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Abstract: Due to the escalating transportation demand and the significant ramifications of traffic
congestion, there is an imperative to investigate the sources of congestion, known as “congestion
bottlenecks”. The implementation of control methods ahead of the occurrence of congestion is crucial.
Connected and autonomous vehicles (CAVs) have a high potential within the field of traffic control.
CAVs are exceptionally controllable and facilitate management feasibility. This study utilizes the
high compliance of CAVs to provide an effective solution for the congestion management problem
at the network level when mixed traffic flows are saturated. A linear programming model to
reduce average travel time over the road network is developed. By utilizing a genetic algorithm,
the optimal traffic demand regulation scheme can be obtained and the departure time of CAVs
optimized. The effectiveness of the proposed method is validated through simulation across various
road network scales, CAVs penetration rates, and controlled CAV proportions. The proposed method
can only control a specific amount of CAVs, which, according to an analysis of the simulation results,
significantly improves the performance of the transportation system. The importance of employing
advanced control methods to improve the sustainability of urban transportation development and
the travel experience is underscored in the conclusion.

Keywords: sustainable transport development; congestion control; mixed traffic system; connected
and autonomous vehicles; traffic demand

1. Introduction
1.1. Background

Nowadays, numerous cities worldwide struggle with significant challenges due to
traffic congestion. All of the ten cities that ranked highest in terms of hours lost per driver
due to traffic congestion in 2022 suffered at least 105 lost hours. This amount is equivalent to
wasting more than four full days stuck behind the wheel [1]. Apart from the loss of time, the
economic losses resulting from traffic congestion are also very significant [2–5]. In 2022, the
financial burden imposed on drivers due to traffic congestion in the United States amounted
to more than 81 billion dollars. Similarly, the United Kingdom had a cost of 9.5 billion
pounds, while Germany incurred a cost of 3.9 billion euros [2]. Meanwhile, in the context of
urban environments, transportation stands out as a major contributor to air pollution [6–9].
In the year 2019, the transportation sector in the United States was responsible for the
emission of around 190 million tons of carbon dioxide (CO2), constituting almost 28% of
the overall domestic emissions [6]. In addition to CO2, which contributes to the greenhouse
effect, vehicle exhaust emissions may discharge carbon monoxide, nitrogen oxides, and
volatile organic compounds, all of which can exert an even more detrimental influence on
air quality. Additionally, traffic congestion threatens the safety of travelers. According to
the National Highway Traffic Safety Administration (NHTSA), the year 2018 had more
than 35,000 traffic crash fatalities. It is noticeable that a considerable proportion of these
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incidents can be attributed either directly or indirectly to congestion [10]. These presented
data emphasize the severe consequences associated with traffic congestion. The problems
that come with increasing traffic congestion are threating sustainable mobility for our
future [11].

The current state of traffic congestion is already of great concern; however, cities
are experiencing continued growth and the demand for transportation is expected to
substantially increase over the next few years [10]. Consequently, this will result in frequent
and extensive congestion within the transportation system. The escalating traffic demand
and the severe ramifications of traffic congestion have an imperative to investigate the
sources of congestion, known as “congestion bottlenecks”, and to develop methods for
managing traffic conditions at these bottlenecks. Bottlenecks can cause rapid oscillations
in vehicle speeds and densities, which can rapidly propagate upstream [12]. The concept
of a bottleneck was first proposed by Vickrey [13]. Bottlenecks are described localized
obstructions to traffic flow by Federal Highway Administration (FHWA) in 2011 [14].
Bottlenecks are deficiencies in traffic operations caused by traffic inflows that exceed the
design capacity, resulting in abnormal traffic flow conditions. The extended consequences
of bottlenecks have devastating consequences not just in the localized areas where the
bottlenecks occur, but over a far wider stretch, exposing more travelers in danger [10].

Managing traffic congestion effectively has been a difficult challenge for transportation
organizations. Urban traffic control (UTC) systems have also been continuously updated
and innovated to keep up with the increasing traffic demands [11,15,16]. Since UTC systems
usually rely on drivers’ high levels of compliance, the management’s effectiveness depends
on the drivers’ awareness and willingness, hence limiting the control strategy’s possible
application. Fortunately, among the various new techniques developed for traffic control,
connected and automated vehicles (CAVs) are believed to have great potential [17]. Gen-
erally, vehicles that are capable of communicating with other vehicles (vehicle-to-vehicle
or V2V), infrastructure (vehicle-to-infrastructure or V2I), and other traffic participants
including pedestrians and cyclists (V2X) are denoted as connected vehicles (CVs) [18,19].
Fully automated vehicles (AVs) are those in which “the vehicle can do all the driving in
all circumstances. The human occupants are just passengers and need never be involved
in driving” [20]. Thus, a CAV should be a vehicle that can perform the operational of a
traditional vehicle on its own and can communicate with nearby vehicles and infrastructure
for safer driving [21].

With rapid advances in wireless communication, sensing, and computing technologies,
it is anticipated that CAVs will soon extend beyond experimental environments and be
extensively deployed alongside traditional human-driven vehicles (HDVs) on roadways. In
contrast to HDVs and AVs, CAVs make full use of real-time road information to plan routes
by control terminals, and a high degree of compliance ensures effective traffic management.
Even though a lot of progress has been made so far, it will still take a relatively long time for
CAVs to achieve complete automation and have a high market penetration. It is expected
that in the near future, we will observe both HDVs and CAVs on the roads [22]. Managing
and controlling mixed traffic system holds both significant promise and challenges.

In such a situation where traffic congestion can have significant consequences, trans-
portation demand keeps growing, and technologies related to CAVs are fast developing.
The primary goal of this research is to use advanced CAVs to alleviate traffic congestion
at bottlenecks.

1.2. Literature Review

Alleviating traffic congestion at bottlenecks can bring network-wide improvement [23].
Improving traffic conditions at bottlenecks is frequently the most effective strategy to
enhance traffic flow and relieve congestion. Numerous researchers have studied both
the nature and prediction of flow breakdown as well as mitigation strategies to alleviate
or prevent congestion [10]. Several methods have been proposed to mitigate traffic flow
breakdown, including regulating arrival traffic demand and making the capacity larger.
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The improvement of traffic capacity can only be achieved by the implementation
of vehicle control measures that aim to decrease headway and increase speeds. These
measures are particularly relevant when the possibility of reconstructing the road through
engineering interventions is not being taken into consideration. The most significant
method of vehicle control that can accomplish this has been thought to be AVs or CAVs.
Nonetheless, the academic research on controlling AVs or CAVs remains scant and in its
infancy [24]. Moreover, at the current stage of AVs development, the free flow speed,
minimum headway, and maximum acceleration and deceleration values of AVs fail to align
with the prevailing optimistic predictions in most of the literature, which suggest that these
characteristics can be steadily distributed at better values. According to calculations based
on AVS trajectories measured in recent open road areas, the actual free flow speed and
dispersion of AVs are much slower than those of HDVs. The minimum headway is also
greater than that of HDVs, and the maximum acceleration and deceleration values are
similar to those of HDVs, but more volatile [25].

For these reasons, our research will concentrate on road-based traffic control systems
capable of regulating traffic flow. Road-based traffic control systems are utilized to regulate
the traffic flow by implementing various strategies. These strategies include limiting the
inflow of traffic into the network through ramp management, regulating the existing traffic
within the network through mainstream control or speed harmonization, and routing traffic
flows on alternative paths within the network through route guidance [10,24].

1.2.1. Ramp Management

Numerous academics have developed control methods to efficiently merge CAVs
from multi-lane ramps. Luo et al. [26] proposed control strategies to allow vehicles from
different lanes to pass through conflict points, with the goal of minimizing delay and
fuel consumption. Furthermore, for the problem of merging vehicles in different lanes,
a multi-lane centralized cooperative control strategy based on a cooperative game was
designed by Yang et al. [27]. The cooperative game approach is employed to determine
the optimal merging order of vehicles in different lanes, considering driving efficiency,
comfort and fuel consumption as cost functions in the merging control area. In the mixed
traffic environment where CAVs and HDVs coexist, Liu et al. [28] introduced a two-level
hierarchical cooperative on-ramp merging control strategy for CAVs. The objective of
this strategy is to optimize the trajectories of CAVs while ensuring safety, allowing them
to merge onto the main road in a flexible manner. To confirm the effectiveness of the
proposed methods, the recommended control strategies have been simulated in each of the
aforementioned literatures.

1.2.2. Speed Harmonization

Speed harmonization (SH) aims to reduces the speed variance of the vehicles within
an area of interest [10,17,29–34]. The SPECIALIST model [35] is an innovative example
of SH that employs the concepts from Kinematic Waves [36,37] to limit the inflow to the
shockwaves by decreasing the speed limit. The efficacy of the technique was evaluated on a
Dutch roadway, and the results indicated that it could improve throughput by effectively re-
solving moving shockwaves [38]. Chen and Ahn [39] devised a speed coordination system
based on shockwave theory to address the issue of the bottleneck. In a simulated analysis,
their technique was able to increase throughput at fixed bottlenecks, while concurrently
mitigating shockwave intensity, resulting in smoother speed transitions. Elfar [34] pre-
sented a predictive speed coordination system that can figure out where traffic congestion
will happen and broadcasts updated speed limitations to CAVs to relieve it. The system
does this with the help of machine learning algorithms and detailed vehicle trajectories
broadcast by CAVs. Ha et al. [10] present a control model based on reinforcement learning
for multi-intelligent CAVs that can operate in mixed traffic (CAVs and HDVs). The results
show that CAVs can significantly alleviate bottlenecks in freeway traffic, even when CAVs
account for only 10% of corridor traffic.
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The suitability of speed harmonization may not be appropriate for road network with
high saturation where vehicle speeds vary widely. In such cases, speed harmonization may
be difficult to implement.

1.2.3. Route Guidance

Guo et al. [11] conducted a comprehensive analysis of the existing literature and
observed a limit of research related to road network-wide traffic control systems based on
CVs. Research on traffic control at the network level mainly focuses on path planning and
traffic assignment. However, most studies primarily concentrate on static traffic assignment,
whereas the dynamic control of CAVs’ paths to improve the overall performance of the
traffic network under mixed traffic flow is still in its early stages of research. Guo et al. [22]
proposed a dynamic bi-level optimal control problem to improve the systemic performance
of the traffic network. The upper-level problem involves CAVs’ route control, while the
lower-level problem deals with HDVs’ route selection. They established an optimal control
problem with equilibrium constraints’ (OCPEC) model. The objective for CAVs is to
minimize the total travel time of the system, in accordance with the principles of dynamic
system optimal (DSO) [40,41]. On the other hand, HDVs operate in a self-interested manner,
aiming to minimize their individual travel costs, and based on the principles of dynamic
user equilibrium (DUE) [40,41] within the traffic network.

Traffic assignment methods can effectively improve the overall performance of the
traffic system when the system is either uncongested or experiencing only minor congested.
However, their effectiveness is limited in highly saturated traffic systems. Furthermore, the
practical applicability of these methods for traffic management in real-world traffic systems
remains limited due to the required detailed control over a large number of vehicles. The
primary obstacle is to attaining optimal control effectiveness while minimizing costs.

1.2.4. Network-Level Hybrid Traffic Control Method

In recent years, there has been an increasing number of studies concentrating on
hybrid traffic control method at the network level. Moradi et al. [42] proposed an integrated
three-layer hierarchical framework. This framework incorporates intersection controllers
located at various intersections within the network, network controllers for regulating
the inflow of traffic into the network, and a sequential phase controller for optimizing
the intersection signals. The primary objective of this framework is to facilitate orderly,
continuous, and efficient traffic movement of vehicles through the traffic road network. In
2023, Guo et al. [43] proposed a general multi-scale modeling and control framework for
urban traffic control with CAVs. This framework addresses both the faster-scale vehicle
control problem and the slower-scale signal control problem. The work in this paper
is the first step towards the establishment of the comprehensive theory, as well as the
development of analysis and solution methods for a general multi-scale control framework
for UTC.

Based on the limitations of existing research and drawing inspiration from Vickrey’s
communication travel time control [13] as well as the findings of Moradi and Guo [42,43],
this study designs a network-level hierarchical bottleneck congestion control method that
takes into account the spatiotemporal propagation characteristics of traffic flow. The
majority of the aforementioned publications have employed simulation to confirm the
efficacy of the proposed control strategies, the current state of CAVs’ development, and the
impracticability of testing them in real saturated traffic environments. Thus, this research
also investigates the control method through simulation.

The subsequent sections of this manuscript are structured as follows. Section 2 pro-
vides an overview of the proposed traffic regulation method for a mixed traffic system
on road networks. It includes various tasks such as acquiring traffic data, identifying
congestion bottleneck, dividing control layers, as well as developing and solving of the
linear programming model. Following that, in Section 3, two road networks, small-scale
and large-scale, are constructed to simulate traffic and validate the effectiveness of the
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proposed control system. A comprehensive evaluation is conducted on the efficacy of the
control approach across various CAVs’ penetration rates and CAVs’ control proportion.
In the final section, Section 4, concluding observations and recommendations for further
research are presented.

2. Method

This section presents a traffic regulation approach for mixed traffic systems. Figure 1
shows the basic workflow of the Network-Level Hierarchical Bottleneck Congestion Con-
trol Method. To begin with, we have to collect traffic data for further examination and
management. With the help of these data, we are able to identify the recurring congestion
bottleneck and use it as the primary control point. We then divide the control layers based
on the distance that each road edge is to the congestion bottleneck. Our main objective is
to regulating the traffic demand within different layers at different time periods. Based
on this, we create a linear programming model whose goal is to reduce the average travel
time. This model allows us to control the departure time of particular CAVs, consequently
decreasing the whole transport system’s travel time and delay.
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Figure 1. The proposed control method’s fundamental procedure.

The following assumptions are made for this search. The traffic system can be classified
into two distinct kinds of travelers: CAVs and HDVs. Due to the utilization of sophisticated
sensors and wireless communication devices, CAVs possess the capability to engage in
real-time communication with both infrastructure and other CAVs.

Thanks to the utilization of advanced sensors and wireless communication devices,
CAVs can communicate in real time with both the infrastructure and other CAVs. Addition-
ally, they may receive instructions from traffic managers and obtain pertinent information
about the vehicles in their immediate environment. HDVs are totally uncontrollable, while
CAVs demonstrate complete controllability and will adhere to traffic management’ guidance.

Some of the basic parameters used subsequently are as follows: There are Nedges edges

in the road network and the edges are denoted by ej, j ∈
{

1, 2, . . . , Nedges

}
. The length

of edge ej is denoted by lej . The road network has a total of Ntazs transportation analysis
zones (TAZs), TAZs are denoted by tazk, k ∈ {1, 2, . . . , Ntazs}. The number of road edges
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included in a TAZ tazk is denoted by Ntazk . The traffic flow has a total of Nvehicles vehicles,
vehicle i ∈ {1, 2, . . . , Nvehicles}.

2.1. Traffic Data Acquisition

A range of techniques are employed to collect fundamental data on the mixed traffic
system, such as the utilization of roadside cameras, sensor-equipped CAVs, and loop de-
tection. Traffic signal plans are supplementary to the network topology and traffic flow
data (vehicle trajectory or traffic flow data recorded by detectors), which are considered
essential. The preprocessing of the data is necessary for real applications, and this can be
accomplished by employing the method outlined in our previous research publication [44].
The traffic data in the simulation is gathered from passing vehicles using instantaneous
loop detectors. These detectors are strategically positioned in each lane, both upstream
and downstream of each edge. This data includes the identification number, time, and
instantaneous speed. Table 1 displays the traffic flow data that was utilized in this investi-
gation. With regard to CAVs, comprehensive data can be gathered through detection and
communication devices installed on CAVs, as well as the detectors positioned throughout
the road network.

Table 1. An illustration of fundamental traffic flow data.

Parameter Meaning Example

id Detector number “e_121047599_0_1”

time Moment of data collection “4.19”

state Vehicle status (including enter,
stay, leave) “enter”

vehID Vehicle number captured “121047599_375822882#1_HDV_time4200.0”

speed Instantaneous speed of each
vehicle (m/s) “10.14”

length Length of each vehicle (m) “5.00”

type Vehicle type (includes both
HDVs and CAVs) “HDV”

The detectors deployed upstream and downstream of the road edge ej are denoted

by d
ej
in and d

ej
out, respectively. The detector d

ej
in detects vehicle i at moment t t

ej,in
i , and the

detector d
ej
out detects vehicle i at moment t t

ej,out
i .

2.2. Congestion Bottleneck Identification

The traditional method for identifying recurrent congestion bottlenecks involves
assessing three key factors: congestion intensity, congestion duration, and frequency of
recurrent occurrences [45]. It implies that, based on the initial traffic data, it is necessary
to first ascertain the spatial average speed of each road edge for every time interval as a
preliminary step. The following procedure is used to computed the spatial average speed
for each road edge based on the identified traffic data. The travel time t

ej
i of vehicle i on

road edge ej is first calculated by using the moment that vehicle i passes upstream and
downstream of the edge ej and is calculated by Equation (1):

t
ej
i = t

ej,out
i − t

ej,in
i , (1)

where variables t
ej,in
i and t

ej,out
i denote the moment detectors d

ej
in and d

ej
out detect vehicle j.
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Then, the spatially average travel time of the road edge ej over the time period

[t, t + Tinterval) is denoted by T
ej
[t,t+Tinterval)

and is calculated by the Equation (2):

T
ej
[t,t+Tinterval)

=

∑
i∈J

ej
[t,t+Tinterval)

t
ej
i

∣∣∣Jej
[t,t+Tinterval)

∣∣∣ , (2)

where t
ej
i is the travel time of vehicle i on road edge ej calculated in Equation (1). The vari-

able J
ej
[t,t+Tinterval)

is the set of vehicles detected by detector d
ej
in or d

ej
out during the time period

[t, t + Tinterval). Moreover, the variable
∣∣∣Jej
[t,t+Tinterval)

∣∣∣ denotes the length of the vehicle set

J
ej
[t,t+Tinterval)

, i.e., the total number of vehicles passing through the roadway edge ej dur-
ing the time period [t, t + Tinterval). t ∈ {0, Tinterval, 2Tinterval, . . . , (n− 1)Tinterval}, where
Tinterval indicates the time period interval, and n denotes the number of time periods with
time interval Tinterval included in the total analysis time Tmax. How Tmax is determined we
will discuss in the subsequent section. n can be calculated by the Equation (3):

n =

⌈
Tmax

Tinterval

⌉
(3)

Finally, divide the length lej by the spatially average travel time T
ej
[t,t+Tinterval)

to obtain

the spatially averaged vehicle speed v
ej
[t,t+Tinterval)

of the road edge ej during this time period:

v
ej
[t,t+Tinterval)

=
lej

T
ej
[t,t+Tinterval)

(4)

Find the time period when the average speed of each edge v
ej
[t,t+Tinterval)

in the road
network is lower than the critical speed of v∗ = 12 (m/s) [44], which is defined as the
occurrence of congestion. Additionally, statistically record the initial occurrence of conges-
tion for each edge, as well as the frequency of congestion. The road edge that experiences
congestion the earliest is considered to be the congestion bottleneck among those edges that
exhibit the highest frequency of congestion. In the context of an extensive road network,
there exist multiple bottlenecks.

The traffic situation in the vicinity of this bottleneck and its future state are constantly
being monitored. The time T∗ when congestion first occurs are predicted as the target
moments for control. The aim of the control measures is to proactively prevent or mitigate
congestion, in terms of both temporal and spatial aspects. It is crucial to execute these
measures beforehand, prior to the actual occurrence of congestion.

2.3. Control Layers Division

It can be shown that traffic demand originated from road edges further away from
the congested bottleneck takes longer temporally to propagate to the bottleneck based on
the spatial and temporal propagation characteristics of traffic flows. Because of this, these
demands need to be regulated earlier.

The road edges other than the bottleneck are separated into three layers according
to the network connectivity in order to simplify the calculation process: the inner layer,
middle layer, and the outer layer. The inner, middle, and outer layers are radial ranges of 0
to l0, l0 to 2l0 and 2l0 to 3l0 distances from the bottleneck, respectively, The corresponding
time periods for the implementation of control measures for each layer is T∗ − t0 to T∗,
T∗ − 2t0 to T∗ − t0, and T∗ − 3t0 to T∗ − 2t0, respectively, before the moment T∗ when
congestion first occurs at the bottleneck. Therefore, specific time periods for implementing
the control measures is determined by Tcontrol = [T∗ − 3t0, T∗). l0 and t0 are quantities
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related to the scale of the road network. The set of CAVs controlled in each layer at the
corresponding time periods are denoted as J∗in, J∗mid, and J∗out, respectively. The set of control
CAVs in each layer for the relevant time period is shown in Figure 2.
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2.4. Control Method Implementation

Prior to the initial occurrence of the traffic congested moment (T∗) at the bottleneck,
controls are implemented. In this study, the focus is only on managing the schedule of
CAVs enter the network. The following linear programming model is used to determine
the exact regulatory scheme.

2.4.1. Objective Function

The objective of this work is to minimize the average travel time of the entire mixed
transportation system by developing a mixed integer linear programming formulation.
The objective function, denoted by φ, is utilized to measure the optimization objective of
our model. To be more precise, Equation (5) describes how to minimize the average travel
time components: the average departure delay before travelling named tDD, the average
travel duration in the network named tTD, and the average extra departure delay for the
controlled CAVs named teTD.

minφ = min
(
tDD + tTD + teTD

)
= min

∑
i∈{1,2,...,Nvehicles}

(
ti
DD + ti

TD
)
+ ∑

j∗∈{J∗in,J∗mid,J∗out}
tj∗
eTD

Nvehicles
, (5)

where ti
DD and ti

TD represent the departure delay and travel duration for vehicle i, respec-

tively. tj∗
eTD represents the extra departure delay for the controlled CAV j*,

j ∈
{

J∗in, J∗mid, J∗out
}

. J∗in, J∗mid, and J∗out is the set of CAVs controlled in each layer, respectively.
Nvehicles is the total number of vehicles in the traffic flow.

HDVs tend to be arbitrary and unpredictable, as they can enter the traffic network in
accordance with the individual preferences of the travelers. The departure delay of HDVs
is determined by the density of traffic in the entrance lane or the mainline that connects
to the lane from which they enter. The departure delay of a CAV is also affected by the
density of traffic in the connecting mainline and entrance lane. In contrast, controlled CAV
are restricted to entering the network during designated periods as predetermined by the
managers. This results in an inevitable increase in departure delays for the controlled CAVs,
but it also reduces the total travel time of the mixed traffic system.

In order to minimize the average travel time of the mixed traffic system, the optimal
solution will be chosen by Equation (6):(

t1∗
eTD, t2∗

eTD, · · · , tj∗
eTD, · · · , t

|J∗in|+|J∗mid|+|J
∗
out|

eTD

)
= argminφ, (6)
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where tj∗
eTD represents the extra departure delay for the controlled CAV j∗,j ∈

{
J∗in, J∗mid, J∗out

}
.

J∗in, J∗mid, and J∗out is the set of CAVs controlled in each layer, respectively. |J∗in|+
∣∣J∗mid

∣∣+
|J∗out| represents the sum of the number of controlled CAVs contained in the three layers.

2.4.2. Constraint Conditions

In order to protect the personal interests of the passengers on controlled CAVs, con-
straints are set to prevent their entry into the traffic network from experiencing an excessive
amount of additional delay.

First, as can be observed from Equation (7), the maximum value of the additional
departure delay should not exceed a threshold t, which is flexible depending on the scale
of the road network:

∀
j∗∈{J∗in,J∗mid,J∗out}

tj∗
eTD ≤ t, (7)

where j∗ ∈
{

J∗in, J∗mid, J∗out
}

denotes the controlled CAV j∗; J∗in, J∗mid, and J∗out are the set of

CAVs controlled in each layer, respectively. The variable tj∗
eTD represents the extra departure

delay for the controlled CAV j∗, and t denotes the threshold for the extra departure delay
before the trip.

Furthermore, it is crucial to comply with the spatiotemporal propagation features of
traffic flow. It takes longer for vehicles driving from the outside to the congestion bottleneck.
As a result, it is imperative that the controlled vehicles in the outer layer should not be
permitted to depart later than those situated in the middle and inner layers. Moreover, the
controlled cars in the middle layer should not be permitted to depart later than those in the
inner layer. Equation (8) can be used to formulate this constraint:

max
j∗∈J∗out

(
tj∗

IT + tj∗
eTD

)
≤ max

k∗∈J∗mid

(
tk∗

IT + tk∗
eTD

)
max

k∗∈J∗mid

(
tk∗

IT + tk∗
eTD

)
≤ max

l∗∈J∗in

(
tl∗

IT + tl∗
eTD

) , (8)

where j∗, k∗, and l∗ all denote the controlled CAVs, which belong to different layers; J∗in,

J∗mid, and J∗out are the set of CAVs controlled in each layer, respectively. The variable tj∗
eTD

represents the extra departure delay for the controlled CAV j∗; and tj∗
IT represents the

desired departure time before the control for the controlled CAV j∗.

2.4.3. Computational Method

For combinatorial optimization problems, two types of solution algorithms exist: exact
algorithms and heuristic algorithms [46]. Although exact algorithms can produce optimal
solutions with great precision and are more suited for handling straightforward problems,
they do have limitations. It tends to be difficult to acquire the best answer using exact
algorithms for complicated issues with many cases. Conversely, heuristic algorithms like
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Tabu Search (TS), Ant Colony
Optimization (ACO), and Genetic Search (TS) can efficiently identify approximations for
problems with challenging search spaces. The chosen algorithm in this work involves
the use of heuristic algorithms to tackle the given model. This decision is based on the
fact that the optimization problem of controlling a mixed transportation system is a non-
deterministic Polynomial-hard (NP-hard) problem, making it impractical to solve using
exact algorithms.

Genetic algorithms are capable of retaining and improving the best solutions in each
generation by modeling the process of biological evolution and progressively converging
to the global optimum. Due to this adaptation, the genetic algorithm is able to conduct a
comprehensive exploration of the search space, thereby avoiding premature convergence
to local optima and preserving solution diversity. The crossover and mutation procedures
enable the introduction of new solutions into the search space, increasing the possibility
of thoroughly exploring various places. Since GA is naturally parallel, it can evaluate
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and refine several potential solutions simultaneously. It is well-suited for implementation
in distributed, cloud, or multi-core computing environments, thus expediting the whole
solution process. Furthermore, it has been observed that GA can work effectively in
complicated contexts and is robust to the presence of noise, uncertainty, and non-convex
functions in the problem [47–49].

GA has been widely used in the field of transportation [50,51], especially in solving
complex, multi-objective, and real-time demanding problems, and it is a powerful tool for
traffic management and planning. In the instance of the NP-hard optimization problem for
managing mixed traffic systems, the genetic algorithm is selected as the solution algorithm
based on the characteristics of the active control problem, the algorithm’s performance, and
the availability of computational resources. Table 2 presents the values of the fundamental
parameters of the genetic algorithm utilized in the research.

Table 2. The values of the fundamental genetic algorithm parameters.

Parameter Value

Pop Size 20
Generation Size 30

Crossover Probability 0.6
Mutation Probability 0.1

Elite True

3. Simulation Results and Discussion

In this section, we report the results of our simulation-based evaluation of the traffic
demand management system generated from the Network-Level Hierarchical Bottleneck
Congestion Control Method.

Due to a limited number of AVs already operating on real-world road networks, even
in the case of AVs that have been tested in open road environments, their average speed
and headway are relatively low [25] and they still do not reach Level 5 [52]. Moreover,
the application of CAVs to real-world road networks is presently limited to bound testing
environments. The amount and quality of relevant traffic data that can be collected is
quite restricted, and there are very few devices enabling CAVs communication on the
roadways. Most of the research that has already been conducted uses simulation to evaluate
traffic conditions with CAVs included. Consequently, in order to verify the efficacy of the
proposed model, experiments were carried out on two distinct networks of varying scales
in Shanghai using the simulation program Simulation of Urban MObility (SUMO). Figure 3
shows the topology of two networks. We evaluate the efficacy of this method using various
road network sizes, different penetration rates of CAVs, and different proportions of the
controlled CAVs.

Table 3 contains some of the fundamental parameter configurations for HDVs and
CAVs within the simulation. The following model of the CAVs is chosen to be the cooper-
ative adaptive cruise control (CACC) [53–56] model, which has been validated by PATH
Laboratory at the University of California, Berkeley. Moreover, the widely used Intelligent
Driver Model (IDM) [45] is selected as the HDVs following the model in this study.

In this study, the GA known for its fast-computational speed was selected to solve
the developed model. In order to make the extra delay for CAVs not too long, the solution
precision was set to 1 min and t = 5 min, thus 0 ≤ eTDj∗ ≤ 5 min, j∗ ∈

{
J∗in, J∗mid, J∗out

}
.

Therefore, the delay range was divided into six different values. Each chromosome in the
GA had a length of three, representing the three control layers.
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Table 3. The simulation’s basic parameter settings for HDVs and CAVs.

Parameter HDVs CAVs

Minimum gap (m) 2.5 1.5
Acceleration (m/s2) 2.6 2.6
Deceleration (m/s2) 4.5 4.5

Emergency deceleration (m/s2) 9 9

Car following model Intelligent driver model
(IDM)

Cooperative adaptive
cruise control (CACC)

3.1. Small-Scale Network with Different CAVs’ Penetration Rates

Figure 3a depicts the road network topology for the closed road scenario, which is a
more typical surface road area. The small-scale square-like road network has a more uni-
form distribution. The network consists of eight traffic light intersections, one roundabout,
eighteen entries, sixteen exits, and spans approximately 500 m by 500 m in total area.

3.1.1. A total of 50% CAVs’ Penetration Rate

In our earlier publication [57], we analyzed and simulated three different scenarios
pertaining to the OD distribution in a small-scale road network. These scenarios include
Scenario I, which represents a relatively uniform OD distribution; Scenario II, characterized
by a “near-low-far-high” OD distribution; and Scenario III, featuring a “near-high-far-low”
OD distribution. The analysis was conducted using a 50% penetration rate of CAVs. In
each scenario, the congestion bottleneck is identified, and the relevant layers are divided.
The optimal control optimization scheme is then determined using GA. To access further
details on the three scenarios, readers are advised to refer to the paper [57].

The average departure delay before travelling tDD, the travel duration in the network
tTD, the average travel time, and the objective function φ before and after the control
optimization are compared. The control effects of three scenarios of OD distribution for
this small-scale road network under a 50% CAV penetration rate are shown in Table 4.
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Table 4. The control effects of three scenarios of OD distribution for this small-scale road network
under 50% CAVs’ penetration rate.

Evaluation
Indicators

Scenario I Scenario II Scenario III

Before
Control

(s)

After
Control

(s)

Improvement
(%)

Before
Control

(s)

After
Control

(s)

Improvement
(%)

Before
Control

(s)

After
Control

(s)

Improvement
(%)

Controlling
vehicles

proportion
- 2.71% - - 4.35% - - 5.53% -

∑
j∗∈CAVs

tj∗
eTD

- 4020 - - 5940 - - 7620 -

tDD 229.18 153.51 33.02 350.47 32.38 90.76 435.65 283.99 34.81

tTD 327.53 98.81 69.83 332.18 161.95 51.25 246.26 208.09 15.50

Average travel
time 556.71 252.32 54.68 682.65 194.33 71.53 681.89 492.08 27.84

φ 556.71 257.05 53.83 682.65 201.32 70.51 681.89 501.04 26.52

It may be inferred that the recommended control method performs well in various
OD distribution scenarios and holds potential utility for small-scale networks. The optimal
control effect is observed in the OD distribution scenario II, characterized by a “near-low-
far-high” pattern. Subsequently, the OD distribution scenario I, which exhibits a nearly
uniform distribution, demonstrates a somewhat favorable control effect. Moreover, the
OD distribution scenario III, characterized by a “near-high-far-low” pattern, exhibits the
least desirable control effect. In the least-favorable scenario, the average travel time is also
lowered by more than 25%. Furthermore, all these scenarios exhibited a decrease in both
temporal and spatial extent of congestion throughout the road network, demonstrating the
high effectiveness of the control method.

Further experimentation is necessary to validate the effectiveness of the suggested
network-level hierarchical bottleneck congestion control method.

3.1.2. Different CAVs’ Penetration Rates

Based on the congested bottleneck and three control layers found at Scenario I, a
simulation analysis was conducted under various CAVs’ penetration rates to confirm
the applicability of the proposed method. To guarantee consistency between varying
penetration rates, the overall simulation time for every scenario was maintained at around
3500 s. Table 5 displays the settings for the simulated experiments for the penetration rates
as well as the three parameters tDD, tTD, and average travel time before control.

Table 5. Traffic demand and parameter values before control for each CAVs’ penetration rate.

CAVs’
Penetration Rate

Traffic Demand
(pcu/1800 s)

Total
Simulation

Time (s)

Average
Depart

Delay
–
tDD (s)

Average
Travel

Duration
–
tTD (s)

Average Travel
Time (s)

10% 740 3430 108.96 399.83 508.79
20% 730 3429 136.03 265.36 401.39
30% 825 3656 105.33 315.57 420.90
40% 900 3319 140.02 305.78 445.80
50% 850 3658 229.18 327.53 556.71
60% 900 3575 265.60 399.06 664.66
70% 975 3429 175.91 270.88 446.79
80% 1150 3562 251.57 240.34 491.91
90% 1230 3433 169.89 202.21 372.10
100% 1500 3698 192.29 164.97 357.26
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Table 5 shows that, barring a few instances, there was a positive correlation between
the penetration rate of CAVs and the capacity of the road network to accommodate ve-
hicle traffic. This observation holds true when considering a comparable duration of the
simulation period. The use of both the congestion bottleneck and the three control layers
that were set up at the 50% penetration rate remains. By employing GA, the optimal
regulation schemes were identified for each penetration rate. Table 6 and Figure 4 present
the effectiveness of the traffic system under the corresponding optimal regulatory schemes
at various levels of penetration.

Table 6. The control effectiveness at different CAVs’ penetration rates.

CAVs’ Penetration
Rate (%)

φ before
Control (s)

Proportion of
Controlled CAVs (%)

∑
j*∈CAVs

tj*

eTD φ after
Control (s)

Improvement of
φ (%)

10 508.79 0.27 7 260.57 50.05
20 401.39 0.96 20 391.27 7.09
30 420.90 1.82 32 249.75 47.71
40 445.80 2.11 54 323.46 38.75
50 556.71 2.71 61 300.85 56.14
60 664.66 3.78 114 636.66 20.22
70 446.79 3.90 84 349.49 39.42
80 491.91 4.17 107 454.68 28.19
90 372.10 6.26 231 464.54 34.21
100 357.26 3.40 126 416.43 17.30
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The method proposed in this paper is characterized by its simplicity and efficacy in
controlling the propagation of congestion. The highest performance was achieved when the
penetration rate of CAVs reached 50%, while the least favorable performance was recorded
at a penetration rate of 20%. The variations in penetration rates of CAVs have a direct impact
on the congestion bottlenecks and corresponding layers across the entirety of the road
network. However, the recalculation of congestion bottlenecks and their corresponding
layers is not conducted at different penetration rates, resulting in less efficient control
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measures at other penetration rates. Therefore, in order to determine the optimal traffic
demand regulation scheme, it is imperative to obtain congestion bottlenecks and layers that
correspond to different CAVs’ penetration rates. Implementing traffic demand regulation
without identifying congestion bottlenecks does not lead to optimal control.

3.2. Large-Scale Network under Different Proportions of Controlled CAVs

The magnitude of real-world transportation road networks is substantial. So, we
have undertaken simulation investigations on large-scale road networks to validate the
practicality of the method proposed in this paper for real-world implementation. The
large-scale network comprises a total of 2022 entrances and is encompassed within a spatial
expanse measuring 15,000 × 15,000 m. These entrances are categorized into 67 TAZs. The
initial traffic demand for the simulation in this network is derived from the real-time traffic
data that was gathered.

The average travel duration per vehicle on the network is about 935.96 s and the
average departure delay before the trip is approximately 2.04 s when traffic volumes are
low and vehicles are moving freely.

3.2.1. 50% CAVs’ Penetration Rate

The control model was initially developed and evaluated with regards to a 50%
penetration rate for CAVs. During a time span of 1800 s, a total of 21,085 vehicles were
introduced into the existing road network. At this point, there exists a significant level of
traffic congestion, resulting in a prolonged overall simulation time of 15,360 s.

The average travel duration tTD for each vehicle is 2381.45 s, with an average departure
delay tDD of 109.95 s per vehicle before the implementation of control measures. It is noted
that the total analysis time Tmax, i.e., the maximum value of t + Tinterval, can be determined
using Equation (9):

Tmax = tinsert + tTD + tDD = 1800 + 2381.45 + 109.95 = 4291.4 s, (9)

where tinsert is the total duration of traffic input into the road network. Since in this scenario
vehicles are imported into the simulation for only 1800 s, no subsequent vehicles are newly
input into the road network; tinsert = 1800 s.

• Congestion bottleneck and control layers;

The spatially averaged vehicle speeds for each road edge under Tinterval = 900 s
are calculated based on the simulation output. The number of times that the spatially
averaged speed of the road edge numbered 424217529#0 went below the critical speed
v∗ was 15, which is the most frequent of all road edges. Thus, the congestion bottleneck
numbered 424217529#0 was identified, which corresponds to the target time T∗ = 1350 s
for congestion control, after which the congestion gradually spreads out across the road
network. Set t0 = 450 s, and the time period for implementing control measures is
Tcontrol = [0, 1350] s. The time periods for the implementation of control measures in
each layer are Tout,control = [0, 450) s for the outer layer, Tmid,control = [450, 900) s for the
middle layer, and Tin,control = [900, 1350) s for the inner layer. Moreover, the roadway
edges beyond the bottleneck were divided into layers, setting l0 = 5000 m. The respective
positions are depicted in the Figure 5.

Based on this, the CAVs in the corresponding time period of the three layers were
controlled. The number of vehicles in the set of controlled vehicles in each layer during the
time period in which the control measures were implemented was |J∗in| = 452,

∣∣J∗mid

∣∣ = 1369,
and |J∗out| = 263, respectively. The total number of CAVs that can be controlled is 2084,
which is 9.88% of the total number of vehicles on the road network.
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Figure 5. The corresponding locations of the congested bottleneck and layers on the large-scale
network.

• Optimal regulation scheme of traffic demand.

Figure 6 depicts the utilization of GA to minimize the objective function and explore
the solution set in the context of a scenario, where there is a 50% CAVs’ penetration on a
large-scale road. The optimal traffic demand regulation scheme corresponding to making
the objective function obtain the minimum value is obtained.
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Figure 6. The search process of the GA for the large-scale road network.

• Control effectiveness;

The average departure delay before travelling tDD, the travel duration in the network
tTD, the average travel time and the objective function φ before and after the control
optimization are compared, and the comparison results are shown in the Table 7.
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Table 7. The control effects of large-scale road networks at 50% penetration of CAVs.

Evaluation Indicators
Free Flow

(s)

50% CAVs Penetration Rate

Without Control
(s)

With Control

Value (s) Compare to without Control (%)

tDD 2.04 103.95 101.96 1.91
tTD 935.96 2381.45 2087.58 12.34

Average travel time 938.00 2485.40 2189.54 11.90

∑
j∗∈CAVs

tj∗
eTD - - 309,900 -

φ 938.00 2485.40 2204.24 11.31

The most effective traffic demand regulation scheme is capable of managing approxi-
mately 9.88% of the total vehicles within the large-scale road network. As a result, there is
a notable decrease in the average travel time of the vehicles by 11.90% and a corresponding
reduction in the value of the objective function by 11.31%. However, the improvement
shown in a small-scale road network is comparatively more substantial, as it exhibits an
average travel time reduction exceeding 50%. The explanation could be that there are
multiple bottlenecks in large-scale road networks. To achieve enhanced control, it becomes
necessary to handle each bottleneck independently.

To conduct a more comprehensive evaluation of the efficacy of the control method,
this study aims to delve into further detail. The speed and time indicators provided below
are intended for analysis.

1. Time indicators.

The time indicators for the road network and TAZs are expressed in terms of spatially
averaged travel times. The following is a description of the calculation procedure.

The spatially average travel time Ttazk
[t,t+Tinterval)

of the TAZ tazk over the time period

[t, t + Tinterval) is calculated from the spatially average travel time T
ej
[t,t+Tinterval)

of the road
edge ej over the time period [t, t + Tinterval). Considering that the length of each road edge
is different, the calculation needs to be weighted according to the length of the road edges
and calculated using the Equation (10):

Ttazk
[t,t+Tinterval)

=

∑
ej∈tazk

T
ej
[t,t+Tinterval)

/
lej

l

Ntazk

, (10)

where T
ej
[t,t+Tinterval)

denotes the spatially average travel time of the road edge ej over the

time period [t, t + Tinterval) can be calculated by the Equation (2). l is the average length

of all edges included in the road network, l =
∑

j∈{1,2,...,Nedges}
lej

Nedges
. Nedges is the total number of

edges in the road network. lej is the length of edge ej.
The spatially average travel time Ttazk for TAZ tazk is finally calculated using Equation (11):

Ttazk =
Ttazk
[t,t+Tinterval)

n
, (11)

where n denotes the number of time periods with time interval Tinterval included in the total
analysis time Tmax and can be calculated by the Equation (3).
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What is more, the spatially average travel time T of the road network is also calculated,
first using Equation (12) to calculate the spatially average travel time T[t,t+Tinterval)

of the
road network over the time period [t, t + Tinterval).

T[t,t+Tinterval)
=

∑
ej

T
ej
[t,t+Tinterval)

/
lej

l

Nedges
(12)

This is then averaged over time and calculated using Equation (13) to obtain the
spatially average travel time T for the entire road network:

T =

∑
t∈{0,Tinterval,...,(n−1)Tinterval}

T[t,t+Tinterval)

n
(13)

2. Speed indicator.

The speed indicator is expressed as the spatially averaged vehicle speed vlayer
[t,t+Tinterval)

over the time period [t, t + Tinterval), where layer ∈ {in, mid, out, bottleneck}. Using calcu-
lations, Equation (14) also needs to be weighted according to the length of the edge:

vlayer
[t,t+Tinterval)

=

∑
ej∈layer

v
ej
[t,t+Tinterval)

·
lej

l

Nej∈layer
, (14)

where v
ej
[t,t+Tinterval)

can be calculated by the Equation (4), Nej∈layer denotes the number of
road edges included in the layer.

This is then averaged over time and calculated using Equation (15) to obtain the
spatially average vehicle vlayer for each layer:

vlayer =

∑
t∈{0,Tinterval,...,(n−1)Tinterval}

vlayer
[t,t+Tinterval)

n
, (15)

where n denotes the number of time periods with time interval Tinterval included in the total
analysis time Tmax, which can be calculated by the Equation (3).

3. Calculation results of the indicators.

The effectiveness of the best traffic demand regulation scheme at 50% CAVs’ pen-
etration under the large-scale roads is evaluated. Set Tinterval = 900 (s). The equations
discussed earlier are used to calculate the spatially average travel time of each TAZ both
before and after the control, as indicated in Figure 7. Additionally, it calculates the ratio
between the spatially average travel time in the free-flow and the spatially average travel
time of each TAZ both before and after the control.

To provide additional elucidation on the control impact of TAZs at different locations,
Figure 8 displays the ratio values in Figure 7b,c, which correspond to the locations of
the TAZs. The figure displays the location and shape of each TAZ. The values assigned
to the areas indicate the corresponding ratios. Figure 8b shows the color representation
of each area at the bottom, indicating whether there was an improvement in the spatial
average travel time after the control. The color green is indicative of improvement, while a
yellowish color suggests little change, and the color orange indicates degradation.
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Figure 7. (a) The spatially average travel time of each TAZ in free flow, before control and after
control; (b) the ratio of the spatially average travel time of each TAZ before control to the spatially
average travel time under free flow; (c) the ratio of the spatially average travel time of each TAZ after
control to the spatially average travel time under free flow.

As indicated by Figures 7b and 8a, the congestion condition is extremely terrible
before control. On the other hand, the results depicted in Figures 7c and 8b demonstrate
a significant improvement in traffic efficiency within the majority of TAZs, and traffic
efficiency has greatly increased when employing the optimal control scheme derived from
the control method suggested in this work. The implementation of this method has led
to a decrease in travel time in 57 TAZs, accounting for over 85% of the overall TAZs’
count. Notably, in 19 TAZs, or 28.36% of the total TAZs, the improvement in travel time
exceeds 20%.
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Figure 8. (a) Map of the ratio of spatially averaged travel time for traffic TAZs (before control);
(b) map of the ratio of spatially averaged travel time for traffic TAZs (after control).

As for the spatially average travel time of the whole road network: In the free flow
condition, the spatially average travel time was 4.58 s. Prior to implementing control
optimization, the spatially average travel time was significantly higher at 58.25 s, resulting
in a ratio of 12.72 times the free flow. However, after control optimization, the spatially
average travel time decreased to 35.03 s, resulting in a ratio of 7.65 times the free flow
condition. The observed increase in the spatially average travel time between the before
and after control amounted to 39.86 (%). The study provides additional confirmation of
the effectiveness of the active control method through the analysis of spatial average travel
time indicators. This method has the potential to greatly enhance traffic conditions by
effectively controlling a limited number of CAVs at the road network level.

After that, the speed indicator was calculated and analyzed. Equation (11) is used to
calculate the regionally averaged speed over time for each layer and bottleneck, resulting
in the presentation of these data in Figure 9.

Then, Equation (12) was used to obtain the spatially averaged vehicle speeds for each
layer, both before and after the control. The results are displayed in Table 8.

Following the implementation of the control, the spatial average speeds at the bottle-
neck and layers are significantly improved. The most substantial improvement is observed
at the congestion bottleneck, where the average speed experiences a remarkable increase of
about 30%.

Table 8. Comparison of spatially average vehicle speeds before and after control.

Bottleneck Inner Layer Middle Layer Outer Layer

Before control (km/h) 10.0 8.22 11.15 19.75
After control (km/h) 12.86 8.82 11.87 20.40

Improvement (%) 28.60 7.30 6.46 3.29
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Figure 9. The regionally averaged speed over time for each layer and bottleneck.

To obtain the data in Table 9, the process involves integrating the average vehicle
speed during a specific time period. This integration is performed by calculating the area
enclosed by the X-axis, and the curves represented spatially averaged vehicle speeds, as
depicted in Figure 9.

Table 9. Comparison of area of the region bounded by the X-axis and the spatially averaged vehicle
speeds curves before and after control.

Bottleneck Inner Layer Middle Layer Outer Layer

Before control (km) 8.77 28.93 39.33 70.45
After control (km) 12.26 31.27 42.46 72.81
Improvement (%) 39.79 8.09 7.45 3.35

The area enclosed by the X-axis and the spatial average speeds curves at the congestion
bottleneck and each layer are significantly larger after control. This observed physical
quantity increases more than 40% within the congestion bottleneck, where the improvement
is particularly noticeable.

Table 10 presents the outcomes derived from the computation of the duration of the
speed reduction, which refers to the period during which the slope of the curve exhibits
negativity. This calculation is based on the data provided in Figure 9.

Table 10. Comparison of the duration of speed reduction before and after control.

Bottleneck Inner Layer Middle Layer Outer Layer

Before control (h) 0.38 0.25 0.25 0.25
After control (h) 0.50 0.12 0.12 0.12

Improvement (%) −31.58 52.00 52.00 52.00

The duration of speed reduction at each layer experiences a significant decrease of
over 50% following the implementation of control, despite the fact that the duration at
the bottleneck remains extended. The spatially averaged vehicle speeds in each layer
are reduced only during the implementation time period, and Tcontrol = [0, 1350 s] of the
control, after which the speeds continue to increase.
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Furthermore, Figure 10 presents a thermogram depicting the spatial average vehicle
speed improvement for each roadway edge during a specific time period. This visualization
aims to further elucidate the comparison between spatial average vehicle speeds before and
after the control, across various time periods and roadway edges. Figure 10a,b present the
thermograms illustrating the improvements in speed over the time intervals of 900–1800 s
and 3600–4500 s, respectively. The lines depicted in the graphs represent the road edges,
and the color of the road edge corresponds to the magnitude of the speed improvement
percentage. A bluer color signifies a more significant improvement in speed, while the
redder color indicates a decline in speed after control.
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Figure 10. Thermograms of the speed improvement on the road network before and after the control:
(a) from 900 (s) to 1800 (s); (b) from 3600 (s) to 4200 (s).

The data presented in Figures 9 and 10 indicate that the implementation of traffic
demand regulation does not yield rapid improvements in the traffic conditions of the road
network. The propagation of optimization resulting from regulation must progressively
disseminate across the network, similar to the spread of congestion.

Furthermore, it can be inferred from Tables 8–10 that there exists a positive correlation
between the proximity of edges to the congestion bottleneck and the quality of control per-
formance. Generally speaking, the traffic bottleneck experiences the greatest improvement,
resulting in a reduction in both the spatial and temporal extent of the traffic congestion it
causes and propagates. The control strategy proposed in this research efficiently achieves
our goal of managing traffic congestion at the bottleneck and subsequently managing the
traffic condition over the entire road network.

To summarize, this paper presents a preliminary verification of the effectiveness of
the control method proposed for large-scale road networks. Although the increase in the
objective function value is less significant in the case of large-scale road networks, there is a
notable improvement in the calculated time and speed indicators. Specifically, there is a
considerable improvement in the indicators at the congestion bottleneck.

3.2.2. Comparison with Dynamic User Equilibrium Scheme

The effectiveness of the control method proposed in this paper is further verified by
comparing the simulation results with the route choice results obtained from Dynamic User
Equilibrium (DUE) model. DUE account for the dynamics of traffic flow. When travelers
select their path to minimize their own journey time, it is utilized to characterize the status
of a traffic network [58,59].
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In our analysis, we conducted an extensive comparison of the route choices provided
by DUE, while maintaining the initial traffic demand and a consistent penetration rate
of 50% CAVs. The (approximate) user dynamic equilibrium was calculated using the
duaIterate.py tool in the SUMO software. The average departure delay before travelling
tDD, the average travel duration in the network tTD, and the objective function value
φ = tDD + tTD of 100 iterations are shown in Figure 11.
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Figure 11. The three parameters for 100 iterations of the DUE simulation.

The experimentation involved the utilization of a 12th Gen Intel(R) Core (TM) i9-
12900KF central processing unit (CPU). The convergence criteria were met after doing over
100 repetitions, requiring a duration exceeding 24 h. The outcomes derived by the optimal
control technique in Section 3.2.1 are compared with the result of the 63rd iteration out of
these 100 iterations, wherein the minimum objective function value φ is achieved. Table 11
displays the outcomes of the comparison.

Table 11. Comparison of the results of the proposed control method and DUE.

Evaluation
Indicators

Control Method
Proposed in This Study DUE

tDD (s) 101.96 113.00
tTD (s) 2087.58 1925.68
φ (s) 2204.24 2038.68

Approximate compute
duration (h) 12 26

It can be concluded that the route choice results obtained from DUE in a more signifi-
cant reduction in average travel duration tTD as well as an objective function value of φ
when compared to the control method provided in this paper. Nevertheless, there is an
increase in the vehicle’s average delay before vehicles entering the road network becomes
longer. Furthermore, compared to the method in this paper, the process of employing
the DUE iteration for identifying the route choosing system necessitates a much greater
amount of computational time. Moreover, the method in this paper only needs to manage a
limited number of CAVs, and also exhibits a favorable applicability and maneuverability in
comparison to DUE. In addition, the implementation of DUE in real road networks poses
challenges due to the need for comprehensive control over all vehicles inside the network
to determine their travel route, which is practically impossible in practical applications.

3.2.3. Different CAVs’ Control Proportions

While the proportion of vehicles subject to regulation in the small-scale road network
stands at 2.71%, the corresponding figure for controlled Connected Autonomous cars
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(CAVs) in the large-scale road network is 9.88%. It might be argued that these proportions
of controlled CAVs does not yield a significant impact. Thus, the problem of whether traffic
efficiency can also be improved by controlling a portion of the CAVs in set

{
J∗in, J∗mid, J∗out

}
is examined. To evaluate the extent of control effectiveness, a 50% penetration rate of CAVs
was implemented on a large-scale road network. Different quantities of controlled CAVs
were selected to observe the difference in effectiveness.

The only modification is the proportion of controlled CAVs. All other factors, including
the initial traffic demand, the 50% CAV penetration rate, the congestion bottleneck, and the
constructed divided layers established before, have stayed constant. The average departure
delay before travelling tDD, the travel duration in the network tTD, the average travel time,
and the objective function φ before and after the control optimization are compared, and
the comparison results are shown in Table 12 and Figure 12.

Table 12. The control effectiveness with different CAVs’ control proportion.

Serial
Number

Proportion of
Controlled
CAVs (%)

Average Depart
Delay

–
tDD (s)

Average Travel
Duration

–
tTD (s)

∑
j*∈CAVs

tj*

eTD

(min)
φ (s) Improvement

of φ (%)

Before
control - - 103.95 2381.45 - 2485.40 -

After
control

1 0.54 103.29 2138.63 300 2242.77 9.76
2 2.29 104.55 2126.73 1370 2235.18 10.07
3 4.47 102.33 2113.00 2581 2222.67 10.57
4 6.56 100.67 2102.36 3813 2213.88 10.92
5 9.88 101.96 2087.58 5165 2204.24 11.31
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Figure 12. Comparison of congestion improvement percentages with different proportions of con-
trolled CAVs.

In the experiment including different proportions of CAVs, it is noted that an in-
crease in the management of CAVs or the regulation of traffic demand resulted in a more
pronounced improvement in congestion management. However, the improvement in
average travel time is correlated with a nonlinear fraction of controlled CAVs. The average
travel time experiences a less than twofold improvement when the number of controlled
connected and autonomous vehicles (CAVs) is increased by a factor of 16.

It is evident that regulating the growing number of CAVs can enhance the performance
of the transportation system. However, it is crucial to evaluate the cost-effectiveness of
implementing such control methods. In order to mitigate traffic congestion, it is neither
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necessary nor practicable to indiscriminately regulate a substantial number of CAVs, as
such would result in a considerable waste of resources. In the context of this large-scale
road network, the management of a mere 0.54% of the overall vehicle demand has the
potential to yield an approximate 10% reduction in average travel time.

In general, the control method produced a highly effective traffic demand management
technique, which has proven to be successful at alleviating recurrent traffic bottlenecks. The
road networks of varying scales, encompassing both small and large networks, substantiates
the notion of control. The method exhibits the potential for application in terms of reducing
travel time for travelers and enhances the overall efficiency of the road network through
the management of a limited number of CAVs.

4. Conclusions

Connected and Autonomous Vehicles (CAVs), which can be effectively managed by
traffic organizers, present a good prospective solution to alleviating traffic congestion.
This research proposes a network-level hierarchical bottleneck congestion control method
aimed at optimizing the departure time of CAVs as they access the main road through the
entrance lane. In this study, a linear programming model is formulated with the objective
of minimizing the average travel time of the entire mixed traffic system consisting of CAVs
and HDVs. The model also incorporates restrictions to protect the individual interests of
passengers in the CAVs. The optimal control scheme that satisfies the objective function
and restrictions is determined through the utilization of a genetic algorithm. A simulation
analysis is employed to validate the effectiveness of the control method in diverse road
network sizes, CAVs penetration rates, and controlled CAVs proportions. The results
demonstrate that regulating less than 3% of the quantity of CAVs in a small-scale road
network can result in a minimum of 25% and maximum of nearly 70% decrease in the
network’s average travel time. Moreover, in a large-scale network, controlling less than 1%
of CAVs can result in a nearly 10% decrease in the average journey time of the system.

Notably, in order to regulate the same roadway network with varying CAVs’ pene-
trations, this study necessitates the dynamic identification of congestion bottlenecks and
the dynamic division of the control layer in order to achieve optimal control results. Con-
trolling a smaller number of CAVs can still increase access efficiency to a sufficient degree,
whereas haphazardly regulating a large number of CAVs wastes resources. A practical
control method is proposed in this study to facilitate the advancement of environmentally
sustainable transportation.

The method proposed in this paper exhibits some limitations as well, including its
primary emphasis on network-level traffic management. Future studies should explore the
potential integration of this method with traffic control methods at the intersection- and
corridor levels. It is better to implement a comprehensive integrated control system that
operates at the intersection, corridor, and network levels. In the meantime, the acquisition
of each CAV’s scheduled departure time is a significant challenge for the control method
discussed in this study. Additionally, there is a requirement for the system to include
instructions that ensure the controlled CAVs depart at the designated time specified by
the management. The suggested method of the work is limited by the current level of
CAVs, and its effectiveness can only be verified through simulation. Once the technology
of CAVs has advanced to a suitable stage in the future, the method described in this paper
needs to be evaluated in actual road networks to observe whether it has the potential to be
widely used.
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