Relationships between Thermal Environment and Air Pollution of Seoul’s 25 Districts Using Vector Autoregressive Granger Causality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Context
2.2. Variables and Data
2.3. Analysis
3. Results
3.1. Unit Root Test
3.2. Lag Length Selection
3.3. Granger Causality Tests
3.4. IRFs and FEVD Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
District | ||
---|---|---|
H0: temp Does Not Granger-Cause uhii | H0: uhii Does Not Granger-Cause temp | |
Dobong | 96.915 *** | 68.582 *** |
Dongdaemun | 94.680 *** | 121.470 *** |
Dongjak | 110.530 *** | 45.903 *** |
Eunpyeong | 35.205 *** | 10.805 *** |
Gangbuk | 106.890 *** | 115.870 *** |
Gangdong | 99.279 *** | 105.600 *** |
Gangnam | 88.008 *** | 107.100 *** |
Gangseo | 88.260 *** | 17.048 ** |
Geumcheon | 81.065 *** | 73.020 *** |
Guro | 87.597 *** | 58.479 *** |
Gwanak | 82.853 *** | 33.236 *** |
Gwangjin | 94.715 *** | 104.050 *** |
Jongro | 96.569 *** | 102.390 *** |
Jung | 87.518 *** | 91.097 *** |
Jungrang | 78.183 *** | 114.230 *** |
Mapo | 91.687 *** | 73.281 *** |
Nowon | 41.358 *** | 25.353 *** |
Seocho | 101.490 *** | 86.658 *** |
Seodaemun | 100.610 *** | 69.943 *** |
Seongbuk | 85.126 *** | 97.699 *** |
Seongdong | 111.600 *** | 110.940 *** |
Songpa | 106.770 *** | 121.750 *** |
Yangcheon | 94.990 *** | 81.147 *** |
Yeongdeungpo | 83.670 *** | 85.782 *** |
Yongsan | 79.787 *** | 83.881 *** |
District | ||
---|---|---|
H0: pm10 Does Not Granger-Cause upii | H0: upii Does Not Granger-Cause pm10 | |
Dobong | 46.778 *** | 54.926 *** |
Dongdaemun | 53.082 *** | 80.225 *** |
Dongjak | 48.955 *** | 58.427 *** |
Eunpyeong | 79.051 *** | 62.192 *** |
Gangbuk | 68.752 *** | 61.114 *** |
Gangdong | 43.302 *** | 58.150 *** |
Gangnam | 37.563 *** | 67.334 *** |
Gangseo | 25.130 *** | 51.894 *** |
Geumcheon | 96.954 *** | 59.293 *** |
Guro | 42.355 *** | 60.106 *** |
Gwanak | 55.410 *** | 66.740 *** |
Gwangjin | 50.616 *** | 50.857 *** |
Jongro | 86.934 *** | 94.985 *** |
Jung | 81.111 *** | 65.221 *** |
Jungrang | 75.393 *** | 77.423 *** |
Mapo | 40.888 *** | 61.009 *** |
Nowon | 30.332 *** | 52.086 *** |
Seocho | 44.565 *** | 32.921 *** |
Seodaemun | 65.699 *** | 77.948 *** |
Seongbuk | 48.804 *** | 56.387 *** |
Seongdong | 59.608 *** | 71.646 *** |
Songpa | 95.204 *** | 62.781 *** |
Yangcheon | 45.908 *** | 55.287 *** |
Yeongdeungpo | 29.768 *** | 59.574 *** |
Yongsan | 67.606 *** | 64.298 *** |
District | ||
---|---|---|
H0: temp Does Not Granger-Cause pm10 | H0: pm10 Does Not Granger-Cause temp | |
Dobong | 12.341 * | 15.085 ** |
Dongdaemun | 24.603 *** | 7.665 |
Dongjak | 29.509 *** | 12.884 * |
Eunpyeong | 36.295 *** | 7.158 |
Gangbuk | 15.717 ** | 9.262 |
Gangdong | 23.579 ** | 11.097 |
Gangnam | 21.831 ** | 7.690 |
Gangseo | 27.268 *** | 16.201 ** |
Geumcheon | 28.610 *** | 9.398 |
Guro | 31.106 *** | 12.635 * |
Gwanak | 29.126 *** | 13.249 * |
Gwangjin | 27.984 *** | 9.163 |
Jongro | 13.036 * | 8.252 |
Jung | 21.159 ** | 5.125 |
Jungrang | 17.742 ** | 6.693 |
Mapo | 27.330 *** | 11.495 |
Nowon | 33.256 *** | 21.092 ** |
Seocho | 24.037 ** | 9.521 |
Seodaemun | 23.466 ** | 9.901 |
Seongbuk | 22.736 ** | 11.084 |
Seongdong | 28.668 *** | 8.392 |
Songpa | 13.313 * | 7.478 |
Yangcheon | 30.191 *** | 7.817 |
Yeongdeungpo | 28.869 *** | 10.831 |
Yongsan | 22.492 ** | 8.159 |
District | ||
---|---|---|
H0: temp Does Not Granger-Cause upii | H0: upii Does Not Granger-Cause temp | |
Dobong | 2.751 | 6.929 |
Dongdaemun | 10.438 | 6.050 |
Dongjak | 14.393 * | 6.309 |
Eunpyeong | 9.189 | 20.958 ** |
Gangbuk | 4.071 | 5.890 |
Gangdong | 10.637 | 5.436 |
Gangnam | 13.573 * | 10.603 |
Gangseo | 10.793 | 11.522 |
Geumcheon | 14.250 * | 13.487 * |
Guro | 16.554 * | 14.845 * |
Gwanak | 11.253 | 5.342 |
Gwangjin | 16.267 * | 7.908 |
Jongro | 6.014 | 15.156 * |
Jung | 9.763 | 9.022 |
Jungrang | 8.547 | 7.445 |
Mapo | 19.389 ** | 14.407 * |
Nowon | 12.521 | 13.704 * |
Seocho | 10.063 | 12.712 * |
Seodaemun | 10.424 | 18.683 ** |
Seongbuk | 7.035 | 11.483 |
Seongdong | 17.917 ** | 6.8461 |
Songpa | 8.197 | 6.428 |
Yangcheon | 14.606 * | 15.362 * |
Yeongdeungpo | 22.464 ** | 12.795 * |
Yongsan | 12.077 | 11.077 |
District | ||
---|---|---|
H0: pm10 Does Not Granger-Cause uhii | H0: uhii Does Not Granger-Cause pm10 | |
Dobong | 5.619 | 16.130 ** |
Dongdaemun | 6.907 | 38.797 *** |
Dongjak | 9.825 | 9.300 |
Eunpyeong | 6.403 | 6.532 |
Gangbuk | 4.970 | 32.701 *** |
Gangdong | 6.395 | 34.032 *** |
Gangnam | 7.974 | 35.918 *** |
Gangseo | 7.454 | 13.849 * |
Geumcheon | 7.498 | 13.037 * |
Guro | 6.426 | 9.684 |
Gwanak | 7.984 | 7.869 |
Gwangjin | 8.160 | 36.288 *** |
Jongro | 5.025 | 19.412 ** |
Jung | 4.021 | 31.833 *** |
Jungrang | 5.208 | 22.893 *** |
Mapo | 9.144 | 20.616 ** |
Nowon | 2.623 | 10.725 |
Seocho | 11.008 | 18.450 ** |
Seodaemun | 8.584 | 15.009 * |
Seongbuk | 9.612 | 18.942 ** |
Seongdong | 9.630 | 24.130 *** |
Songpa | 5.387 | 15.492 ** |
Yangcheon | 8.924 | 20.153 ** |
Yeongdeungpo | 10.024 | 18.994 ** |
Yongsan | 6.899 | 20.797 ** |
District | ||
---|---|---|
H0: uhii does Not Granger-Cause upii | H0: upii Does Not Granger-Cause uhii | |
Dobong | 12.639 * | 6.067 |
Dongdaemun | 44.503 *** | 12.788 *** |
Dongjak | 17.386 ** | 5.861 |
Eunpyeong | 14.831 * | 7.908 |
Gangbuk | 35.170 *** | 12.682 * |
Gangdong | 38.899 *** | 7.907 |
Gangnam | 38.273 *** | 7.328 |
Gangseo | 17.048 ** | 5.201 |
Geumcheon | 20.021 ** | 7.723 |
Guro | 16.247 ** | 8.526 |
Gwanak | 13.784 ** | 2.980 |
Gwangjin | 32.207 *** | 12.273 |
Jongro | 29.905 *** | 21.792 ** |
Jung | 25.207 *** | 12.987 * |
Jungrang | 21.357 ** | 9.580 |
Mapo | 31.171 *** | 6.564 |
Nowon | 16.341 * | 6.151 |
Seocho | 27.478 *** | 7.369 |
Seodaemun | 14.445 * | 8.091 |
Seongbuk | 30.854 *** | 17.183 ** |
Seongdong | 34.680 *** | 4.935 |
Songpa | 18.350 ** | 2.557 |
Yangcheon | 29.573 *** | 12.446 |
Yeongdeungpo | 33.116 *** | 12.533 |
Yongsan | 31.187 *** | 11.566 |
Appendix B
District | temp→temp | pm10→temp | uhii→temp | upii→temp |
---|---|---|---|---|
Dobong | 0.9596 | 0.0074 | 0.0287 | 0.0044 |
Dongdaemun | 0.9379 | 0.0052 | 0.0524 | 0.0045 |
Dongjak | 0.9694 | 0.0074 | 0.0195 | 0.0037 |
Eunpyeong | 0.9773 | 0.0045 | 0.0068 | 0.0115 |
Gangbuk | 0.9411 | 0.0061 | 0.0481 | 0.0047 |
Gangdong | 0.9404 | 0.0079 | 0.0487 | 0.0030 |
Gangnam | 0.9431 | 0.0048 | 0.0457 | 0.0065 |
Gangseo | 0.9617 | 0.0066 | 0.0271 | 0.0046 |
Geumcheon | 0.9551 | 0.0051 | 0.0319 | 0.0079 |
Guro | 0.9600 | 0.0057 | 0.0261 | 0.0082 |
Gwanak | 0.9739 | 0.0078 | 0.0153 | 0.0030 |
Gwangjin | 0.9440 | 0.0055 | 0.0456 | 0.0049 |
Jongro | 0.9448 | 0.0047 | 0.0403 | 0.0103 |
Jung | 0.9509 | 0.0039 | 0.0389 | 0.0063 |
Jungrang | 0.9400 | 0.0052 | 0.0498 | 0.0049 |
Mapo | 0.9552 | 0.0057 | 0.0312 | 0.0079 |
Nowon | 0.9674 | 0.0111 | 0.0155 | 0.0060 |
Seocho | 0.9495 | 0.0059 | 0.0375 | 0.0071 |
Seodaemun | 0.9520 | 0.0059 | 0.0319 | 0.0102 |
Seongbuk | 0.9460 | 0.0051 | 0.0423 | 0.0065 |
Seongdong | 0.9425 | 0.0061 | 0.0475 | 0.0039 |
Songpa | 0.9411 | 0.0066 | 0.0490 | 0.0033 |
Yangcheon | 0.9520 | 0.0035 | 0.0352 | 0.0094 |
Yeongdeungpo | 0.9528 | 0.0041 | 0.0356 | 0.0075 |
Yongsan | 0.9530 | 0.0044 | 0.0359 | 0.0068 |
Range | 0.9379~0.9773 | 0.0035~0.0111 | 0.0068~0.0524 | 0.0030~0.0115 |
District | temp→uhii | pm10→uhii | uhii→uhii | upii→uhii |
---|---|---|---|---|
Dobong | 0.2280 | 0.0041 | 0.7649 | 0.003 |
Dongdaemun | 0.2091 | 0.0077 | 0.7763 | 0.0069 |
Dongjak | 0.2974 | 0.0042 | 0.6962 | 0.0022 |
Eunpyeong | 0.3682 | 0.0105 | 0.6161 | 0.0052 |
Gangbuk | 0.2553 | 0.0036 | 0.7339 | 0.0072 |
Gangdong | 0.1680 | 0.0116 | 0.8164 | 0.0040 |
Gangnam | 0.2632 | 0.0044 | 0.7279 | 0.0044 |
Gangseo | 0.2833 | 0.0061 | 0.7090 | 0.0016 |
Geumcheon | 0.3398 | 0.0046 | 0.6517 | 0.0040 |
Guro | 0.3009 | 0.0057 | 0.6909 | 0.0026 |
Gwanak | 0.3355 | 0.0044 | 0.6594 | 0.0007 |
Gwangjin | 0.2062 | 0.0065 | 0.7805 | 0.0069 |
Jongro | 0.3294 | 0.0024 | 0.6571 | 0.0111 |
Jung | 0.4004 | 0.0040 | 0.5896 | 0.006 |
Jungrang | 0.2211 | 0.0040 | 0.7685 | 0.0064 |
Mapo | 0.3978 | 0.0045 | 0.5949 | 0.0028 |
Nowon | 0.1408 | 0.0038 | 0.8512 | 0.0042 |
Seocho | 0.3205 | 0.0040 | 0.6726 | 0.0029 |
Seodaemun | 0.3900 | 0.0041 | 0.6025 | 0.0035 |
Seongbuk | 0.2930 | 0.0048 | 0.6940 | 0.0081 |
Seongdong | 0.2351 | 0.0052 | 0.7570 | 0.0028 |
Songpa | 0.2502 | 0.0048 | 0.7436 | 0.0014 |
Yangcheon | 0.3109 | 0.0043 | 0.6783 | 0.0065 |
Yeongdeungpo | 0.3144 | 0.0031 | 0.6762 | 0.0063 |
Yongsan | 0.2995 | 0.0023 | 0.6929 | 0.0053 |
Range | 0.1408~0.4004 | 0.0023~0.0116 | 0.5896~0.8512 | 0.0007~0.0111 |
District | temp→pm10 | pm10→pm10 | uhii→pm10 | upii→pm10 |
---|---|---|---|---|
Dobong | 0.0453 | 0.9163 | 0.0088 | 0.0296 |
Dongdaemun | 0.0816 | 0.8605 | 0.0138 | 0.0441 |
Dongjak | 0.0705 | 0.8944 | 0.0037 | 0.0314 |
Eunpyeong | 0.0366 | 0.9268 | 0.0035 | 0.0331 |
Gangbuk | 0.0542 | 0.9011 | 0.0130 | 0.0316 |
Gangdong | 0.0652 | 0.8880 | 0.0146 | 0.0322 |
Gangnam | 0.0649 | 0.8840 | 0.0127 | 0.0383 |
Gangseo | 0.0703 | 0.8946 | 0.0056 | 0.0295 |
Geumcheon | 0.0549 | 0.9077 | 0.0052 | 0.0322 |
Guro | 0.0638 | 0.8995 | 0.0041 | 0.0326 |
Gwanak | 0.0738 | 0.8882 | 0.0035 | 0.0345 |
Gwangjin | 0.0598 | 0.8976 | 0.0128 | 0.0299 |
Jongro | 0.0581 | 0.8827 | 0.0077 | 0.0516 |
Jung | 0.0736 | 0.8777 | 0.0110 | 0.0376 |
Jungrang | 0.0494 | 0.9005 | 0.0081 | 0.0420 |
Mapo | 0.0655 | 0.8942 | 0.0070 | 0.0333 |
Nowon | 0.0612 | 0.9025 | 0.0085 | 0.0279 |
Seocho | 0.0688 | 0.9049 | 0.0079 | 0.0184 |
Seodaemun | 0.0469 | 0.9065 | 0.0051 | 0.0415 |
Seongbuk | 0.0573 | 0.9017 | 0.0084 | 0.0326 |
Seongdong | 0.0720 | 0.8800 | 0.0097 | 0.0384 |
Songpa | 0.0493 | 0.9105 | 0.0085 | 0.0316 |
Yangcheon | 0.0740 | 0.8883 | 0.0078 | 0.0299 |
Yeongdeungpo | 0.0747 | 0.8847 | 0.0069 | 0.0338 |
Yongsan | 0.0665 | 0.8887 | 0.0076 | 0.0372 |
Range | 0.0366~0.0816 | 0.8605~0.9268 | 0.0035~0.0146 | 0.0184~0.0516 |
District | temp→upii | pm10→upii | uhii→upii | upii→upii |
---|---|---|---|---|
Dobong | 0.0228 | 0.2388 | 0.0078 | 0.7306 |
Dongdaemun | 0.0319 | 0.0677 | 0.0248 | 0.8756 |
Dongjak | 0.0355 | 0.1541 | 0.0091 | 0.8013 |
Eunpyeong | 0.011 | 0.2418 | 0.0079 | 0.7393 |
Gangbuk | 0.019 | 0.185 | 0.0187 | 0.7773 |
Gangdong | 0.0301 | 0.0716 | 0.0236 | 0.8748 |
Gangnam | 0.0266 | 0.188 | 0.0216 | 0.7639 |
Gangseo | 0.0486 | 0.1954 | 0.011 | 0.7451 |
Geumcheon | 0.0122 | 0.1373 | 0.0117 | 0.8388 |
Guro | 0.0296 | 0.1947 | 0.0094 | 0.7663 |
Gwanak | 0.0367 | 0.1412 | 0.008 | 0.8141 |
Gwangjin | 0.0234 | 0.2031 | 0.0182 | 0.7553 |
Jongro | 0.0234 | 0.1714 | 0.0123 | 0.7929 |
Jung | 0.0224 | 0.0889 | 0.0141 | 0.8747 |
Jungrang | 0.0113 | 0.2239 | 0.0126 | 0.7522 |
Mapo | 0.0337 | 0.2303 | 0.0155 | 0.7205 |
Nowon | 0.0489 | 0.059 | 0.0126 | 0.8795 |
Seocho | 0.0375 | 0.2084 | 0.0145 | 0.7395 |
Seodaemun | 0.0102 | 0.2507 | 0.0088 | 0.7303 |
Seongbuk | 0.0262 | 0.1966 | 0.0168 | 0.7604 |
Seongdong | 0.033 | 0.1551 | 0.0186 | 0.7933 |
Songpa | 0.017 | 0.1585 | 0.0121 | 0.8124 |
Yangcheon | 0.0236 | 0.1424 | 0.0168 | 0.8172 |
Yeongdeungpo | 0.0483 | 0.2617 | 0.0155 | 0.6745 |
Yongsan | 0.0299 | 0.1781 | 0.0153 | 0.7768 |
Range | 0.0102~0.0489 | 0.0590~0.2617 | 0.0078~0.0248 | 0.6745~0.8795 |
References
- Son, G.; Hwang, W. Consumers’ Views on ESG and Environmental Friendly Consumption Behavior; KB Financial Group: Seoul, Republic of Korea, 2021. [Google Scholar]
- Hwang, I.; Baek, J. Market Mechanisms for Addressing Climate Change and Air Pollution in Seoul; Seoul Institute: Seoul, Republic of Korea, 2020. [Google Scholar]
- Korea Meteorological Administration. Korean Climate Change Assessment Report 2020: Scientific Basis for Climate Change (Summary for Policymakers); Korea Meteorological Administration: Seoul, Republic of Korea, 2020.
- OECD. How’s Life? 2020: Measuring Well-Being. Available online: https://www.oecd.org/wise/how-s-life-23089679.htm (accessed on 22 August 2023).
- Kim, H. Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea. Int. J. Environ. Res. Public Health 2020, 17, 3999. [Google Scholar] [CrossRef] [PubMed]
- Kim, H. Land Use Impacts on Particulate Matter Levels in Seoul, South Korea: Comparing High and Low Seasons. Land 2020, 9, 142. [Google Scholar] [CrossRef]
- Shin, J.; Yang, H.; Kim, C. The Relationship between Climate and Energy Consumption: The Case of South Korea. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 6456–6471. [Google Scholar] [CrossRef]
- Lee, K.; Baek, H.-J.; Cho, C. The Estimation of Base Temperature for Heating and Cooling Degree-Days for South Korea. J. Appl. Meteorol. Climatol. 2014, 53, 300–309. [Google Scholar] [CrossRef]
- Lim, Y.-H.; Lee, K.-S.; Bae, H.-J.; Kim, D.; Yoo, H.; Park, S.; Hong, Y.-C. Estimation of Heat-Related Deaths during Heat Wave Episodes in South Korea (2006–2017). Int. J. Biometeorol. 2019, 63, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Chae, Y.; Choi, S.H. Analysis of Mortality Change Rate from Temperature in Summer by Age, Occupation, Household Type, and Chronic Diseases in 229 Korean Municipalities from 2007–2016. Int. J. Environ. Res. Public Health 2019, 16, 1561. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Song, K.J.; Hong, K.J.; Ro, Y.S. Trend of Outbreak of Thermal Illness Patients Based on Temperature 2002–2013 in Korea. Climate 2017, 5, 94. [Google Scholar] [CrossRef]
- Kim, O.-J.; Lee, S.H.; Kang, S.-H.; Kim, S.-Y. Incident Cardiovascular Disease and Particulate Matter Air Pollution in South Korea Using a Population-Based and Nationwide Cohort of 0.2 Million Adults. Environ. Health 2020, 19, 113. [Google Scholar] [CrossRef]
- Kim, J.-H.; Oh, I.-H.; Park, J.-H.; Cheong, H.-K. Premature Deaths Attributable to Long-Term Exposure to Ambient Fine Particulate Matter in the Republic of Korea. J. Korean Med. Sci. 2018, 33, e251. [Google Scholar] [CrossRef]
- Wheeler, S.M. Planning for Sustainability: Creating Livable, Equitable and Ecological Communities; Routledge: New York, NY, USA, 2013; ISBN 978-0-415-80989-4. [Google Scholar]
- Newman, P.; Beatley, T.; Boyer, H. Resilient Cities: Responding to Peak Oil and Climate Change; Island Press: Washington, DC, USA, 2009; ISBN 978-1-59726-498-3. [Google Scholar]
- Newman, P.; Kenworthy, J. Sustainability and Cities: Overcoming Automobile Dependence; Island Press: Washington, DC, USA, 1999; ISBN 978-1-55963-660-5. [Google Scholar]
- Calthorpe, P. Urbanism in the Age of Climate Change, 2nd ed.; Island Press: Washington, DC, USA, 2013; ISBN 978-1-59726-721-2. [Google Scholar]
- Moussiopoulos, N. Air Quality in Cities; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 978-3-642-05646-8. [Google Scholar]
- Zhang, D.; Zhou, C.; He, B.-J. Spatial and Temporal Heterogeneity of Urban Land Area and PM2.5 Concentration in China. Urban Clim. 2022, 45, 101268. [Google Scholar] [CrossRef]
- Ross, Z.; Jerrett, M.; Ito, K.; Tempalski, B.; Thurston, G.D. A Land Use Regression for Predicting Fine Particulate Matter Concentrations in the New York City Region. Atmos. Environ. 2007, 41, 2255–2269. [Google Scholar] [CrossRef]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; de Hoogh, K.; de’ Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M.; et al. Estimation of Daily PM10 and PM2.5 Concentrations in Italy, 2013–2015, Using a Spatiotemporal Land-Use Random-Forest Model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F.; Zhao, C.; Li, T.; Zheng, P.; Li, D.; Ye, Z.; Chen, K. National Scale Spatiotemporal Land-Use Regression Model for PM2.5, PM10 and NO2 Concentration in China. Atmos. Environ. 2018, 192, 48–54. [Google Scholar] [CrossRef]
- Kim, H.; Hong, S. Relationship between Land-Use Type and Daily Concentration and Variability of PM10 in Metropolitan Cities: Evidence from South Korea. Land 2022, 11, 23. [Google Scholar] [CrossRef]
- Ahn, H.; Lee, J.; Hong, A. Urban Form and Air Pollution: Clustering Patterns of Urban Form Factors Related to Particulate Matter in Seoul, Korea. Sustain. Cities Soc. 2022, 81, 103859. [Google Scholar] [CrossRef]
- Park, Y.; Shin, J.; Lee, J.Y. Spatial Association of Urban Form and Particulate Matter. Int. J. Environ. Res. Public Health 2021, 18, 9428. [Google Scholar] [CrossRef]
- McCarty, J.; Kaza, N. Urban Form and Air Quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of Urban Heat Island on Regional Atmospheric Pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Akbari, H. Shade Trees Reduce Building Energy Use and CO2 Emissions from Power Plants. Environ. Pollut. 2002, 116, S119–S126. [Google Scholar] [CrossRef]
- Stone, B. Urban Heat and Air Pollution: An Emerging Role for Planners in the Climate Change Debate. J. Am. Plan. Assoc. 2005, 71, 13–25. [Google Scholar] [CrossRef]
- Jin, M.; Shepherd, J.M.; Zheng, W. Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing and WRF Model Sensitivity Study. Adv. Meteorol. 2011, 2010, e681587. [Google Scholar] [CrossRef]
- Jin, M.S.; Kessomkiat, W.; Pereira, G. Satellite-Observed Urbanization Characters in Shanghai, China: Aerosols, Urban Heat Island Effect, and Land–Atmosphere Interactions. Remote Sens. 2011, 3, 83–99. [Google Scholar] [CrossRef]
- Li, H.; Sodoudi, S.; Liu, J.; Tao, W. Temporal Variation of Urban Aerosol Pollution Island and Its Relationship with Urban Heat Island. Atmos. Res. 2020, 241, 104957. [Google Scholar] [CrossRef]
- Cao, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M.; Zhao, L. Urban Heat Islands in China Enhanced by Haze Pollution. Nat. Commun. 2016, 7, 12509. [Google Scholar] [CrossRef] [PubMed]
- Ngarambe, J.; Joen, S.J.; Han, C.-H.; Yun, G.Y. Exploring the Relationship between Particulate Matter, CO, SO2, NO2, O3 and Urban Heat Island in Seoul, Korea. J. Hazard. Mater. 2021, 403, 123615. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.-W.; Cheng, W.-L. Air Quality Influenced by Urban Heat Island Coupled with Synoptic Weather Patterns. Sci. Total Environ. 2009, 407, 2724–2733. [Google Scholar] [CrossRef]
- Xu, L.Y.; Xie, X.D.; Li, S. Correlation Analysis of the Urban Heat Island Effect and the Spatial and Temporal Distribution of Atmospheric Particulates Using TM Images in Beijing. Environ. Pollut. 2013, 178, 102–114. [Google Scholar] [CrossRef]
- Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between Urban Heat Island and Urban Pollution Island during Summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, G.; Wang, H.; Dou, J.; Gao, Z.; Duan, C.; Li, Y.; Ngarukiyimana, J.P.; Zhao, C.; Cao, C.; et al. Relationship Between Fine-Particle Pollution and the Urban Heat Island in Beijing, China: Observational Evidence. Bound.-Layer Meteorol. 2018, 169, 93–113. [Google Scholar] [CrossRef]
- Sabrin, S.; Karimi, M.; Nazari, R. Developing Vulnerability Index to Quantify Urban Heat Islands Effects Coupled with Air Pollution: A Case Study of Camden, NJ. ISPRS Int. J. Geo-Inf. 2020, 9, 349. [Google Scholar] [CrossRef]
- Ulpiani, G. On the Linkage between Urban Heat Island and Urban Pollution Island: Three-Decade Literature Review towards a Conceptual Framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature. Available online: http://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 23 August 2023).
- Han, B.-S.; Park, K.; Kwak, K.-H.; Park, S.-B.; Jin, H.-G.; Moon, S.; Kim, J.-W.; Baik, J.-J. Air Quality Change in Seoul, South Korea under COVID-19 Social Distancing: Focusing on PM2.5. Int. J. Environ. Res. Public Health 2020, 17, 6208. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-U.; Kim, K.-Y. Physical and Chemical Mechanisms of the Daily-to-Seasonal Variation of PM10 in Korea. Sci. Total Environ. 2020, 712, 136429. [Google Scholar] [CrossRef] [PubMed]
- Oke, T.R. Boundary Layer Climates; Routledge: New York, NY, USA, 1987; ISBN 978-0-415-04319-9. [Google Scholar]
- Oke, T.R. The Distinction between Canopy and Boundary-layer Urban Heat Islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef]
- Crutzen, P.J. New Directions: The Growing Urban Heat and Pollution “Island” Effect—Impact on Chemistry and Climate. Atmos. Environ. 2004, 38, 3539–3540. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. On the Statistics of Urban Heat Island Intensity. Geophys. Res. Lett. 2013, 40, 5486–5491. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the Influence of Density and Morphology on the Urban Heat Island Intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, H.; Hassan, Q.K. Surface Urban Heat Island Intensity in Five Major Cities of Bangladesh: Patterns, Drivers and Trends. Sustain. Cities Soc. 2021, 71, 102926. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Maximum Urban Heat Island Intensity in Seoul. J. Appl. Meteorol. Climatol. 2002, 41, 651–659. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-H.; Sohn, W.; Lee, D.-K. Urban Cooling Factors: Do Small Greenspaces Outperform Building Shade in Mitigating Urban Heat Island Intensity? Urban For. Urban Green. 2021, 64, 127256. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Park, H.; Ho, C.-H.; Kim, J. Impact of Urbanization on Spring and Autumn Phenology of Deciduous Trees in the Seoul Capital Area, South Korea. Int. J. Biometeorol. 2019, 63, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Sims, C.A. Macroeconomics and Reality. Econometrica 1980, 48, 1–48. [Google Scholar] [CrossRef]
- Wang, N.; Guo, J.; Liu, X.; Fang, T. A Service Demand Forecasting Model for One-Way Electric Car-Sharing Systems Combining Long Short-Term Memory Networks with Granger Causality Test. J. Clean. Prod. 2020, 244, 118812. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, D.; Zhang, X.; Zhang, X. How Do Urban Land Expansion, Land Finance, and Economic Growth Interact? Int. J. Environ. Res. Public Health 2022, 19, 5039. [Google Scholar] [CrossRef] [PubMed]
- Sunde, T. Energy Consumption and Economic Growth Modelling in SADC Countries: An Application of the VAR Granger Causality Analysis. Int. J. Energy Technol. Policy 2020, 16, 41–56. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Liu, H.; Kim, H. Ecological Footprint, Foreign Direct Investment, and Gross Domestic Production: Evidence of Belt & Road Initiative Countries. Sustainability 2018, 10, 3527. [Google Scholar] [CrossRef]
- Pereira, A.M.; de Frutos, R.F. Public Capital Accumulation and Private Sector Performance. J. Urban Econ. 1999, 46, 300–322. [Google Scholar] [CrossRef]
- Chaiechi, T.; Nguyen, T.M.T. Measuring Urban Economic Resilience of Two Tropical Cities, Using Impulse Response Analysis. Bull. Appl. Econ. 2021, 8, 59–79. [Google Scholar] [CrossRef]
- Bildirici, M.; Ozaksoy, F. The Relationship between Woody Biomass Consumption and Economic Growth: Nonlinear ARDL and Causality. J. For. Econ. 2017, 27, 60–69. [Google Scholar] [CrossRef]
- Liao, W.-C.; Zhao, D.; Lim, L.P.; Wong, G.K.M. Foreign Liquidity to Real Estate Market: Ripple Effect and Housing Price Dynamics. Urban Stud. 2015, 52, 138–158. [Google Scholar] [CrossRef]
Variable | Unit | Obs. | Mean | Std. Dev | |
---|---|---|---|---|---|
Name | Description | ||||
temp | Daily average temperature | °C | 45,650 | 13.5 | 10.5 |
uhii | UHII | °C | 45,650 | 0.9 | 1.4 |
pm10 | Daily average PM10 concentration | μg/m3 | 45,650 | 45.4 | 27.7 |
upii | UPII | μg/m3 | 45,650 | 1.8 | 11.8 |
District | Original Data | Seasonally Differenced Data | ||||||
---|---|---|---|---|---|---|---|---|
temp | uhii | pm10 | upii | temp | uhii | pm10 | upii | |
Dobong | −2.413 | −11.627 *** | −9.368 *** | −11.627 *** | −22.302 *** | −20.416 *** | −20.878 *** | −21.293 *** |
Dongdaemun | −2.438 | −7.619 *** | −14.201 *** | −10.796 *** | −22.272 *** | −20.919 *** | −20.966 *** | −21.898 *** |
Dongjak | −2.337 | −8.463 *** | −14.457 *** | −10.289 *** | −22.541 *** | −20.815 *** | −20.751 *** | −21.619 *** |
Eunpyeong | −2.428 | −8.516 *** | −14.090 *** | −10.172 *** | −22.584 *** | −21.196 *** | −20.400 *** | −20.974 *** |
Gangbuk | −2.417 | −12.662 *** | −14.403 *** | −9.061 *** | −22.407 *** | −20.949 *** | −20.710 *** | −21.487 *** |
Gangdong | −2.370 | −8.046 *** | −14.009 *** | −9.761 *** | −22.113 *** | −20.370 *** | −21.114 *** | −22.228 *** |
Gangnam | −2.411 | −12.029 *** | −14.508 *** | −23.839 *** | −22.470 *** | −21.515 *** | −20.846 *** | −22.123 *** |
Gangseo | −2.219 | −9.118 *** | −9.158 *** | −9.643 *** | −20.952 *** | −20.973 *** | −20.973 *** | −20.623 *** |
Geumcheon | −2.476 | −7.666 *** | −14.402 *** | −10.253 *** | −22.559 *** | −21.356 *** | −20.543 *** | −21.628 *** |
Guro | −2.537 | −8.237 *** | −9.180 *** | −9.967 *** | −22.511 *** | −20.245 *** | −20.592 *** | −21.963 *** |
Gwanak | −2.448 | −8.413 *** | −14.411 *** | −8.704 *** | −22.529 *** | −21.348 *** | −20.925 *** | −21.952 *** |
Gwangjin | −2.372 | −10.675 *** | −8.895 *** | −9.328 *** | −22.232 *** | −20.675 *** | −20.744 *** | −22.044 *** |
Jongro | −2.427 | −9.588 *** | −8.778 *** | −9.547 *** | −22.548 *** | −21.437 *** | −21.080 *** | −22.444 *** |
Jung | −2.359 | −16.546 *** | −14.963 *** | −9.473 *** | −20.883 *** | −22.264 *** | −20.986 *** | −21.829 *** |
Jungrang | −2.413 | −15.223 *** | −8.532 *** | −8.867 *** | −22.309 *** | −21.27 *** | −23.393 *** | −21.217 *** |
Mapo | −2.464 | −15.688 *** | −9.222 *** | −9.873 *** | −22.965 *** | −21.318 *** | −20.889 *** | −21.553 *** |
Nowon | −2.301 | −24.224 *** | −9.050 *** | −24.444 *** | −22.065 *** | −20.589 *** | −21.022 *** | −21.574 *** |
Seocho | −2.391 | −8.709 *** | −8.289 *** | −10.111 *** | −22.589 *** | −21.375 *** | −20.641 *** | −21.977 *** |
Seodaemun | −2.493 | −9.008 *** | −8.97 *** | −10.494 *** | −22.802 *** | −21.484 *** | −20.734 *** | −21.074 *** |
Seongbuk | −2.408 | −8.203 *** | −9.341 *** | −9.939 *** | −22.437 *** | −21.13 *** | −23.455 *** | −21.763 *** |
Seongdong | −2.419 | −6.425 *** | −8.231 *** | −9.873 *** | −22.47 *** | −21.224 *** | −20.685 *** | −21.476 *** |
Songpa | −2.450 | −8.075 *** | −9.627 *** | −9.641 *** | −22.439 *** | −20.473 *** | −20.473 *** | −21.281 *** |
Yangcheon | −2.400 | −8.516 *** | −14.090 *** | −10.172 *** | −22.584 *** | −21.196 *** | −20.400 *** | −20.974 *** |
Yeongdeungpo | −2.428 | −8.549 *** | −9.425 *** | −23.188 *** | −22.618 *** | −21.386 *** | −20.934 *** | −21.514 *** |
Yongsan | −2.401 | −8.837 *** | −9.428 *** | −9.454 *** | −22.547 *** | −21.275 *** | −20.705 *** | −21.684 *** |
District | Selected Lag Length (Days) |
---|---|
Dobong | 5 |
Dongdaemun | 6 |
Dongjak | 6 |
Eunpyeong | 6 |
Gangbuk | 5 |
Gangdong | 6 |
Gangnam | 6 |
Gangseo | 6 |
Geumcheon | 6 |
Guro | 6 |
Gwanak | 6 |
Gwangjin | 6 |
Jongro | 5 |
Jung | 6 |
Jungrang | 5 |
Mapo | 6 |
Nowon | 6 |
Seocho | 6 |
Seodaemun | 6 |
Seongbuk | 6 |
Seongdong | 6 |
Songpa | 5 |
Yangcheon | 6 |
Yeongdeungpo | 6 |
Yongsan | 6 |
Type | Districts | |
---|---|---|
Type 1 | Geumcheon, Mapo, Yangcheon, Yeongdeungpo | |
Type 2 | Gangdong, Jungrang, Songpa, Yongsan | |
Type 3 | Dongdaemun, Gangbuk, Jung, Seongbuk | |
Type 4 | Gangnam, Gwangjun, Seongdong | |
Type 5 | Dobong, Gangseo | |
Type 6 | Seocho, Seodaemun | |
Type 7 | Dongjak | |
Type 8 | Eunpyeong | |
Type 9 | Guro | |
Type 10 | Gwanak | |
Type 11 | Jongro | |
Type 12 | Nowon |
Impulse Variable | Response Variable | Exemplary IRFs | ||
---|---|---|---|---|
temp | uhii | Gangdong | ||
pm10 | Gwanak | Songpa | ||
upii | Gangnam | Guro | Geumcheon | |
uhii | temp | Gangdong | Nowon | |
pm10 | Gangdong | Seodaemun | ||
upii | Gangdong | Seodaemun | Nowon | |
pm10 | temp | Gwanak | Nowon | |
upii | Gangdong | |||
upii | pm10 | Gangdong | ||
temp | Seodaemun | Nowon | ||
uhii | Gangbuk | Jongro |
Impulse Variable | Response Variable | |||
---|---|---|---|---|
temp | uhii | pm10 | upii | |
temp | 93.79%~97.73% | 14.08%~40.04% | 3.66%~8.16% | 1.02%~4.89% |
uhii | 0.68%~5.24% | 58.96%~85.12% | 0.35%~1.46% | 0.78%~2.48% |
pm10 | 0.35%~1.11% | 0.23%~1.16% | 86.05%~92.68% | 5.90%~26.17% |
upii | 0.30%~1.15% | 0.07%~1.11% | 1.84%~5.16% | 67.45%~87.95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youn, J.; Kim, H.; Lee, J. Relationships between Thermal Environment and Air Pollution of Seoul’s 25 Districts Using Vector Autoregressive Granger Causality. Sustainability 2023, 15, 16140. https://doi.org/10.3390/su152316140
Youn J, Kim H, Lee J. Relationships between Thermal Environment and Air Pollution of Seoul’s 25 Districts Using Vector Autoregressive Granger Causality. Sustainability. 2023; 15(23):16140. https://doi.org/10.3390/su152316140
Chicago/Turabian StyleYoun, Jeemin, Hyungkyoo Kim, and Jaekyung Lee. 2023. "Relationships between Thermal Environment and Air Pollution of Seoul’s 25 Districts Using Vector Autoregressive Granger Causality" Sustainability 15, no. 23: 16140. https://doi.org/10.3390/su152316140
APA StyleYoun, J., Kim, H., & Lee, J. (2023). Relationships between Thermal Environment and Air Pollution of Seoul’s 25 Districts Using Vector Autoregressive Granger Causality. Sustainability, 15(23), 16140. https://doi.org/10.3390/su152316140