Microbiota-Derived Postbiotics Enhance the Proliferative Effects of Growth Factors on Satellite Cells in Cultivated Meat Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain, Culture Medium and Growth Conditions
2.2. Preparation of the Microbiota-Derived Postbiotics
2.3. Isolation of Bovine Muscle Satellite Cells (bSCs)
2.4. Identification of the bSCs by Flow Cytometry and Immunofluorescence Assay
2.5. Evaluation of the Effects of GFs and Their Combinations with B-1
2.6. Quantitative Real-Time PCR (qRT-PCR)
2.7. Statistical Analysis
3. Results
3.1. Confirmation of Satellite Cell Identity
3.2. The Effects of GFs on bSC Proliferation
3.3. The Effects of Supplement B-1 and GF Combinations on bSC Proliferation
3.4. Myogenic mRNA Expression Profiles of bSCs treated with Supplement B-1 and GF Combinations
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, P.; Sharma, N.; Sharma, S.; Mehta, N.; Verma, A.K.; Chemmalar, S.; Sazili, A.Q. In-vitro meat: A promising solution for susustainability of meat sector. J. Anim. Sci. Technol. 2021, 63, 693–724. [Google Scholar] [CrossRef] [PubMed]
- Swartz, E. Cell Culture Media and Growth Factor Trends in the Cultivated Meat Industry; The Good Food Institute (GFI): Washington, DC, USA, 2021. [Google Scholar]
- Byrne, B. State of the Industry Report|Cultivated Meat, Cell Agriculture Greece; The Good Food Institute (GFI): Washington, DC, USA, 2021. [Google Scholar]
- Garrison, G.L.; Biermacher, J.T.; Brorsen, B.W. How much will large-scale production of cell-cultured meat cost. J. Agric. Food Res. 2022, 10, 100358. [Google Scholar] [CrossRef]
- Beef-Prices by Country around the World, September 2023. Available online: https://www.globalproductprices.com/rankings/beef_price/ (accessed on 2 October 2023).
- Ong, K.J.; Johnston, J.; Datar, I.; Sewalt, V.; Holmes, D.; Shatkin, J.A. Food safety considerations and research priorities for the cultured meat and seafood industry. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5421–5448. [Google Scholar] [CrossRef] [PubMed]
- Chelladurai, S.K.; Christyraj, S.J.D.; Rajagopalan, K.; Yesudhason, B.V.; Venkatachalam, S.; Mohan, M.; Vasantha, N.C.; Christyraj, J.R.S. Alternative to FBS in animal cell culture—An overview and future perspective. Heliyon 2021, 7, e07686. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, K.; Haraguchi, Y.; Takahashi, H.; Kawashima, I.; Shimizu, T. Development of serum-free and grain-derived-nutrient-free medium using microalga-derived nutrients and mammalian cell-secreted growth factors for sustainable cultured meat production. Sci. Rep. 2023, 13, 498. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Lee, S.Y.; Yun, S.H.; Jeong, J.W.; Kim, J.H.; Kim, H.W.; Choi, J.S.; Kim, G.D.; Joo, S.T.; Choi, I.; et al. Review of the current research on Fetal Bovine Serum and the development of cultured meat. Food Sci. Anim. Resour. 2022, 42, 775–799. [Google Scholar] [CrossRef] [PubMed]
- Stout, A.J.; Mirliani, A.B.; Rittenberg, M.L.; Shub, M.; White, E.C.; Yuen, J.S.K.; Kaplan, D.L. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 2022, 5, 466–479. [Google Scholar] [CrossRef]
- Pawlikowski, B.; Vogler, T.O.; Gadek, K.; Olwin, B.B. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev. Dyn. 2017, 246, 359–367. [Google Scholar] [CrossRef]
- Reducing Growth Factor Costs for Cultured Meat Production, October 2021. Available online: https://www.cellgs.com/blog/reducing-growth-factor-costs-for-cultured-meat-production.html (accessed on 13 November 2023).
- Smolskaya, S.; Logashina, Y.A.; Andreev, Y.A. Escherichia coli extract-based cell-free expression system as an alternative for difficult-to-obtain protein biosynthesis. Int. J. Mol. Sci. 2020, 21, 928. [Google Scholar] [CrossRef]
- Swartz, E.; Ravi, A.; Reeber, A.; Levink, J.; Huang, T.; Smith, B. Anticipated Growth Factor Costs and Volumes; The Good Food Institute (GFI): Washington, DC, USA, 2021. [Google Scholar]
- Ghosh, J.; Haraguchi, Y.; Asahi, T.; Nakao, Y.; Shimizu, T. Muscle cell proliferation using water-soluble extract from nitrogen-fixing cyanobacteria Anabaena sp. PCC 7120 for sustainable cultured meat production. Biochem. Biophys. Res. Commun. 2023, 682, 316–324. [Google Scholar] [CrossRef]
- Zolkiewicz, J.; Marzec, A.; Ruszczynski, M.; Feleszko, W. Postbiotics—A step beyond pre- and probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef] [PubMed]
- Giron, M.; Thomas, M.; Dardevet, D.; Chassard, C.; Savary-Auzeloux, I. Gut microbes and muscle function: Can probiotics make our muscles stronger? J. Cachexia Sarcopenia Muscle 2022, 13, 1460–1476. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Xing, D. The current and future perspectives of postbiotics. Probiotics Antimicrob. Proteins 2023, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Sevin, S.; Karaca, B.; Haliscelik, O.; Kibar, H.; OmerOglou, E.; Kiran, F. Postbiotics secreted by Lactobacillus sakei EIR/CM-1 isolated from cow milk microbiota, display antibacterial and antibiofilm activity against ruminant mastitis-causing pathogens. Ital. J. Anim. Sci. 2021, 20, 1302–1316. [Google Scholar] [CrossRef]
- Akcali, K.C.; Erikci, E.; Kiran, F. Microbiota-Derived Postbiotics: Alternative Supplement to Fetal Bovine Serum for Cultured Meat. U.S. Patent 17/486,944, 31 February 2022. [Google Scholar]
- Skrivergaard, S.; Rasmussen, M.K.; Therkildsen, M.; Young, J.F. Bovine satellite cells isolated after 2 and 5 days of tissue storage maintain the proliferative and myogenic capacity needed for cultured meat production. Int. J. Mol. Sci. 2021, 22, 8376. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Swennen, G.N.M.; Messmer, T.; Gagliardi, M.; Molin, G.M.D.; Li, C.; Zhou, G.; Post, M.J. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 2018, 8, 10808. [Google Scholar] [CrossRef] [PubMed]
- Coles, C.A.; Wadeson, J.; Leyton, C.P.; Siddell, J.P.; Greenwood, P.L.; White, J.D.; McDonagh, M.B. Proliferation rates of bovine primary muscle cells relate to liveweight and carcase weight in cattle. PLoS ONE 2015, 10, e0124468. [Google Scholar] [CrossRef]
- Wang, G.H.; Liang, C.C.; Li, B.Z.; Du, X.Z.; Zhang, W.Z.; Cheng, G.; Zan, L.S. Screening and validation of reference genes for qRT-PCR of bovine skeletal muscle-derived satellite cells. Sci. Rep. 2022, 12, 5653. [Google Scholar] [CrossRef]
- UN. UN [United Nations] World Population Prospects 2019; UN: New York, NY, USA, 2019. [Google Scholar]
- Food and Agriculture Organization: How to Feed the World in 2050. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 3 October 2023).
- Specht, L. An Analysis of Culture Medium Costs and Production Volumes for Cultivated Meat; The Good Food Institute (GFI): Washington, DC, USA, 2020. [Google Scholar]
- Obaidi, I.; Mota, L.M.; Quigley, A.; Butler, M. The role of protein hydrolysates in prolonging viability and enhancing antibody production of CHO cells. Appl. Microbiol. Biotechnol. 2021, 105, 3115–3129. [Google Scholar] [CrossRef]
- Jeong, Y.; Choi, W.Y.; Park, A.; Lee, Y.J.; Lee, Y.; Park, G.H.; Lee, S.-J.; Lee, W.-K.; Ryu, Y.-K.; Kang, D.-H. Marine cyanobacterium Spirulina maxima as an alternate to the animal cell culture medium supplement. Sci. Rep. 2021, 11, 4906. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Teixeira de Mattos, M.J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 2011, 45, 6117–6123. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.Y.; Chua, M.L.; Zhang, C.; Hong, S.; Kumar, Y.; Gokhale, R.; Ee, P.L.R. Chlorella vulgaris extract as a serum replacement that enhances mammalian cell growth and protein expression. Front. Bioeng. Biotechnol. 2020, 8, 564667. [Google Scholar] [CrossRef] [PubMed]
- Countaway, J.L.; Nairn, A.C.; Davis, R.J. Mechanism of desensitization of the epidermal growth factor receptor protein-tyrosine kinase. J. Biol. Chem. 1992, 267, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Higa-Nakamine, S.; Noguchi, N.; Maeda, N.; Kondo, Y.; Toku, S.; Kukita, I.; Sugahara, K. Desensitization by different strategies of epidermal growth factor receptor and ErbB4. J. Pharmacol. Sci. 2014, 124, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.J.; Mittal, B.; Walsh, F.S.; Doherty, P. FGF inhibits neurite outgrowth over monolayers of astrocytes and fibroblasts expressing transfected cell adhesion molecules. J. Cell Sci. 1995, 108, 3523–3530. [Google Scholar] [CrossRef] [PubMed]
- Charge, S.B.; Rudnicki, M.A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 2004, 84, 209–238. [Google Scholar] [CrossRef] [PubMed]
- Wroblewski, O.M.; Vega-Soto, E.E.; Nguyen, M.H.; Cederna, P.S.; Larkin, L.M. Impact of human epidermal growth factor on tissue-engineered skeletal muscle structure and function. Tissue Eng. Part A 2021, 27, 1151–1159. [Google Scholar] [CrossRef]
- Hubalek, S.; Post, M.J.; Moutsatsou, P. Towards resource-efficient and cost-efficient cultured meat. Curr. Opin. Food Sci. 2022, 47, 100885. [Google Scholar] [CrossRef]
- Yan, F.; Liu, L.; Dempsey, P.J.; Tsai, Y.H.; Raines, E.W.; Wilson, C.L.; Cao, H.; Cao, Z.; Liu, L.; Polk, D.B. A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J. Biol. Chem. 2013, 288, 30742–30751. [Google Scholar] [CrossRef]
- Kang, S.J.; Jun, J.S.; Hong, K.W. Transcriptome analysis reveals immunomodulatory effect of spore-displayed p75 on human intestinal epithelial Caco-2 Cells. Int. J. Mol. Sci. 2022, 23, 14519. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Song, K.D.; Kim, S.J.; Kim, D.C.; Lee, S.C.; Son, Y.J.; Choi, H.W.; Shim, K. Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes. Anim. Biosci. 2021, 34, 1392–1402. [Google Scholar] [CrossRef]
- Ozma, M.A.; Abbasi, A.; Akrami, S.; Lahouty, M.; Shahbazi, N.; Ganbarov, K.; Pagliano, P.; Sabahi, S.; Köse, Ş.; Yousefi, M.; et al. Postbiotics as the key mediators of the gut microbiota-host interactions. Infez. Med. 2022, 30, 180–193. [Google Scholar]
Gene Name | Primer Sequences | References |
---|---|---|
MyoD | F: TTTGCCAGAGCAGGAGCCCCTC | [23] |
R: TTCGAACACCTGAGCGAGCGC | ||
Myf5 | F: TGGCTGCTTTCGGGGCTCAC | |
R: GGTTGACCTTCTTCAGGCGTCTCC | ||
Myogenin | F: CCGTGGGCGTGTAAGGTGTG | |
R: CCTCTGGTTGGGGTTGAGCAG | ||
Pax7 | F: TGGTTCAGTAACCGCCGTGCC | |
R: TGCCCCCGTCTTGGGAGATAGTAG | ||
Rps15a | F: TCAGCCCTAGATTTGATGTGC | [24] |
R: TTCCCTCCTGTATGTTTTCGTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celebi-Birand, D.; Genc, K.; Agun, I.; Erikci, E.; Akcali, K.C.; Kiran, F. Microbiota-Derived Postbiotics Enhance the Proliferative Effects of Growth Factors on Satellite Cells in Cultivated Meat Applications. Sustainability 2023, 15, 16164. https://doi.org/10.3390/su152316164
Celebi-Birand D, Genc K, Agun I, Erikci E, Akcali KC, Kiran F. Microbiota-Derived Postbiotics Enhance the Proliferative Effects of Growth Factors on Satellite Cells in Cultivated Meat Applications. Sustainability. 2023; 15(23):16164. https://doi.org/10.3390/su152316164
Chicago/Turabian StyleCelebi-Birand, Dilan, Kardelen Genc, Ilknur Agun, Erdem Erikci, Kamil Can Akcali, and Fadime Kiran. 2023. "Microbiota-Derived Postbiotics Enhance the Proliferative Effects of Growth Factors on Satellite Cells in Cultivated Meat Applications" Sustainability 15, no. 23: 16164. https://doi.org/10.3390/su152316164
APA StyleCelebi-Birand, D., Genc, K., Agun, I., Erikci, E., Akcali, K. C., & Kiran, F. (2023). Microbiota-Derived Postbiotics Enhance the Proliferative Effects of Growth Factors on Satellite Cells in Cultivated Meat Applications. Sustainability, 15(23), 16164. https://doi.org/10.3390/su152316164