel after exposure to mercury. Dentistry 2014, 4, 1. [Google Scholar]
- Gupta, S.K.; Saxena, P.; Pant, V.A.; Pant, A.B. Release and toxicity of dental resin composite. Toxicol. Int. 2012, 19, 225. [Google Scholar]
- Fleisch, A.F.; Sheffield, P.E.; Chinn, C.; Edelstein, B.L.; Landrigan, P.J. Bisphenol A and related compounds in dental materials. Pediatrics 2010, 126, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Peñarrieta-Juanito, G.; Sordi, M.B.; Henriques, B.; Dotto, M.E.; Teughels, W.; Silva, F.S.; Magini, R.S.; Souza, J.C. Surface damage of dental implant systems and ions release after exposure to fluoride and hydrogen peroxide. J. Periodontal Res. 2019, 54, 46–52. [Google Scholar] [CrossRef]
- EC—European Commission. Closing the Loop—An EU Action Plan for the Circular Economy; EC—European Commission: Brussels, Belgium, 2015. [Google Scholar]
- D’Adamo, I.; Gastaldi, M. Perspectives and Challenges on Sustainability: Drivers, Opportunities and Policy Implications in Universities. Sustainability 2023, 15, 3564. [Google Scholar] [CrossRef]
A | B | C | |
---|---|---|---|
Total weight kg/d | 39.6 | 50.6 | 82.8 |
Infectious Waste (wt.%) | |||
Various types of infectious waste | 29 | 29.8 | 14.5 |
Non-infectious Waste (wt.%) | |||
Paper | 41.6 | 35.4 | 25.2 |
Cardboard | 3.3 | 2.8 | 2.7 |
Plastic Bags | 4.3 | 3.3 | 1.6 |
Packaging | 0.5 | 3.2 | 2.5 |
Glass Fabric | 0.3 | 4 | 0.5 |
Domestic-type Waste (wt.%) | |||
Food Waste | 1.8 | 0.6 | 0.4 |
Garbage | 17.4 | 15.4 | 34.8 |
Soil | - | 5.3 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanna, R.; Konyukhov, Y.; Maslennikov, N.; Kolesnikov, E.; Burmistrov, I. An Overview of Dental Solid Waste Management and Associated Environmental Impacts: A Materials Perspective. Sustainability 2023, 15, 15953. https://doi.org/10.3390/su152215953
Khanna R, Konyukhov Y, Maslennikov N, Kolesnikov E, Burmistrov I. An Overview of Dental Solid Waste Management and Associated Environmental Impacts: A Materials Perspective. Sustainability. 2023; 15(22):15953. https://doi.org/10.3390/su152215953
Chicago/Turabian StyleKhanna, Rita, Yuri Konyukhov, Nikita Maslennikov, Evgeny Kolesnikov, and Igor Burmistrov. 2023. "An Overview of Dental Solid Waste Management and Associated Environmental Impacts: A Materials Perspective" Sustainability 15, no. 22: 15953. https://doi.org/10.3390/su152215953
APA StyleKhanna, R., Konyukhov, Y., Maslennikov, N., Kolesnikov, E., & Burmistrov, I. (2023). An Overview of Dental Solid Waste Management and Associated Environmental Impacts: A Materials Perspective. Sustainability, 15(22), 15953. https://doi.org/10.3390/su152215953