Spatiotemporal Dynamics of the Suitability for Ecological Livability of Green Spaces in the Central Yunnan Urban Agglomeration
Abstract
:1. Introduction
2. Analysis of the Methodological Framework
3. Materials and Methods
3.1. Study Area
3.2. Construction of the Evaluation System and Data Sources
3.2.1. Construction of the Evaluation System
3.2.2. Data Sources
3.3. Methods
3.3.1. Entropy Method
3.3.2. Moran’s I
4. Results
4.1. Characteristics of the Spatial and Temporal Evolution of the Suitability for Ecological Livability of Green Spaces
4.1.1. Characteristics of Temporal Evolution
4.1.2. Characteristics of Spatial Evolution
4.2. Analysis of Variability under a Single Target Layer of the Suitability for Ecological Livability of Green Spaces
4.2.1. Characteristics of Temporal Evolution
4.2.2. Characteristics of Spatial Evolution
4.3. Spatial Correlation Analysis of Suitability for Ecological Livability of Green Spaces
5. Discussion and Recommendations
5.1. Discussion
5.2. Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, Y.; Wang, J.; Li, J.; Liu, M.; Wei, X.; Zhi, L. Spatial and Temporal Evolution and Driving Analysis of Green Space Ecosystem Service Value of Urban Agglomeration in Central Yunnan. Res. Soiland Water Conserv. 2023, 30, 352–360. [Google Scholar]
- Geng, Y.; Fujita, T.; Bleischwitz, R.; Chiu, A.; Sarkis, J. Accelerating the transition to equitable, sustainable, and livable cities: Toward post-fossil carbon societies. J. Clean. Prod. 2019, 239, 118020. [Google Scholar] [CrossRef]
- Mike, D. From global intercity competition to cooperation for livable cities and economic resilience in Pacific Asia. Environ. Urban. 2002, 14, 53–68. [Google Scholar]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Li, Y.Y.; Ren, B.T.; Chen, Y.S.; Huang, L.C.; Sun, C.G. Multiscale spatiotemporal dynamics analysis of urban green space: Implications for green space planning in the rapid urbanizing Hefei City, China. Front. Ecol. Evol. 2022, 10, 998111. [Google Scholar] [CrossRef]
- Reyes-Riveros, R.; Altamirano, A.; Barrera, F.D.L.; Rozas-Vasquez, D.; Vieli, L.; Meli, P. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar] [CrossRef]
- Lu, D.; Yu, G.; Zhao, P.; Wen, Z. Eco-livable Assessment of Central Plains Urban Group. Ecol. Econ. 2012, 1, 351–354+362. [Google Scholar]
- Zhou, B.B.; Aggarwal, R.; Wu, J.; Lv, L. Urbanization-associated farmland loss: A macro-micro comparative study in China. Land Use Policy 2021, 101, 105228. [Google Scholar] [CrossRef]
- Xi, L. Providing Decision-making Advice for the Construction of Ecological and Livable Cities in Jilin City by Taking Advantage of “Internet Plus” Information Resources. Agric. Jilin 2019, 4, 110–111. [Google Scholar]
- Xie, H.; Feng, Z.; Fan, Z.; Yan, P.; Li, R. Research on Tianjin Eco-Livable City Indicator System and Countermeasures for Realization. Tianjin Econ. 2011, 2, 12–15. [Google Scholar]
- Yang, W. Study on Assessment Index of Livable Eco-City. Res. Environ. Sci. 2010, 23, 237–241. [Google Scholar]
- Fu, C.; Zhang, H. Evaluation of Urban Ecological Livability from a Synergistic Perspective: A Case Study of Beijing City, China. Sustainability 2023, 15, 10476. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Y.; Tang, X.; Huang, H.; Wang, G. Assessing spatial–temporal evolution and key factors of urban livability in arid zone: The case study of the Loess Plateau, China. Ecol. Indic. 2022, 140, 108995. [Google Scholar] [CrossRef]
- Li, X.M.; Bai, Z.Z.; Tian, S.Z.; Guo, Y.J.; Liu, H. Evaluation of the Livability of Urban Human Settlements: A Case Study of Liaoning Province. J. Hum. Settl. West China 2019, 34, 86–93. [Google Scholar]
- Fan, Z.; Wang, Y.; Feng, Y. Ecological livability assessment of urban agglomerations in Guangdong-Hong Kong-Macao greater bay area. Int. J. Environ. Res. Public Health 2021, 18, 13349. [Google Scholar] [CrossRef]
- Barrera-Roldán, A.; Saldıvar-Valdés, A. Proposal and application of a Sustainable Development Index. Ecol. Indic. 2002, 2, 251–256. [Google Scholar] [CrossRef]
- Ghasemi, K.; Hamzenejad, M.; Meshkini, A. The spatial analysis of the livability of 22 districts of Tehran Metropolis using multi-criteria decision making approaches. Sustain. Cities Soc. 2018, 38, 382–404. [Google Scholar] [CrossRef]
- Zanella, A.; Camanho, A.S.; Dias, T.G. The assessment of cities’ livability integrating human wellbeing and environmental impact. Ann. Oper. Res. 2015, 226, 695–726. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, C.; Lu, M.Q.; Lu, Y.Q. Assessing the suitability of regional human settlements environment from a different preferences perspective: A case study of Zhejiang Province, China. Habitat Int. 2017, 70, 1–12. [Google Scholar] [CrossRef]
- Mouratidis, K. Commute satisfaction, neighborhood satisfaction, and housing satisfaction as predictors of subjective well-being and indicators of urban livability. Travel Behav. Soc. 2020, 21, 265–278. [Google Scholar] [CrossRef]
- Onnom, W.; Tripathi, N.; Nitivattananon, V.; Ninsawat, S. Development of a liveable city index (LCI) using multi criteria geospatial modelling for medium class cities in developing countries. Sustainability 2018, 10, 520. [Google Scholar] [CrossRef]
- Kara, Y. Measuring the sustainability of cities in Turkey with the analytic hierarchy process. Open J. Soc. Sci. 2019, 7, 322. [Google Scholar] [CrossRef]
- Fu, B.; Yu, D.; Zhang, Y. The livable urban landscape: GIS and remote sensing extracted land use assessment for urban livability in Changchun Proper, China. Land Use Policy 2019, 87, 104048. [Google Scholar] [CrossRef]
- Kose, E.; Vural, D.; Canbulut, G. The most livable city selection in Turkey with the grey relational analysis. Grey Syst Theory Appl. 2020, 10, 529–544. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Wang, H.Y.; Du, X.; Huang, H.P. Community scale livability evaluation integrating remote sensing, surface observation and geospatial big data. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 173–186. [Google Scholar] [CrossRef]
- Tan, Z.Y. Livability Evaluation of Wuhan Urban Area based on multi-source data. Territ. Nat. Resour. Study 2017, 2, 5–10. [Google Scholar]
- Liang, X.; Liu, Y.; Qiu, T. Livability assessment of urban communities considering the preferences of different age groups. Complexity 2020, 2020, 8269274. [Google Scholar] [CrossRef]
- Leach, J.M.; Lee, S.E.; Boyko, C.T.; Coulton, C.J.; Cooper, R.; Smith, N.; Joffe, H.; Büchs, M.; Hale, J.D.; Sadler, J.P.; et al. Dataset of the livability performance of the city of Birmingham, UK, as measured by its citizen wellbeing, resource security, resource efficiency and carbon emissions. Data Brief 2017, 15, 691–695. [Google Scholar] [CrossRef]
- Paul, A. Developing a methodology for assessing livability potential: An evidence from a metropolitan urban agglomeration (MUA) in Kolkata, India. Habitat Int. 2020, 105, 102263. [Google Scholar] [CrossRef]
- Fang, G.; Chen, X.-M. Study on the Evaluation of Ecological Livable City in Anhui Based on Intuitionistic Fuzzy Theory. J. Chongqing Technol. Bus. Univ. Nat. Sci. Ed. 2018, 35, 30–36. [Google Scholar]
- Wang, Y.; Zhu, Y.; Yu, M. Evaluation and determinants of satisfaction with rural livability in China’s less-developed eastern areas: A case study of Xianju County in Zhejiang Province. Ecol. Indic. 2019, 104, 711–722. [Google Scholar] [CrossRef]
- Liu, K.W.; Li, Q.-C.; Wang, L.; Xiao, C. Coupling and Coordination Study of Livable City and Innovative City Development in the Yangtze River Delta. Geogr. Geo-Inf. Sci. 2019, 35, 120–126+134. [Google Scholar]
- Zhang, H.; Tang, S.; Geng, Z. Synergy Development Level, Dynamic Trajectory and Convergence between Work Adaptability and Ecological Livability of Yangtze River Delta Urban Agglomeration. J. Quant. Tech. Econ. 2019, 36, 3–23. [Google Scholar]
- Wang, M.; Yang, X.; Huang, Y.; Wu, S.; Chen, J. Livability Evaluation of Land Ecological Space in Beijing, China Based on Geographical Conditions Census. Sens. Mater. 2023, 35, 669–677. [Google Scholar] [CrossRef]
- Zhang, M.F.; Zhu, P.J.; Cui, S.Q.; Zhang, H.H.; Tang-Xin, L.U. Evaluation of the Livability of Urban Space In Changsha from the Perspective of “Production-Living-Ecology”. J. Nat. Sci. Hunan Norm. Univ. 2019, 42, 9–17. [Google Scholar]
- Xi, J. Spatial Distribution and Ecological Livability Evaluation of Typical Open Space in the Central Urban Area of Guangzhou. Master’s Thesis, Guangzhou University, Guangzhou, China, 2022. [Google Scholar]
- Chen, Y. A Summary of the Processing Methods for Missing Data in Time Series. Inf. Comput. 2022, 32, 19–22. [Google Scholar]
- Xiong, Z.; Guo, H.; Wu, Y. Review of Missing Data Processing Methods. Comput. Eng. Appl. 2021, 57, 27–38. [Google Scholar]
- Tang, J.; Sui, L. Geodetector-Based Livability Analysis of Potential Resettlement Locations for Villages in Coal Mining Areas on the Loess Plateau of China. Sustainability 2022, 14, 8365. [Google Scholar] [CrossRef]
- Yin, C. Environmental Benefit Evaluation of Urban Infrastructure Based on Entropy Method: Taking Beijing, Tianjin, Shanghai, and Chongqing as Examples. City 2022, 12, 18–28. [Google Scholar]
- Shi, C.C.; Guo, N.L.; Zeng, L.L.; Wu, F. How climate change is going to affect urban livability in China. Clim. Serv. 2022, 26, 100284. [Google Scholar] [CrossRef]
- Meng, L.; Hao, L.; Lingling, S.; Qihong, S.; Chen, C. Construction of Comprehensive Evaluation System of Urban Ecological Economy Based on Entropy Method and Evaluation of Jiangsu Province. Ecol. Econ. 2022, 38, 68–71+87. [Google Scholar]
- Zhang, T.; Lin, G. Identification of local clusters for count data: A model-based Moran’s I test. J. Appl. Stat. 2008, 35, 293–306. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.G. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Sci. Total Environ. 2008, 407, 358–378. [Google Scholar] [CrossRef] [PubMed]
- Ishizawa, H.; Stevens, G. Non-English language neighborhoods in Chicago, Illinois: 2000. Soc. Sci. Res. 2007, 36, 1042–1064. [Google Scholar] [CrossRef]
- Fu, W.J.; Zhao, K.L.; Zhang, C.S.; Tunney, H. Using Moran’s I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots. J. Plant Nutr. Soil Sci. 2011, 174, 785–798. [Google Scholar] [CrossRef]
- Li, H.; Duan, P.; Guo, H. Evaluation of Regional Ecological Livable Degree and Its Influencing Factors: A Case Study of Xi’an. Ecol. Econ. 2019, 35, 80–85. [Google Scholar]
- Cui, H.; Fang, H.Z.; Tian, Y.Y.; Zheng, W.L.; Li, W.Z.; Tian, W.G. Evaluation of livability of Wuhan under ecological construction and analysis of its spatial pattern. Sustainability 2022, 14, 11283. [Google Scholar] [CrossRef]
- Drago, C. The analysis and the measurement of poverty: An interval-based composite indicator approach. Economies 2021, 9, 145. [Google Scholar] [CrossRef]
- Gatto, A.; Drago, C. Measuring and modeling energy resilience. Ecol. Econ. 2020, 172, 106527. [Google Scholar] [CrossRef]
- Saisana, M.; Saltelli, A.; Tarantola, S. Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. J. R. Stat. Soc. Ser. A Stat. Soc. 2005, 168, 307–323. [Google Scholar] [CrossRef]
- Greco, S.; Ishizaka, A.; Tasiou, M. On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Soc. Indic. Res. 2019, 141, 61–94. [Google Scholar] [CrossRef]
- Joint Research Centre-European Commission. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008. [Google Scholar]
Target Layer | Standardized Layer | Index Layer | Index Weights |
---|---|---|---|
Economic development | Economic strength | GDP | 0.108 |
Per capita financial income | 0.046 | ||
Per capita disposable income of rural residents | 0.045 | ||
Per capita disposable income of urban residents | 0.028 | ||
General public budget revenue | 0.084 | ||
Economic structure | Proportion of tertiary industry | 0.015 | |
Tourism revenue as a proportion of GDP | 0.103 | ||
Social investment in fixed assets as a proportion of GDP | 0.060 | ||
Social life | Social security | Urban registered unemployment rate | 0.002 |
Population structure | Urbanization rate | 0.019 | |
Rate of natural population growth | 0.025 | ||
Ecological environment | Greening level | Green coverage in built-up areas | 0.005 |
Green-space ratio in built-up areas | 0.009 | ||
Per capita public green area | 0.055 | ||
Forest coverage | 0.025 | ||
Climate environment | Annual rainfall | 0.032 | |
Annual average temperature | 0.024 | ||
Number of annual sunshine | 0.008 | ||
Environmental pollution | Air-quality excellence rate | 0.003 | |
Sewage treatment rate | 0.020 | ||
Rate of harmless trash disposal | 0.005 | ||
Green-space land use | Farmland area as a proportion of land-use area | 0.034 | |
Water bodies as a proportion of land-use area | 0.184 | ||
Grassland as a proportion of land-use area | 0.034 | ||
Forest as a proportion of land-use area | 0.028 |
District/County | Score | Change in Score | ||||
---|---|---|---|---|---|---|
2010 | 2015 | 2020 | 2010–2015 | 2015–2020 | 2010–2020 | |
Wuhua | 0.258 | 0.366 | 0.412 | 0.108 | 0.046 | 0.154 |
Panlong | 0.253 | 0.342 | 0.423 | 0.089 | 0.081 | 0.170 |
Guandu | 0.312 | 0.415 | 0.459 | 0.103 | 0.044 | 0.147 |
Xishan | 0.418 | 0.495 | 0.545 | 0.077 | 0.050 | 0.127 |
Chenggong | 0.360 | 0.399 | 0.420 | 0.039 | 0.021 | 0.060 |
Jinning | 0.270 | 0.325 | 0.342 | 0.055 | 0.017 | 0.072 |
Dongchuan | 0.186 | 0.199 | 0.225 | 0.013 | 0.026 | 0.039 |
Anning | 0.264 | 0.297 | 0.390 | 0.033 | 0.093 | 0.126 |
Songming | 0.196 | 0.220 | 0.241 | 0.024 | 0.021 | 0.045 |
Fumin | 0.191 | 0.221 | 0.250 | 0.030 | 0.029 | 0.059 |
Shilin | 0.265 | 0.251 | 0.267 | −0.014 | 0.016 | 0.002 |
Yiliang | 0.187 | 0.229 | 0.253 | 0.042 | 0.024 | 0.066 |
Xundian | 0.182 | 0.198 | 0.187 | 0.016 | −0.011 | 0.005 |
Luquan | 0.172 | 0.193 | 0.208 | 0.021 | 0.015 | 0.036 |
Qilin | 0.198 | 0.272 | 0.316 | 0.074 | 0.044 | 0.118 |
Zhanyi | 0.184 | 0.205 | 0.233 | 0.021 | 0.028 | 0.049 |
Malong | 0.237 | 0.208 | 0.241 | −0.029 | 0.033 | 0.004 |
Xuanwei | 0.182 | 0.211 | 0.252 | 0.029 | 0.041 | 0.070 |
Huize | 0.182 | 0.208 | 0.247 | 0.026 | 0.039 | 0.065 |
Luliang | 0.193 | 0.198 | 0.258 | 0.005 | 0.060 | 0.065 |
Fuyuan | 0.168 | 0.190 | 0.226 | 0.022 | 0.036 | 0.058 |
Luoping | 0.206 | 0.234 | 0.253 | 0.028 | 0.019 | 0.047 |
Shizong | 0.188 | 0.196 | 0.223 | 0.008 | 0.027 | 0.035 |
Hongta | 0.231 | 0.275 | 0.308 | 0.044 | 0.033 | 0.077 |
Jiangchuan | 0.350 | 0.340 | 0.355 | −0.010 | 0.015 | 0.005 |
Chengjiang | 0.499 | 0.397 | 0.476 | −0.102 | 0.079 | −0.023 |
Huaning | 0.214 | 0.212 | 0.224 | −0.002 | 0.012 | 0.010 |
Tonghai | 0.242 | 0.248 | 0.303 | 0.006 | 0.055 | 0.061 |
Yimen | 0.193 | 0.238 | 0.253 | 0.045 | 0.015 | 0.060 |
Eshan | 0.188 | 0.201 | 0.227 | 0.013 | 0.026 | 0.039 |
Xinping | 0.192 | 0.241 | 0.264 | 0.049 | 0.023 | 0.072 |
Yuanjiang | 0.185 | 0.210 | 0.229 | 0.025 | 0.019 | 0.044 |
Chuxiong | 0.225 | 0.264 | 0.303 | 0.039 | 0.039 | 0.078 |
Shuangbai | 0.192 | 0.211 | 0.207 | 0.019 | −0.004 | 0.015 |
LuFeng | 0.212 | 0.223 | 0.268 | 0.011 | 0.045 | 0.056 |
Wuding | 0.258 | 0.212 | 0.238 | −0.046 | 0.026 | −0.020 |
Yuanmou | 0.299 | 0.226 | 0.274 | −0.073 | 0.048 | −0.025 |
Yongren | 0.241 | 0.204 | 0.234 | −0.037 | 0.030 | −0.007 |
Dayao | 0.201 | 0.202 | 0.255 | 0.001 | 0.053 | 0.054 |
Yao’an | 0.211 | 0.184 | 0.221 | −0.027 | 0.037 | 0.010 |
Mouding | 0.240 | 0.222 | 0.225 | −0.018 | 0.003 | −0.015 |
Nanhua | 0.207 | 0.190 | 0.232 | −0.017 | 0.042 | 0.025 |
Mengzi | 0.227 | 0.239 | 0.270 | 0.012 | 0.031 | 0.043 |
Gejiu | 0.202 | 0.228 | 0.253 | 0.026 | 0.025 | 0.051 |
Kaiyuan | 0.183 | 0.247 | 0.288 | 0.064 | 0.041 | 0.105 |
Mile | 0.174 | 0.241 | 0.300 | 0.067 | 0.059 | 0.126 |
Luxi | 0.220 | 0.234 | 0.266 | 0.014 | 0.032 | 0.046 |
Jianshui | 0.252 | 0.233 | 0.270 | −0.019 | 0.037 | 0.018 |
Shiping | 0.169 | 0.227 | 0.266 | 0.058 | 0.039 | 0.097 |
Year | Global Moran’s I | Z-Value | p-Value |
---|---|---|---|
2010 | 0.350179 | 4.413019 | 0.000010 |
2015 | 0.534096 | 6.393320 | 0.000000 |
2020 | 0.475889 | 5.675392 | 0.000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Wang, Y.; Wang, Y.; Xie, Y.; Dong, J.; Liu, M. Spatiotemporal Dynamics of the Suitability for Ecological Livability of Green Spaces in the Central Yunnan Urban Agglomeration. Sustainability 2023, 15, 15964. https://doi.org/10.3390/su152215964
Pan Y, Wang Y, Wang Y, Xie Y, Dong J, Liu M. Spatiotemporal Dynamics of the Suitability for Ecological Livability of Green Spaces in the Central Yunnan Urban Agglomeration. Sustainability. 2023; 15(22):15964. https://doi.org/10.3390/su152215964
Chicago/Turabian StylePan, Yue, Ying Wang, Yingxue Wang, Yanling Xie, Junmei Dong, and Min Liu. 2023. "Spatiotemporal Dynamics of the Suitability for Ecological Livability of Green Spaces in the Central Yunnan Urban Agglomeration" Sustainability 15, no. 22: 15964. https://doi.org/10.3390/su152215964
APA StylePan, Y., Wang, Y., Wang, Y., Xie, Y., Dong, J., & Liu, M. (2023). Spatiotemporal Dynamics of the Suitability for Ecological Livability of Green Spaces in the Central Yunnan Urban Agglomeration. Sustainability, 15(22), 15964. https://doi.org/10.3390/su152215964