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Abstract: Foliar feeding has been confirmed to be the fastest way of dealing with nutrient deficiencies
and increasing the yield and quality of crop products. The synthesis of chlorophyll and photosynthesis
are directly related to magnesium (Mg), which operates in the improvement of plant tissues and en-
hances the appearance of plants. This study aimed to analyze the correlation between two biophysical
variables, including the leaf area index (LAI), the fraction of absorbed photosynthetically active radia-
tion (FAPAR), and seven spectral vegetation indices. The spectral indices under investigation were
Atmospherically Resistant Vegetation Index (ARVI), Normalized Difference Vegetation Index (NDVI),
Soil Adjusted Vegetation Index (SAVI), Disease–Water Stress Index (DSWI), Modified Chlorophyll
Absorption Ratio Index (MCARI), the Red-Edge Inflection Point Index (REIP), and Pigment-Specific
Simple Ratio (PSSRa). These indices were derived from Sentinel-2 data to investigate the impact of
applying foliar applications of Mg from various sources in the production of green-onion crops. The
biophysical variables were derived using field measurements and Sentinel-2 data under the effects of
different sources of Mg foliar sprays. The correlation coefficient between field-measured LAI and
remotely sensed, calculated LAI was 0.72 in two seasons. Concerning FAPAR, it was found that the
correlation between remotely sensed calculated FAPAR and field-measured FAPAR was 0.66 in the
first season and 0.89 in the second season. The magnesium oxide nanoparticle (nMgO) treatments
resulted in significantly higher yields than the different treatments of foliar applications. The LAI
and FAPAR variables showed a positive correlation with yield in the first season (October) and in
the second season (March). Yield in treatment by nMgO varied significantly from that in the other
treatments, ranging from 69-ton ha−1 in the first season to 74.9-ton ha−1 in the second season. Linear
regression between LAI and PSSRa showed the highest correlation coefficient (0.90) compared with
other vegetation indices in the first season. In the same season, the highest correlation coefficient
(0.94) was found between FAPAR and PSSRa. In the second season, the highest accuracy to the
estimate LAI was found in the correlation between MCARI and PSSRa, with correlation coefficients
of 0.9 and 0.91, respectively. In the second season, the highest accuracy to the estimate FAPAR was
found with the correlation between PSSRa, ARVI, and NDVI, with correlation coefficients 0.97 and
0.96, respectively. The highest correlation coefficients between vegetation indices and yield were
found with ARVI and NDVI in the first season, and only with NDVI in the second season.

Keywords: biophysical variables; LAI; FAPAR; crop monitoring; Sentinel-2 data; magnesium oxide
nanoparticles
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1. Introduction

One of the most important crops used for local consumption in Egypt is the green
onion (Allium cepa L.), and it is an exportation commodity too [1]. The size of the green
onion and its bulb diameter are the most common maturity indices [2]. In the Middle
East, the green onion is used for green leaves. It constitutes a major part of each daily
diet as it is included in almost all recipes [3]. Green leaves of onions are an important
exportable commodity in Egypt, which among onion exporting countries ranks sixth after
Holland [1]. Egypt produced 2,208,080 tons of green onions in 2012, which ranked 3rd
among onion-exporting countries [1]. Therefore, there is a huge concern for improving the
yield, quality, and time of maturation of the green onion [4].

Magnesium (Mg) is one of the seventeen (17) nutrients for growth quality needed for
proper development. These nutrients must be available in sufficient quantities, from the
appropriate sources, and in the correct ratios for optimal growth and crop quality [5]. Mg
causes visual-appearance improvements and increases in deposited mass because of its
direct relation to the synthesis of chlorophyll and photosynthesis [6].

Foliar applications, a method of feeding plants by spritzing liquid fertilizers directly
onto their leaves, are more efficient in terms of reaching maximum yield and decreasing
loss [7]. Magnesium, as a macro-element, plays a fundamental role in various physiological
functions of plants [8]. It is an essential element for crops and affects carbohydrate parti-
tioning and photosynthesis in crops [9]. Its fertilization significantly affects the crop yield
of various crop species [10]. Recently, the utilization of nano-fertilizers has gained more
attention than traditional fertilizers due to their lower environmental impact and their
offering of sustainable agricultural development using conservation tactics with less waste
of agricultural inputs, in addition to increasing low levels of minerals in particular Mg [11].
Several studies stated that foliar or land application of Mg nano-fertilizer significantly
increased the production of the black-eyed pea [12], green beans [13], and mustard [14].

Remote sensing is the process of gathering data from the surface, utilizing the waves
that the earth’s surface reflects and emits. Obtaining this information and data requires less
time and effort. The main data that can be gathered using remote sensing are thought to
be soil, geology, vegetation cover, water, nutrients, urban sprawl, and terrain [15]. It gives
planners the ability to map and characterize an area at various scales. It is the fastest and
most-efficient method for maximizing the economic potential of soil and crops [16]. The
biophysical characterization of plants is currently the main focus of remote sensing data,
which formerly concentrated on crop types and land cover [17]. Based on the biophysical
characteristics of the crop and the soil, remote sensing technology has the capacity to
estimate crop productivity [18]. Estimating crop yield can be conducted using data from
remote sensing [19]. This method lowers labor costs while enhancing precision farming [16].
When employing bio-physical indicators to evaluate the health of plants, remote sensing
is crucial. Remote sensing can be used to identify and assess a variety of physiological
changes that crops go through in response to stresses [18,20–23]. Additionally, to assess the
health of plants in the field, the NDVI (Normalized Difference Vegetation Index) is also
utilized [24–27]. A unique technique for forecasting agricultural productivity is to find a
correlation between vegetation indices and yield using remote sensing [28].

The leaf area index (LAI) is known as the proportion of total green leaf area to ground
surface area [29]. It is a crucial variable in activities including photosynthesis, respiration,
and interception and is recognized by the global community of climate change researchers
(GCOS) as an essential climatic variable [30–32].

Direct and indirect methods can be used to measure LAI at the ground level, as
in [32–34]. Direct approaches typically involve destructive sampling of leaves done by
hand, either by plucking vegetative leaves and collecting leaf litter, or by harvesting
leaves manually [35]. As a result of their time- and labor-intensive nature and frequent
plant destruction, direct approaches have limited applications and are unfeasible for high-
temporal and high-spatial frequency measurements [36,37].
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Existing methods to calculate LAI may be categorized into two main groups: (a) cep-
tometer instruments that use radiation transmission and gap fraction theory to discuss
vegetation [38], and (b) Sentinel-2 data that proposed an algorithm to estimate LAI [38]. The
fraction of absorbed photosynthetically active radiation (FAPAR) is one of the biophysical
variables which are important to calculate, and can provide information about the growth
and vigor of the cropping [39]. Vegetation indices, on the other hand, are some of the
most often employed indices for the remote sensing of vegetation features. Normalized
Difference Vegetation Index (NDVI), which was first proposed by [40], is perhaps the most
widely used index. It has been used in several studies that have examined the growth of
vegetation, chlorophyll, biomass, and LAI. A wide range of other indices that intended
to maximize sensitivity towards LAI were presented, in addition to NDVI. Bands in the
red-edge area are used in the design of many of these indicators [41]. The largest red chloro-
phyll absorption occurs in the spectral area between 698 nm and 750 nm wavelengths, and
the maximum NIR reflation is brought on by the abundance of the leaf’s cell structure, or
the LAI [42].

The current study observed the correlation between estimated biophysical parame-
ters: leaf area index (LAI) and fraction of absorbed photosynthetically active radiation
(FAPAR), using Sentinel-2 satellite imagery. The same measured biophysical parameters
were observed using ground-observation devices. This was carried out in order to test
the potentiality of satellite imagery to estimate different biophysical parameters under
Egyptian conditions. In addition, the study proposed different empirical mathematical
models to estimate crop yield under different treatments of magnesium fertilization, under
specific conditions for the study area and green onion.

2. Materials and Methods
2.1. Study Area

In Farm Abu Sultan, Ismailia Governorate, Egypt, the study area is located at 30◦24′

43.95′′ N, 32◦15′48.08′′ E (Figure 1). It covers 6.27 hectares. The experiment was conducted
throughout the summer season (2021) and winter season (2021/2022), when the tempera-
ture normally ranges from 35 ◦C to 42 ◦C in the summer and 15 ◦C to 20 ◦C in winter. The
study used four magnesium sources to examine how they affect the nutritional status, plant
growth, and quality of green onion (Allium cepa L.) plants grown under a pivot system.
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2.2. Experimental Design

Four treatments were composed of foliar nutrition with different magnesium sources,
and three replicates were established for each treatment (Figure 2). The treatments were
magnesium sulphate and phenolic acid (magnesium chelate), magnesium nitrate (Mg-L),
magnesium and phosphate (KAFOM Mg), and magnesium oxide nanoparticles (nMgO).
The experiment was arranged in complete randomized design.
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Figure 2. Study area map, showing the experimental site location and treatments.

2.3. Field Data

Field data were collected according to the fertilization time, acquisition dates of
the Sentinel-2 data, and condition of green-onion plants. Five campaigns were made,
corresponding to the dates of Sentinel-2 data acquisition (Table 1). Finally, the green onions
were harvested, and the output was calculated. The biophysical variables were calculated
using the SNAP software V9, and all of the results were then correlated with field data.

Table 1. Dates of sampling and Sentinel-2 data in green onion in two seasons (Abu Sultan, Ismailia
Governorate, Egypt 2021/2022).

Sampling
Date Field

Phonological Stage
Season 1 Season 2

1 12 July 2021 14 November 2021 Sowing
2 22 July 2021 24 December 2021 Vegetative growth
3 21 August 2021 29 December 2021 Vegetative growth
4 30 September 2021 27 February 2022 Green onion at small bulb
5 10 October 2021 9 March 2022 Harvest

2.4. Field Measurements of Biophysical Variables

The hand-held ACCUPAR LP-80 ceptometer measures the linear PAR and includes
a probe with 80 separate sensors along an 80 cm long rod and a read-out/data-logger
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unit. A supplemental external PAR sensor that may be connected to the system that is
intended to detect radiation from above the canopy simultaneously is available. The optical
sensors measure PAR in the 400–700 nm waveband, and the read-out unit shows PAR
in µmol·m−2 and LAI in m2 m−2, respectively. The instrument’s logger mode allowed
for unsupervised measurement, with readings being detected once every minute, as it
is the lowest time delay between two consecutive measurements. Using a streamlined
version of Equation (1) from the Norman–Jarvis radiation transmission and scattering
model [43] and the above and below canopy PAR values, the integrated microprocessor
of the LP-80 calculates the leaf area index (LAI). Using a simplified Equation (2), we may
define FAPAR as the fraction of absorbed photochemically active radiation. In order to
mimic photosynthesis and primary production, it is a crucial variable required in many
ecosystems and agricultural functioning models [44].

LAI =


1− 0.5√

x2 + tan Θ2

x + 1.744(x + 1.182)−0.733

 fb − 1

χ in PARb
PARa

0.9(1− 0.47 fb)
(1)

where Θ is the zenith angle of the sun; χ is the parameter distribution of leaves, which
refers to the distribution of leaf angles in a canopy; fb is the beam radiation fraction, which
is the proportion of direct solar radiation to all other ambient radiation; and PARb and
PARa are the values of photosynthetically active radiation measured above and below the
canopy, respectively.

FAPAR = 1− Rc − T(1− Rs) (2)

where Rc is the canopy reflectance, T is the transmittance of canopy, and Rs is the reflectance
of soil background in the spectral domain of PAR.

A multitemporal analysis was conducted to estimate the link between the biophysical
variables and crop yield. The overall crop yield for each treatment was associated with the
monthly measurements of the samples, and the biophysical variables LAI and FAPAR were
computed both in the field and using Sentinel-2 data.

2.5. Biophysical Variables Data of Satellite

Between July 2021 and March 2022, 10 Sentinel-2 (Table 2) images were downloaded.
Using the Sen2cor plugin in SNAP [45], the images were corrected for atmospheric correc-
tion. The spatial resolution of 10 m was used during the atmospheric correction in order
to maintain the red-edge region in the images. The images after atmospheric correction
consisted of 12 bands shown in (Table 3).

Table 2. Sentinel-2 satellite date acquisition from July 2021 to March 2022 used to observe green onion
under different treatments in the study area.

Field-Work Date Year Sentinel-2 Image Code

7

2021

S2A_MSIL2A_20210712T082611_N0301_R021_T36RVU_20210712T105153.
S2A_MSIL2A_20210722T082611_N0301_R021_T36RVU_20210722T115007.

8 S2A_MSIL2A_20210821T082601_N0301_R021_T36RVU_20210821T115536.
9 S2A_MSIL2A_20210930T082741_N0301_R021_T36RVU_20210930T114832.
10 S2A_MSIL2A_20211010T082851_N0301_R021_T36RVU_20211010T103901.

11 S2B_MSIL2A_20211114T083119_N0301_R021_T36RVU_20211114T104809.
S2B_MSIL2A_20211124T083159_N0301_R021_T36RVU_20211124T105643.

12 S2A_MSIL2A_20211229T083351_N0301_R021_T36RVU_20211229T120109.

2
2022

S2A_MSIL2A_20220227T082911_N0400_R021_T36RVU_20220227T095921.
3 S2A_MSIL2A_20220309T082801_N0400_R021_T36RVU_20220309T120842.
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Table 3. Total spectral bands for the Sentinel-2 sensors.

Sentinel-2 Bands

Sentinel-2A Sentinel-2B
Spatial

Resolution
(m)

Central
Wavelength

(nm)

Band
Width
(nm)

Central
Wavelength

(nm)

Band
Width
(nm)

Band 1 (Coastal aerosol) 442.7 21 442.2 21 60
Band 2 (Blue) 492.4 66 492.1 66 10

Band 3 (Green) 559.8 36 559.0 36 10
Band 4 (Red) 664.6 31 664.9 31 10

Band 5 (Vegetation red edge) 704.1 15 703.8 16 20
Band 6 (Vegetation red edge) 740.5 15 739.1 15 20
Band 7 (Vegetation red edge) 782.8 20 779.7 20 20

Band 8 (NIR) 832.8 106 832.9 106 10
Band 8A (Narrow NIR) 864.7 21 864.0 22 20
Band 9 (Water vapor) 945.1 20 943.2 21 60

Band 10 (SWIR–Cirrus) 1373.5 31 1376.9 30 60
Band 11 (SWIR) 1613.7 91 1610.4 94 20
Band 12 (SWIR) 2202.4 175 2185.7 185 20

Based on Sentinel-2 observations, the biophysical variables and vegetation indices
were estimated [46]. Sentinel-2 images were obtained on cloud-free days that were close
to the dates when the data were gathered across the whole phonological cycle (Table 1).
The photos were retrieved from a level 2 (A and B) ESA server. Images of level 2A and 2B
were obtained and atmospherically adjusted during the Sen2cor complement inclusion in
the SNAP8.0 program [47]. The images were resampled in order to achieve 10 m pixels
in all bands [48]. Finally, from the 10 pixels selected for field measurement, the value of
the radiometric was retrieved in all bands. LAI (m2·m−2) and FAPAR (µg·cm−2) products
were taken from the Biophysical Operator in SNAP 9.0 for each treatment.

2.6. Vegetation Indices Measurement

For each Sentinel-2 image, a spectral analysis was conducted in order to derive seven
vegetation indices (VIs) based on the date of acquisition. Software SNAP 8.0 was used
to construct the indices (Table 4). In earlier studies, VIs were examined and shown to be
helpful for crop-yield modeling [49].

Table 4. Formulas of calculated vegetation indices from Sentinel-2 data.

Abbreviation Name Formula References

ARVI Atmospherically Resistant Vegetation Index (B8− B4− y ∗ (B4− B2))
(B8 + B4− y ∗ (B4− B2))

[50]

NDVI Normalized Difference Vegetation Index B8− B4
B8 + B4

[51]

SAVI Soil Adjusted Vegetation Index B8− B4
B8 + B4 + L

∗ (1 + L) [52]

DSWI Disease-Water Stress Index B3
B4

[53]

MCARI Modified Chlorophyll Absorption Ratio Index [(B5− B4)− 0.2 ∗ (B5− B3)] ∗ (B5 / B4) [54]

REIP Red-Edge Inflection Point Index ((B4 + B7)/2− B5)/(B6− B5) [55]

PSSRa Pigment-Specific Simple Ratio
(chlorophyll index)

B7
B4

[56]

Two biophysical variables (1) leaf area index (LAI), and (2) fraction of absorbed photo-
synthetically active radiation (FAPAR) were calculated using top-of-canopy normalized
reflectance of Sentinel-2 data and the ‘Biophysical Processor’ in SNAP toolbox [38].
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2.7. Statistical Analysis

The experimental design was a randomized complete block design (RCBD) for four
treatments, and each treatment was replicated three times. One-way variance analysis
(ANOVA) and means were compared with the Tukey test (p < 0.05), using the Statisti-
cal 7 program (version 2004). Correlations were analyzed using linear regressions of the
tracking and crop-yield variables.

2.8. Simple Linear Regressions (SLR)

Simple linear regression was used to model the relationship between biophysical
variables LAI and FAPAR, with green-onion productivity applying the production function:

Green onion yield = f (LAI OR FAPAR)

The applied production function could be rewritten following Equation (3):

y = a + bX + e (3)

where, Y is the actual green-onion productivity (ton ha−1); X is explained using biophysical
variables (LAI and FAPAR); a is the intercept; b is the regression coefficient; and e is
the error.

The main assumption was used to check the relationships between the dependent vari-
able (yield in ton per hectare) and the independent biophysical variables (LAI and FAPAR).

Simple linear regression was used to model the relationship between vegetation indices
(ARVI, DSWI, MCARI NDVI, PSSRa, REIP, and SAVI) and biophysical variables (LAI and
FAPAR). The applied production function could be rewritten following Equation (4):

y = a + bX + e (4)

where, Y is the actual vegetation indices (ARVI, DSWI, MCARI NDVI, PSSRa, REIP, and
SAVI); X is explained using biophysical variables (LAI and FAPAR); a is the intercept; b is
the regression coefficient; and e is the error.

2.9. Model Validation

The coefficient of determination (R2), Equation (5), root mean square error (RMSE),
Equation (6), the normalized root mean square error (NRMSE), and Equation (7) were used
to evaluate the model performance.

R2 = 1− ∑n
i=1(yi− yi)2

dx ∑n
i=1(yi− yi)2 (5)

RMSE =

√
∑n

i=1(yi− yi)2

n
(6)

NRMSE =
RMSE
[σ(y)]

(7)

where yi represents the actual green-onion productivity data; yi is the predicted green
onion productivity data; and ȳ is the mean green-onion productivity of the model; n is the
number of samples; and σ(y) is the standard deviation of y as used previously [48].

Biophysical variables, the relationships between the dependent and the indepen-
dent variables, were linear; they were tested according to the method described by
Casella et al. (2022) [49]. The linearity between green-onion productivity and the biophys-
ical variables was tested using the Statistical 7 program (version 2004). The standard
deviation-based NRMSE represents the ratio between the variation unexplained by the
regression and the overall variation in y. It means that if the regression explains all the
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variations in y, none of the variations remain unexplained. In this case, the RMSE and
the NRMSE are zero. If the regression explains some of the variations but leaves some
unexplained, and this unexplained part has the same size as the overall variation, then the
value of the NRMSE will be around one.

3. Results
3.1. Time Series of the Biophysical Variables

Over the sample dates, time series evolutions of LAI and FAPAR products acquired
during SNAP were tracked (Figures 3–6). The beginning of the growth is shown below.
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According to the progress of the vegetative development, which is the LAI value
calculated from Sentinel-2 images, all treatments of foliar applications show an index
increase from July at 0.13 to 0.73 in October (Figure 7a). From September to October, the
LAI value in treatment with nMgO increased in relation to the other treatments. In October,
close to the harvest, the highest value is shown to be 0.73 with nMgO treatment, and the
lowest value is 0.42 in treatment with magnesium chelate. One-way variance analysis
(ANOVA) and means were compared using the Tukey test (p < 0.05), using the Statistical 7
program (version 2004).



Sustainability 2023, 15, 16048 9 of 20Sustainability 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 
Figure 4. Time series of FAPAR images through the growth of green onion in first season. Figure 4. Time series of FAPAR images through the growth of green onion in first season.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 
Figure 5. Time series of LAI images through the growth of green onion in second season. 

Figure 5. Cont.



Sustainability 2023, 15, 16048 10 of 20

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 
Figure 5. Time series of LAI images through the growth of green onion in second season. Figure 5. Time series of LAI images through the growth of green onion in second season.

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

Figure 6. Time series of FAPAR images through the growth of green onion in second season. 

According to the progress of the vegetative development, which is the LAI value cal-
culated from Sentinel-2 images, all treatments of foliar applications show an index in-
crease from July at 0.13 to 0.73 in October (Figure 7a). From September to October, the LAI 
value in treatment with nMgO increased in relation to the other treatments. In October, 
close to the harvest, the highest value is shown to be 0.73 with nMgO treatment, and the 
lowest value is 0.42 in treatment with magnesium chelate. One-way variance analysis 
(ANOVA) and means were compared using the Tukey test (p < 0.05), using the Statistical 
7 program (version 2004). 

According to the vegetative development progress, which is shown in the FAPAR 
value calculated from Sentinel-2 images, all treatments of foliar applications show an in-
dex increase from July at 0.04 to 0.4 in October (Figure 7b). The treatment with nMgO 
illustrated an increase of the FAPAR value from August at 0.13 to 0.3 in September. In 
October, the highest FAPAR value was 0.4 with nMgO treatment close to the harvest, and 
the lowest FAPAR value was 0.27 with magnesium chelate treatment. One-way variance 
analysis (ANOVA) and means were compared using the Tukey test (p < 0.05), using the 
Statistical 7 program (version 2004). 

Figure 6. Time series of FAPAR images through the growth of green onion in second season.

According to the vegetative development progress, which is shown in the FAPAR
value calculated from Sentinel-2 images, all treatments of foliar applications show an index
increase from July at 0.04 to 0.4 in October (Figure 7b). The treatment with nMgO illustrated
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an increase of the FAPAR value from August at 0.13 to 0.3 in September. In October, the
highest FAPAR value was 0.4 with nMgO treatment close to the harvest, and the lowest
FAPAR value was 0.27 with magnesium chelate treatment. One-way variance analysis
(ANOVA) and means were compared using the Tukey test (p < 0.05), using the Statistical 7
program (version 2004).
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According to the vegetative development progress, analyzed using the LAI value
calculated from Sentinel-2 images, from the beginning of November to the end December
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the LAI value increased in all treatments from 0.32 to 0.55 (Figure 8a). In February, as a
result of the plants being sprayed with the pesticide lambda, which has an impact on leaf
area index (LAI), the LAI values dropped in all the treatments However, the treatment with
nMgO was not significantly affected [57]. After that, the plants returned to their regular
development. In March, the highest LAI value was 1.67 with nMgO treatment, and the
lowest LAI value was 1.02 with magnesium chelate treatment.
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According to the vegetative development progress, using the FAPAR value calculated
from Sentinel-2 images, all treatments demonstrate an increase of index from December,
with values from 0.16 to 0.55 in February (Figure 8b). In March, the highest FAPAR value
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was 0.55 with nMgO treatment close to the harvest, and the lowest FAPAR value was 0.38
with magnesium chelate treatment.

3.2. Comparison between Measurements of LAI and FAPAR in Field Data and from
Sentinel-2 Data

This section displays the positive linear correlation of the two biophysical variables
between the distribution of points in field data and Sentinel-2 data (Figure 9).
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3.3. Vegetation Indices Analysis

A linear regression models for first-season vegetation indices and biophysical variables
were appropriate (Table 5). The PSSRa and R2 = 0.9 indices in the first season were found
to respond more favorably to LAI estimation. With R2 = 0.94, PSSRa provided the most
sensitive response to calculate FAPAR.

Table 5. Linear regression models between the vegetation indices and LAI and FAPAR in first season.

Index
Model R2 LAI (m2 m−2)

F-Anova
Model R2 FAPAR (µg cm−2)

F-Anova

First Season

ARVI y = 2.37x − 0.05 0.75 73.56 y = 0.6x + 0.16 0.87 171.8
DSWI y = 2.7x − 1.7 0.72 63.06 y = 0.71x − 0.27 0.86 152.2

MCARI y = 17.9x − 0.32 0.68 53.03 y = 4.68x + 0.09 0.84 126.68
NDVI y = 3.06x − 0.71 0.78 85.98 y = 0.77x + 0.0023 0.89 204.18
PSSRa y = 0.38x − 0.45 0.90 234.33 y = 0.09x + 0.08 0.94 428.07
REIP y = 0.07x − 53.1 0.60 37.35 y = 0.019x − 13.9 0.77 80.64
SAVI y = 3.32x − 0.29 0.66 46.62 y = 0.87x + 0.09 0.82 110.95
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A linear regression model of vegetation indices and biophysical variables in the second
season was appropriate (Table 6). The vegetation indices with the best responses to estimate
LAI were found to be MCARI and PSSRa, with R2 values of 0.9 and 0.91, respectively. The
most sensitive responses for calculating FAPAR were PSSRa (R2 = 0.97), followed by ARVI
(R2 = 0.96), and NDVI.

Table 6. Linear regression models between the vegetation indices and LAI and FAPAR in second season.

Index

LAI
Model R2 LAI (m2 m−2)

F-Anova
FAPAR
Model R2 FAPAR (µg cm−2)

F-Anova

Second Season

ARVI y = 2.9x − 0.12 0.77 83.77 y = 0.85x + 0.1 0.96 599.37
DSWI y = 3.6x − 2.45 0.8 100.38 y = 1.05x − 0.56 0.91 248.36

MCARI y = 15.5x − 0.2 0.9 227.02 y = 4.19x + 0.09 0.94 410.95
NDVI y = 3.3x − 0.75 0.82 101.85 y = 0.95x − 0.07 0.96 746.73
PSSRa y = 0.44x − 0.56 0.91 271.76 y = 0.12x + 0.01 0.97 793.96
REIP y = 0.04x − 27.6 0.38 14.74 y = 0.01x − 9.57 0.67 49.32
SAVI y = 3.6x − 0.36 0.68 53.24 y = 1.12x + 0.02 0.91 263.97

3.4. Relationship between Biophysical Variables and Yield

Crop yield was correlated with biophysical variables that were collected in the field
and from Sentinel-2 data (Table 7). In the field LAI values, correlation for Sentinel-2
data had increased slightly, with R2 values for the first season of R2 = 0.88 and R2 = 0.76,
respectively, and R2 = 0.78 and R2 = 0.56, respectively, in the second season. The Sentinel-2
values of FAPAR show a higher value than the one obtained using the field data; they
were R2 = 0.89 and R2 = 0.82, respectively, in the first season, and R2 = 0.78 and R2 = 0.89,
respectively, in the second season.

Table 7. Relationship between the LAI and FAPAR and green-onion yield (ton ha−1) from field data
and Sentinel-2 data.

Sentinel-2 Field

First season

LAI FAPAR LAI FAPAR

R2 0.76 0.89 0.88 0.82
Model y = 44.136x + 20.073 y = 202.606x − 21.397 y = 32.34x − 1.77 y = 148.27x − 46.855

F-anova 78.81 210.5 184.25 112.1

Second season

LAI FAPAR LAI FAPAR

R2 0.57 0.78 0.78 0.89
Model y = 28.052x + 40.762 y = 124.32x + 18.434 y = 48.354x − 11.433 y = 252.49x − 106.7

F-anova 33.04 89.91 85.57 210.05

Linear regression models of vegetation indices and yield in first season were appropri-
ate (Table 8). Vegetation indices that responded positively to yield estimation were ARVI
and NDVI with R2 = 0.94. But in second season, NDVI response decreased to R2 = 0.84.
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Table 8. Relationship between vegetation indices of the Sentinel-2 data and green-onion yield (ton ha−1).

Index
First Season Second Season

Model R2 F Value Model R2 F Value

ARVI y = 133.66x + 9.456 0.94 385.71 y = 108.87x + 30.606 0.79 91.73
DSWI y = 156.48x − 88.16 0.91 270.81 y = 138.19x − 57.897 0.84 104.43

MCARI y = 1055.1x − 8.228 0.93 339.66 y = 490.23x + 32.033 0.66 46.58
NDVI y = 169.67x − 26.767 0.94 410.36 y = 122.09x + 7.384 0.84 132.91
PSSRa y = 18.916x − 5.593 0.86 154.64 y = 13.291x + 22.485 0.61 38.53
REIP y = 4.523 x − 3208.7 0.87 175.38 y = 2.054x − 1418.1 0.76 78.25
SAVI y = 198.62x − 7.11 0.92 297.73 y = 147.87x + 18.424 0.82 111.81

3.5. Variation of Crop Yield under Various Treatments

An analysis was conducted on the crop yield of the green onion from each of the
treatments (ton ha−1) (Figure 10). Significant changes between treatments in both seasons
were discovered (p < 0.05). The nMgO treatment had the highest yield. Magnesium chelate
treatment in both seasons was observed to differ significantly from one another. One-way
variance analysis (ANOVA) and means were compared using the Tukey test (p < 0.05),
using the Statistical 7 program (version 2004).
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3.6. Model Calibration

Datasets utilized for model validation included yield and biophysical variable values
provided in farm datasets (observed data), versus predicted yield (ton ha−1). Therefore,
commercial yield and biophysical variable outputs from field data and Sentinel-2 were
compared during model validation. Root mean square error (RMSE) and normalized root
mean square error (NRMSE) statistical indices were used to assess the model’s correctness
in Table 9. Results show that these models were successfully validated using the simple re-
gression model, and that the validation yielded accurate conclusions about the correlations
between the biophysical variables and green-onion productivity. R2 was 0.90 for FAPAR
(Field). RMSE and NRMSE were, respectively, 12.48 and 0.22.
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Table 9. Validation of the model for estimating green-onion-crop yield based on the biophysical
variables from field data and Sentinel-2 data.

Parameter R2 RMSE NRMSE

LAI (Sentinel-2) 0.41 22.5 0.41
FAPAR (Sentinel-2) 0.83 21.72 0.39

LAI (Field) 0.89 16.5 0.30
FAPAR (Field) 0.90 12.48 0.22

Datasets utilized for model validation included yield and vegetation indices values
provided in farm datasets (observed data) versus predicted yield (ton ha−1). Therefore,
commercial yield and vegetation indices outputs from field data and Sentinel-2 were
compared during model validation in Table 10. Results show that these models were
successfully validated using the simple regression model, and that the validation yielded
accurate conclusions about the correlations between the vegetation indices and green-
onion productivity. R2 was 0.92 for REIP. The RMSE and NRMSE were, respectively, 23.14
and 0.42.

Table 10. Validation of the model for estimating green-onion-crop yield based on the vegetation indices.

Parameter R2 RMSE NRMSE

ARVI 0.91 25.39 0.46
DSWI 0.88 19.23 0.34

MCARI 0.91 14.95 0.27
NDVI 0.80 24.69 0.44
PSSRa 0.71 24.5 0.44
REIP 0.92 23.14 0.42
SAVI 0.87 16.46 0.29

4. Discussion

Field data were used to collect the temporal and spatial measurements for LAI and
FAPAR variations. A significant decrease in leaf area was found between the end of Febru-
ary, during the second season, and as a result of the plants being sprayed with the pesticide
lambda, which has an impact on leaf area index (LAI). At the same time, LAI values sig-
nificantly increased with the treatments (Mg-L, KAFOM Mg, nMgO) [58]. The crop has
reached its maximum LAI at this time as shown in Figures 3 and 5. One of the variables
with the greatest influence on crop yield is the LAI value which is mostly reliant on the
availability of water, temperature, and nutrients at the stage of leaf development [49]. The
biophysical variables and crop yield are mathematically correlated favorably according to
Casella et al. (2022) [49].

In terms of yield, the nMgO treatment achieved 69.9-ton ha−1 and 74.9-ton ha−1

in the first and second seasons, respectively, as shown in Figure 10. This recommends
that nMgO directly influences physiological status and yield of green onion [58]. Only a
32.3-ton ha−1 decrease was found when using magnesium chelate treatment; therefore,
nMgO treatments were used for green-onion yield [58]. Generally, the increase in the yield
quantity of treated onion plants with nMgO fertilizers rather than other utilized fertilizers
might be associated with the properties of Mg nanoparticles, which are characterized
by a smaller size, higher absorption, and more ease of attachment than other forms of
magnesium [59,60]. In addition, the findings of the current study are similar to those found
by [16], where foliar application with magnesium nano-fertilizers significantly increased the
crop yield. These results could be attributed to the effective role of accumulated Mg ions on
the growth and productivity of onion plants. Although several researchers confirmed that
the application of a sufficient Mg rate improved the chlorophyll content, photosynthesis
rate, and translocation of assimilates in leaves [10], these photosynthetic assimilates are
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transported from leaves to the sink organs (such as fruits, roots, and seeds), and stored as
starch or transformed to hexoses [61] to upsurge crop quantity and quality [62,63].

The validation results of the LAI obtained from Sentinel-2 data (R2 = 0.72; F-a nova:
64.51; p < 0.05) in both seasons, FAPAR of R2 = 0.66; F-a nova: 47.62; p < 0.05 in the
first season and R2 = 0.89; F-a nova: 208.35 p < 0.05 in second season resulted in higher
correlation than the results that were achieved by the authors [54] analyzed Sentinel-2 data
for a set of crops in the study area. Similar validation results and LAI were discussed for
various croplands in Canada [55] and for wheat fields in northeastern China [56]. Both
studies highlighted the benefits of using Sentinel-2 products, and more specifically, bands
in the red-edge domain, for the analysis of vegetation’s biophysical characteristics. In a
small field of green onions, the Sentinel-2 satellite’s spectral resolution, which combined
the red-edge bands (705 and 740 nm), allowed for the study of biophysical parameters: LAI
and FAPAR.

Regarding the correlation between LAI and different analyzed spectral indices, it was
found that LAI had PSSRa and achieved the highest correlation coefficients with R2 = 0.90
and R2 = 0.91 in the first and second seasons, respectively. The vegetation index PSSRa was
used to quantify pigments for the whole plant canopy. Its mathematical model showed the
best and most linear relationships with canopy concentration per unit area of Chlorophyll
a, Chlorophyll b and carotenoids [57]. Then, NDVI achieved the second place of accuracy
with R2 = 0.78 in the first season and R2 = 0.82 in the second season. These results are
comparable with the results achieved by [64]. PSSRa showed adequate accuracy to predict
FAPAR with R2 = 0.94 and R2 = 0.97 in the first and second seasons, respectively, when
NDVI showed R2 = 0.89 in the first season and R2 = 0.96 in the second season, according to
the results obtained by [58].

The performance based on RMSE and NRMSE during the validation of various models
for the prediction of green-onion productivity in our study showed high accuracy. The
generated models were validated using the simple regression between actual and predicted
yield. The same method for validation was used to calculate the accuracy of the predicted
biophysical parameters, comparing them with measured ones for green-onion productivity.

5. Conclusions

This study showed the effectiveness of a simple, advanced methodology for analyzing
the impact of foliar spraying with various magnesium sources on plants’ nutrient status,
growth, and quality in the newly reclaimed area of Ismailia Governorate, Egypt. Farmers
will be able to estimate yield better because of the availability of instruments that are simple
to use. When it came to retrieving these biophysical characteristics, the LAI and FAPAR
were based on Sentinel-2 spectral data and neural networks, and it was found to be suitable
for tracking the intensive production of a crop with a leafy structure like Allium cepa L.
There was a significant correlation between the estimates at the research site and the in situ
measured biophysical variables. The examined vegetation indices can offer appropriate
data for estimating the biophysical variables of LAI and FAPAR of green onion. It has been
shown that using nMgO for green-onion crops increases yield.
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