Evaluation of Biodegradability of Polylactic Acid and Compostable Bags from Food Waste under Industrial Composting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Determination of the Biodegradability Test
2.3. Determination of Degree of Disintegration
2.4. Ecotoxic Effect Evaluation
- -
- 3 pots with vermiculite/peat mixture (83% vermiculite and 17% peat), as growth control;
- -
- 3 pots with reference compost 25% w/w;
- -
- 3 pots with reference compost 50% w/w;
- -
- 3 pots with sample compost 25% w/w;
- -
- 3 pots with sample compost 50% w/w;
- -
- for a total of 15 pots for each seed type.
2.5. Composting in Windrows
2.6. Analytical Methods
3. Results and Discussion
3.1. Biodegradability Test
3.2. Disintegration Test
3.3. Phytotoxic Effect Test
3.4. Heavy Metals
3.5. Composting in Windrows
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Borrelle, S.B.; Ringma, J.; Lavender Law, K.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef]
- Sales, A.J. Bioplastics-and-the-Environment. Electron. J. Biol. 2017, 13, 274–279. [Google Scholar]
- Di Bartolo, A.; Infurna, G.; Dintcheva, N.T. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 2021, 13, 1229. [Google Scholar] [CrossRef]
- Market—European Bioplastics e.V. Available online: https://www.european-bioplastics.org/market/ (accessed on 20 September 2023).
- Zorpas, A.A.; Navarro-Pedreño, J.; Jeguirim, M.; Dimitriou, G.; Almendro Candel, M.B.; Argirusis, C.; Vardopoulos, I.; Loizia, P.; Chatziparaskeva, G.; Papamichael, I. Crisis in Leadership vs Waste Management. Euro-Mediterr. J. Environ. Integr. 2021, 6, 80. [Google Scholar] [CrossRef]
- Loizia, P.; Voukkali, I.; Zorpas, A.A.; Navarro Pedreño, J.; Chatziparaskeva, G.; Inglezakis, V.J.; Vardopoulos, I.; Doula, M. Measuring the Level of Environmental Performance in Insular Areas, through Key Performed Indicators, in the Framework of Waste Strategy Development. Sci. Total Environ. 2021, 753, 141974. [Google Scholar] [CrossRef] [PubMed]
- Vardopoulos, I.; Konstantopoulos, I.; Zorpas, A.A.; Limousy, L.; Bennici, S.; Inglezakis, V.J.; Voukkali, I. Sustainable Metropolitan Areas Perspectives through Assessment of the Existing Waste Management Strategies. Environ. Sci. Pollut. Res. 2021, 28, 24305–24320. [Google Scholar] [CrossRef] [PubMed]
- Zorpas, A.A.; Lasaridi, K. Measuring Waste Prevention. Waste Manag. 2013, 33, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Maragkaki, A.E.; Vasileiadis, I.; Fountoulakis, M.; Kyriakou, A.; Lasaridi, K.; Manios, T. Improving Biogas Production from Anaerobic Co-Digestion of Sewage Sludge with a Thermal Dried Mixture of Food Waste, Cheese Whey and Olive Mill Wastewater. Waste Manag. 2018, 71, 644–651. [Google Scholar] [CrossRef]
- Orfanoudaki, A.; Makridakis, G.; Maragkaki, A.; Fountoulakis, M.S.; Kallithrakas-Kontos, N.G.; Manios, T. Anaerobic Co-Digestion of Pig Manure and Spent Coffee Grounds for Enhanced Biogas Production. Waste Biomass Valorization 2020, 11, 4613–4620. [Google Scholar] [CrossRef]
- Moussa, R.N.; Moussa, N.; Dionisi, D. Hydrogen Production from Biomass and Organic Waste Using Dark Fermentation: An Analysis of Literature Data on the Effect of Operating Parameters on Process Performance. Processes 2022, 10, 156. [Google Scholar] [CrossRef]
- Thanos, D.; Maragkaki, A.; Venieri, D.; Fountoulakis, M.; Manios, T. Enhanced Biogas Production in Pilot Digesters Treating a Mixture of Olive Mill Wastewater and Agro-Industrial or Agro-Livestock by-Products in Greece. Waste Biomass Valorization 2021, 12, 135–143. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Sridhar, K.; Inbaraj, B.S.; Singh, R.; Kamma, S.; Tripathi, M.; Sharma, M. Transformation of Agro-Waste into Value-Added Bioproducts and Bioactive Compounds: Micro/Nano Formulations and Application in the Agri-Food-Pharma Sector. Bioengineering 2023, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Madhavan Nampoothiri, K.; Nair, N.R.; John, R.P. An Overview of the Recent Developments in Polylactide (PLA) Research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef]
- Tsuji, H. Hydrolytic Degradation. In Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 345–381. [Google Scholar] [CrossRef]
- Ho, K.L.G.; Pometto, A.L.; Gadea-Rivas, A.; Briceño, J.A.; Rojas, A. Degradation of Polylactic Acid (PLA) Plastic in Costa Rican Soil and Iowa State University Compost Rows. J. Environ. Polym. Degrad. 1999, 7, 173–177. [Google Scholar] [CrossRef]
- Idris, S.N.; Amelia, T.S.M.; Bhubalan, K.; Lazim, A.M.M.; Zakwan, N.A.M.A.; Jamaluddin, M.I.; Santhanam, R.; Amirul, A.A.A.; Vigneswari, S.; Ramakrishna, S. The Degradation of Single-Use Plastics and Commercially Viable Bioplastics in the Environment: A Review. Environ. Res. 2023, 231, 115988. [Google Scholar] [CrossRef] [PubMed]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and Biodegradation of Poly(Lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef]
- Kale, G.; Auras, R.; Singh, S.P. Comparison of the Degradability of Poly(Lactide) Packages in Composting and Ambient Exposure Conditions. Packag. Technol. Sci. 2007, 20, 49–70. [Google Scholar] [CrossRef]
- Alshehrei, F. Biodegradation of Synthetic and Natural Plastic by Microorganisms. J. Appl. Environ. Microbiol. 2017, 5, 8–19. [Google Scholar] [CrossRef]
- Kasar, P.; Sharma, D.K.; Ahmaruzzaman, M. Thermal and Catalytic Decomposition of Waste Plastics and Its Co-Processing with Petroleum Residue through Pyrolysis Process. J. Clean. Prod. 2020, 265, 121639. [Google Scholar] [CrossRef]
- Tabasi, R.Y.; Ajji, A. Selective Degradation of Biodegradable Blends in Simulated Laboratory Composting. Polym. Degrad. Stab. 2015, 120, 435–442. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Preziosi, R.; Robson, G.D. Abiotic and Biotic Environmental Degradation of the Bioplastic Polymer Poly(Lactic Acid): A Review. Polym. Degrad. Stab. 2017, 137, 122–130. [Google Scholar] [CrossRef]
- Briassoulis, D.; Dejean, C.; Picuno, P. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part II: Composting. J. Polym. Environ. 2010, 18, 364–383. [Google Scholar] [CrossRef]
- Cossu, C.; Heuzey, M.C.; Lussier, L.S.; Dubois, C. Early Development of a Biodegradable Energetic Elastomer. J. Appl. Polym. Sci. 2011, 119, 3645–3657. [Google Scholar] [CrossRef]
- Arias, V.; Höglund, A.; Odelius, K.; Albertsson, A.C. Tuning the Degradation Profiles of Poly(L-Lactide)-Based Materials through Miscibility. Biomacromolecules 2014, 15, 391–402. [Google Scholar] [CrossRef]
- EN 13432:2000; Packaging. Requirements for Packaging Recoverable through Composting and Biodegradation. Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging. British Standards Institution: London, UK, 2000; pp. 1–26.
- Sakai, K.; Taniguchi, M.; Miura, S.; Ohara, H.; Matsumoto, T.; Shirai, Y. Making Plastics from Garbage: A Novel Process for Poly-L-Lactate Production from Municipal Food Waste. J. Ind. Ecol. 2003, 7, 63–74. [Google Scholar] [CrossRef]
- ISO 16929:2019; Plastics-Determination of the Degree of Disintegration of Plastic Materials under Defined Composting Conditions in a Pilot-Scale Test(E). ISO: Geneva, Switzerland, 2021.
- UNE EN ISO 14855-1:2013; Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting—Method by Analysis of Evolved Carbon Dioxide—Part 1: General Method (ISO 14855-1:2012). UNE Spanish standardization: Madrid, Spain, 2013. Available online: https://www.en-standard.eu/une-en-iso-14855-1-2013-determination-of-the-ultimate-aerobic-biodegradability-of-plastic-materials-under-controlled-composting-conditions-method-by-analysis-of-evolved-carbon-dioxide-part-1-general-method-iso-14855-1-2012/ (accessed on 25 October 2023).
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA; American Water Works Association (AWWA): Denver, CO, USA; Water Environment Federation (WEF): Alexandria, VA, USA, 2005. [Google Scholar]
- UNI 10780:1998; Compost—Classification, Requirements and Use Criteria. Ente Nazionale Italiano di Unificazione (UNI): Roma, Italy. Available online: https://infostore.saiglobal.com/en-us/Standards/UNI-10780-1998-1091645_SAIG_UNI_UNI_2541004/ (accessed on 4 October 2023).
- Evaluating Toxicity of Immature Compost—ScienceOpen. Available online: https://www.scienceopen.com/document?vid=d003a586-348f-4d40-b89d-24d98889ac5e (accessed on 7 September 2023).
- EN 15411:2011; Solid Recovered Fuels—Methods for the Determination of the Content of Trace. British Standards Institution: London, UK, 2011. Available online: https://standards.iteh.ai/catalog/standards/cen/108a8614-5b62-4295-b150-ea56279b8828/en-15411-2011 (accessed on 4 October 2023).
- NEMI Method Summary—9056A. Available online: https://www.nemi.gov/methods/method_summary/4734/ (accessed on 4 October 2023).
- CD-ROM 5050-2 Revision 0. 1994. Available online: https://19january2017snapshot.epa.gov/sites/production/files/2015-12/documents/5050.pdf (accessed on 4 October 2023).
- Kumar Kalita, N.; Sarmah, A.; Bhasney, S.M.; Kalamdhad, A.; Katiyar, V. Demonstrating an Ideal Compostable Plastic Using Biodegradability Kinetics of Poly(Lactic Acid) (PLA) Based Green Biocomposite Films under Aerobic Composting Conditions. Environ. Chall. 2021, 3, 100030. [Google Scholar] [CrossRef]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef]
- Rudeekit: Determining Biodegradability of Polylactic…—Designer. Google. Available online: https://scholar.google.com/scholar_lookup?title=Determining%20biodegradability%20of%20polylactic%20acid%20under%20different%20environments&publication_year=2008&author=Y.%20Rudeekit&author=J.%20Numnoi&author=M.%20Tajan&author=P.%20Chaiwutthinan&author=T.%20Leejarkpai (accessed on 9 October 2023).
- Bitinis, N.; Verdejo, R.; Bras, J.; Fortunati, E.; Kenny, J.M.; Torre, L.; López-Manchado, M.A. Undefined Poly (Lactic Acid)/Natural Rubber/Cellulose Nanocrystal Bionanocomposites Part I. In Processing and Morphology; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Wang, Y.; Pan, J.; Han, X.; Sinka, C.; Ding, L. A Phenomenological Model for the Degradation of Biodegradable Polymers. Biomaterials 2008, 29, 3393–3401. [Google Scholar] [CrossRef]
- Kale, G.; Auras, R.; Singh, S.P.; Narayan, R. Biodegradability of Polylactide Bottles in Real and Simulated Composting Conditions. Polym. Test. 2007, 26, 1049–1061. [Google Scholar] [CrossRef]
- Ruggero, F.; Onderwater, R.C.A.; Carretti, E.; Roosa, S.; Benali, S.; Raquez, J.M.; Gori, R.; Lubello, C.; Wattiez, R. Degradation of Film and Rigid Bioplastics During the Thermophilic Phase and the Maturation Phase of Simulated Composting. J. Polym. Environ. 2021, 29, 3015–3028. [Google Scholar] [CrossRef]
- Czigány, T. Editorial Corner–a Personal View Disposable or Single-Use Plastics? Neither! Recyclable or Reusable Plastics! Express Polym. Lett. 2020, 14, 1. [Google Scholar] [CrossRef]
- Bitinis, N.; Fortunati, E.; Verdejo, R.; Bras, J.; Kenny, J.M.; Torre, L.; López-Manchado, M.A. Poly(Lactic Acid)/Natural Rubber/Cellulose Nanocrystal Bionanocomposites. Part II: Properties Evaluation. Carbohydr. Polym. 2013, 96, 621–627. [Google Scholar] [CrossRef]
- Paul, M.A.; Delcourt, C.; Alexandre, M.; Degée, P.; Monteverde, F.; Dubois, P. Polylactide/Montmorillonite Nanocomposites: Study of the Hydrolytic Degradation. Polym. Degrad. Stab. 2005, 87, 535–542. [Google Scholar] [CrossRef]
- Hernández-Gómez, A.; Calderón, A.; Medina, C.; Sanchez-Torres, V.; Oviedo-Ocaña, E.R. Implementation of Strategies to Optimize the Co-Composting of Green Waste and Food Waste in Developing Countries. A Case Study: Colombia. Environ. Sci. Pollut. Res. Int. 2021, 28, 24321–24327. [Google Scholar] [CrossRef]
- He, Z.; Li, Q.; Zeng, X.; Tian, K.; Kong, X.; Tian, X. Impacts of Peat on Nitrogen Conservation and Fungal Community Composition Dynamics during Food Waste Composting. Appl. Biol. Chem. 2020, 63, 72. [Google Scholar] [CrossRef]
- Lee, M.H.; Han, S.J.; Lee, Y.K.; Ike, I.A.; Ok, Y.S.; Hur, J. Enhancing Copper Binding Property of Compost-Derived Humic Substances by Biochar Amendment: Further Insight from Two-Dimensional Correlation Spectroscopy. J. Hazard. Mater. 2020, 390, 121128. [Google Scholar] [CrossRef] [PubMed]
- Maragkaki, A.; Gamvroudis, C.; Lountou, C.; Stamatiadis, P.; Sampathianakis, I.; Papadaki, A.; Manios, T. Autonomous Home Composting Units for Urban Areas in Greece: The Case Study of the Municipality of Rhodes. Sustainability 2022, 14, 12362. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Lasaridi, K.; Pociovalisteanu, D.M.; Loizia, P. Monitoring and Evaluation of Prevention Activities Regarding Household Organics Waste from Insular Communities. J. Clean. Prod. 2018, 172, 3567–3577. [Google Scholar] [CrossRef]
- Tibu, C.; Annang, T.Y.; Solomon, N.; Yirenya-Tawiah, D. Effect of the Composting Process on Physicochemical Properties and Concentration of Heavy Metals in Market Waste with Additive Materials in the Ga West Municipality, Ghana. Int. J. Recycl. Org. Waste Agric. 2019, 8, 393–403. [Google Scholar] [CrossRef]
- Vaverková, M.; Adamcová, D.; Kotovicová, J.; Toman, F. Evaluation of Biodegradability of Plastics Bags in Composting Conditions. Ecol. Chem. Eng. S 2014, 21, 45–57. [Google Scholar] [CrossRef]
- Adamcová, D.; Zloch, J.; Brtnický, M.; Vaverková, M.D. Biodegradation/Disintegration of Selected Range of Polymers: Impact on the Compost Quality. J. Polym. Environ. 2019, 27, 892–899. [Google Scholar] [CrossRef]
Parameter | VW | FW | PR | CBc | CBB2B | Biowaste | BA |
---|---|---|---|---|---|---|---|
pH | 4.2 ± 0.4 | 4.2 ± 0.1 | 7.7 ± 0.1 | - | - | 5.9 ± 0.1 | 5.3 ± 0.1 |
Moisture (%) | 88.8 ± 0.1 | 65.9 ± 1.5 | 59.6 ± 1.0 | - | - | 64.9 ± 1.2 | 31.7 ± 1.1 |
VS (g/kg) (DM) | 904 ± 2.1 | 878.6 ± 11.7 | 890.3 ± 0.9 | 968.8 ± 5.5 | 877.0 ± 2.7 | 901.0 ± 1.2 | |
N (%) | 1.5 ± 0.0 | 2.5 ± 0.0 | 1.4 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 1.9 ± 0.0 | 0.5 ± 0.0 |
TOC (g/kg) | 433.1 ± 4.9 | 634.1 ± 24.1 | 566.4 ± 66.1 | 692 ± 92.0 | 440.0 ± 2.3 | 426.2 ± 5.2 | |
P (%) | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.3 ± 0.2 | - | - | 0.2 ± 0.0 | 0.1 ± 0.0 |
Parameter | PLLAB2B |
---|---|
Weight average molecular weight (Mw) | 149,452 |
Number average molecular weight (Mn) | 81,146 |
Polydispersity Đ | 1.84 |
Sample | Type | Description |
---|---|---|
1 | Cellulose (blank) | - |
2 | Starch | MaterBi EN 13432 norm-industrial compostable |
3 | CBB2B | ΡΒAΤ with MFI = 4–5 g/10 min, 12% polylactic acid (PLLAB2B) and various other active ingredients |
Reactor | Initial Weight (0 Day) | Final Weight (91 Days) | ||
---|---|---|---|---|
Gross | Net | Gross | Net | |
Blank_1 | 2160 | 793 | 2090 | 723 |
Blank_2 | 2152 | 793 | 2082 | 723 |
Blank_3 | 2152 | 796 | 2056 | 700 |
Microcrystalline cellulose_1 | 2260 | 896 | 2117 | 753 |
Microcrystalline cellulose_2 | 2240 | 877 | 2182 | 819 |
Microcrystalline cellulose_2 | 2256 | 886 | 2162 | 792 |
PLLAB2BP_1 | 2256 | 888 | 2186 | 818 |
PLLAB2BP_2 | 2259 | 888 | 2215 | 844 |
PLLAB2BP_3 | 2254 | 885 | 2184 | 815 |
Parameter | Blank1 | Blank2 | PLLAB2B1 | PLLAB2B2 |
---|---|---|---|---|
Moisture (%) | 49.2 ± 0.5 | 39.0 ± 0.3 | 35.5 ± 0.1 | 50.1 ± 0.1 |
Volatile solids (%) | 73.8 ± 2.1 | 72.5 ± 4.5 | 73.2 ± 2.6 | 72.5 ± 3.3 |
pH | 6.9 ± 0.1 | 8.0 ± 0.1 | 7.9 ± 0.1 | 7.2 ± 0.1 |
NH4-N (mg/Kg) | 2343 ± 6.1 | 2145 ± 3.6 | 3176 ± 2.7 | 2770 ± 9.3 |
NOx-N (mg/Kg) | 3692 ± 4.9 | 3951 ± 8.1 | 3090 ± 21.1 | 3387 ± 10.2 |
TN (%) | 2.9 ± 0.0 | 2.8 ± 0.0 | 2.9 ± 0.0 | 2.9 ± 0.0 |
C/N | 12.7 ± 3.1 | 13.2 ± 2.7 | 12.7 ± 4.2 | 12.5 ± 0.1 |
Sample Bin | Weight of Sample Residues (g) as Dry Weight | Disintegration (%) | Average Disintegration (%) | Disintegration Limit (%) | |||
---|---|---|---|---|---|---|---|
Initial | At the End | ||||||
2–10 mm | >10 mm | Total | |||||
PLLAB2B1 | 204.5 | 0.0 | 0.0 | 0.0 | 100.0 | 100.0 | ≥90.0 |
PLLAB2B2 | 202.7 | 0.0 | 0.0 | 0.0 | 100.0 |
Barley | Mung Bean | |||
---|---|---|---|---|
Compost (%) | Germination (%) | Grown (%) | Germination (%) | Grown (%) |
25 | 98.5 | 109.3 | 103.8 | 110.6 |
50 | 101.5 | 118.0 | 97.0 | 95.3 |
Substance (mg/kg) | PLLAB2B | Limits EN 13432:2000 (mg/kg) |
---|---|---|
Chrome | 0.2 ± 0.1 | 50 |
Cobalt | <0.1 | 38 (a) |
Nickel | <0.1 | 25 |
Copper | 1.9 ± 0.4 | 50 |
Zinc | 4.7 ± 0.9 | 150 |
Arsenic | <0.1 | 5 |
Selenium | <0.1 | 0.75 |
Molybdenum | <0.1 | 1 |
Cadmium | <0.1 | 0.5 |
Lead | 0.2 ± 0.1 | 50 |
Mercury | <0.05 | 0.5 |
Fluorine | <50 | 100 |
Turnings | Days | T (°C) | Moisture B 1 (%) | Moisture A 2 (%) | pH | EC (mS/cm) | TN (%) | TOC (mg/g) | Ash (%) | TP (%) |
---|---|---|---|---|---|---|---|---|---|---|
Beginning | 0 | 19.4 | - | - | 4.8 ± 0.0 | - | 561.0 | - | - | |
1st Turning | 5 | 48.5 | 61.0 ± 0.1 | - | 5.9 ± 0.0 | 3.6 ± 0.1 | 1.4 ± 1.1 | 545.0 | 12.3 | 0.3 ± 0.1 |
2nd Turning | 12 | 70.0 | 54.0 ± 1.0 | - | 7.9 ± 0.0 | 4.5 ± 0.0 | 2.2 ± 1.2 | 508.0 | 15.5 | 0.6 ± 0.0 |
3rd Turning | 19 | 67.6 | 60.0 ± 0.9 | 73.0 ± 0.9 | 8.9 ± 0.0 | 4.3 ± 0.0 | 2.1 ± 0.0 | 495.0 | 24.6 | 0.5 ± 0.1 |
4th Turning | 26 | 47.2 | 63.0 ± 0.0 | 74.0 ± 0.0 | 9.0 ± 0.0 | 4.1 ± 0.2 | 2.4 ± 5.2 | 450.0 | 29.6 | 0.9 ± 0.2 |
5th Turning | 39 | 45.3 | 68.0 ± 66.1 | 76.0 ± 66.1 | 8.6 ± 0.0 | 3.9 ± 0.1 | 2.5 ± 0.0 | 344.0 | 23.8 | 2.0 ± 0.0 |
6th Turning | 46 | 27.0 | 63.0 ± 0.2 | 72.0 ± 0.2 | 8.7 ± 0.0 | 3.3 ± 0.1 | 2.4 ± 0.0 | 440.0 | 10.1 | 1.1 ± 0.3 |
7th Turning | 53 | 27.0 | 63.0 ± 0.2 | 60.0 ± 0.2 | 8.6 ± 0.0 | 3.2 ± 0.0 | 2.5 ± 0.0 | 447.0 | 6.4 | 0.9 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maragkaki, A.; Malliaros, N.G.; Sampathianakis, I.; Lolos, T.; Tsompanidis, C.; Manios, T. Evaluation of Biodegradability of Polylactic Acid and Compostable Bags from Food Waste under Industrial Composting. Sustainability 2023, 15, 15963. https://doi.org/10.3390/su152215963
Maragkaki A, Malliaros NG, Sampathianakis I, Lolos T, Tsompanidis C, Manios T. Evaluation of Biodegradability of Polylactic Acid and Compostable Bags from Food Waste under Industrial Composting. Sustainability. 2023; 15(22):15963. https://doi.org/10.3390/su152215963
Chicago/Turabian StyleMaragkaki, Angeliki, Nikitas G. Malliaros, Ioannis Sampathianakis, Theofanis Lolos, Christos Tsompanidis, and Thrassyvoulos Manios. 2023. "Evaluation of Biodegradability of Polylactic Acid and Compostable Bags from Food Waste under Industrial Composting" Sustainability 15, no. 22: 15963. https://doi.org/10.3390/su152215963
APA StyleMaragkaki, A., Malliaros, N. G., Sampathianakis, I., Lolos, T., Tsompanidis, C., & Manios, T. (2023). Evaluation of Biodegradability of Polylactic Acid and Compostable Bags from Food Waste under Industrial Composting. Sustainability, 15(22), 15963. https://doi.org/10.3390/su152215963