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Abstract: The dual carbon target is a two-stage carbon reduction goal proposed by China, while the
bridge maintenance strategy does not consider the need for sustainable development. Therefore,
this article studies the optimization of bridge maintenance timing under China’s dual carbon goals.
Firstly, this paper aims to minimize the total cost of maintenance and carbon emissions, considering
the continuous effects of carbon pricing and emissions in the context of the dual carbon goals. The
CHINAGEM-E model is employed to predict carbon prices, and a preventive maintenance decision-
making method for highway bridges is established. Secondly, based on the theory of material residual
strength, a degradation model for the technical condition of highway bridges is constructed. Finally,
an in-depth case analysis of an in-service highway bridge is conducted to derive optimal maintenance
solutions under three scenarios. In comparison to scenarios considering only maintenance costs
or those based on benchmark carbon prices, the comprehensive maintenance cost under the dual
carbon targets is the highest. In the total maintenance cost, carbon emission costs constitute over 50%,
emphasizing the need for increased attention to carbon emission cost studies in future maintenance
research. The methodology proposed in this paper is the first to connect carbon prices with the timing
of preventive maintenance for bridges, providing a more scientific and sustainable basis for future
highway bridge maintenance decisions.

Keywords: highway bridge; preventive maintenance; strategy optimization; dual carbon goals;
technical condition degradation; carbon price

1. Introduction

With the global promotion of the concept of sustainable development, governments,
research institutions, enterprises, and various organizations have embarked on an extensive
array of research and practical initiatives focused on green and low-carbon strategies [1].

China is also actively implementing a national strategy to address climate change,
announcing the goals and vision of carbon peak and carbon neutrality (dual carbon) [2].
According to statistics, the proportion of global road traffic in greenhouse gas emissions is
about 15% [3]. As an important part of road traffic, the proportion of energy consumption
and emissions of highway bridges cannot be ignored.

By the end of 2022, the number of highway bridges in China has reached
1.0332 million [4]. Following the substantial construction of bridges in 2000, the highway
bridge management department confronts a substantial burden of maintenance responsi-
bilities. Under the premise of safety and reliability, preventive maintenance is one of the
important strategies of bridge maintenance [5]. The concept of preventive maintenance
is to maintain the operation service function of the bridge at the lowest cost by applying
the correct measures to the appropriate bridge structure at the suitable time. This method
can avoid the large amount of carbon emissions and waste of resources generated by
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emergency repair and reconstruction and can also improve the sustainability and economy
of the bridge [6]. Therefore, research on optimizing the timing of preventive maintenance
of highway bridges under the background of dual carbon can not only achieve the goals of
dual carbon economy, but also improve the safety and reliability of highway traffic and
reduce energy consumption and emissions, which has important practical significance and
social value.

In recent years, many scholars have carried out a lot of research on the degradation of
bridge structure technology, optimization of maintenance decision making, and low-carbon
maintenance. In the aspect of bridge technical condition degradation models, Zhao et al. [7]
proposed a Bayesian dynamic model to predict the bridge technical condition and tested
the Bayesian factor of the model through practical engineering. The results show that the
Bayesian dynamic model is suitable for bridge technical condition degradation prediction.
Zhang et al. [8] combined Bayesian dynamic linear model with Markov transition theory,
used displacement response to evaluate the state of bridge expansion joints, successfully
identified the degradation process of expansion joints, and gave the state transition probabil-
ity. The empirical results show that the method has high calculation accuracy and efficiency.
Mašovic et al. [9] proposed an improved stochastic model, which is a semi-Markov bridge
degradation model in which Weibull distribution is used to calculate the residence time
under conditional conditions. This model has good applicability in bridge management.
Goyal et al. [10] proposed a method based on proportional hazards regression, using the
bridge database to identify the most critical factors affecting deterioration, and quantified
the impact of degradation factors on bridge condition rating.

In terms of optimizing maintenance decisions, Navarro et al. [11] applied life cycle
assessment (LCA) combined with the concepts of life cycle cost analysis and social life
cycle analysis to evaluate the impact of maintenance activities related to each scheme on
users. The results show that this method can reduce the total cost generated during the
analysis period by about 58.5%. Wu et al. [12] constructed a life cycle optimization model
using a semi-Markov process, and pointed out that the optimization model is affected
by many uncertain factors, such as the fluctuation of the discount rate and the change of
traffic volume, which require the use of sensitivity analysis or a probability method to
study the cost uncertainty. Yang et al. [13] established a decision-making system based
on multiple constraints, such as ideal maintenance objectives and use functions. The
maintenance management strategy should not only meet the lowest maintenance cost
in the whole life cycle, but also meet multiple objectives and constraints related to the
performance of the bridge in the whole life cycle. Shi et al. [14] designed an improved
NSGA-II (non-down-sorting genetic algorithm II) with double-layer encoding to solve the
multi-objective mixed-integer programming model and conducted multiple sets of data
experiments to verify the performance of the improved NSGA-II. Hou et al. [15] used an
enhanced particle swarm optimization algorithm to solve multi-objective problems related
to maximum probability reliability and minimum production cost and demonstrated the
effectiveness of this method through case analysis.

In terms of low-carbon bridge maintenance, the current research mainly focuses on
bridge LCA. Collings [16] studied the energy consumption and CO2 emission range of
building materials in the construction of medium-span bridges, considered the carbon
emissions of different bridge types and different materials, and estimated the CO2 emis-
sions during bridge maintenance. Bouhaya et al. [17] evaluated the environmental impact
of new bridges based on the LCA method with energy consumption and CO2 emissions
as indicators and divided the bridge life cycle into six stages: material production, trans-
portation, construction, maintenance, demolition, and waste disposal. Thormark [18]
showed in their study that the most concentrated carbon emissions were in the operation
stage, but the emissions in the construction stage also accounted for a high proportion,
about 20% of the total. Additionally, certain scholars have integrated environmental costs
associated with carbon emissions into the strategy for sustainable bridge maintenance.
Kripka et al. [19] aimed to study short-span bridges by incorporating construction, assem-
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bly and material transportation costs, life expectancy, and global warming potential into the
decision-making process. Kim et al. [20] analyzed the maintenance database to determine
the state changes and required maintenance of existing bridges and used the results to
predict the environmental impact and cost of continuous bridge maintenance.

In the process of low-carbon development, numerous scholars have proposed methods
to reduce carbon emissions. Bi et al. [21], by constructing a dynamic computable general
equilibrium (CGE) model, explored the differences in green growth paths under three
scenarios: carbon market, carbon tax, and hybrid policies. The results indicate that in the
carbon market scenario, although the short-term carbon emission reduction effect may not
be very prominent, it can lead to a dual dividend of long-term emission reduction and
an increase in gross domestic product (GDP).Qi et al. [22] employed the EEMD-BP-ELM
model to forecast both the high-frequency and low-frequency components of future carbon
prices in China, integrating trend components with high- and low-frequency components
to derive the price range from 2022 to 2060.

Building upon the analysis above, we note that scholars in the field of sustainable
maintenance have considered the influence of carbon emissions, yet the evaluation of carbon
prices on the sustainability of maintenance practices remains unexplored. A goal of this
study is to reflect this point, in the context of achieving carbon peak and carbon neutrality
goals, grasp the law of carbon price changes, and accurately predict its future trends [23].
By applying the accurately predicted carbon price to the preventive maintenance process
of bridges, it will not only provide scientific maintenance decision-making schemes for
maintenance institutions, but also greatly improve the emission reduction effect.

Therefore, the objective of this paper is to propose an environmentally friendly main-
tenance decision-making model that takes into account carbon emissions. First, we develop
a maintenance decision model that minimizes the cost of carbon emissions and the cost of
maintenance and outline the preventive maintenance process. Subsequently, based on the
material degradation theory, the continuous effect of carbon emissions, and the trend of
carbon pricing, the degradation model of the technical condition of road bridges as well as
the carbon emission cost model are proposed. Finally, the changing patterns of carbon price
and maintenance cost under different scenarios are analyzed and discussed using actual
bridges as examples. The model intends to address the issue of environmental impacts in
bridge maintenance, so as to assess the comprehensive cost of bridge maintenance behavior
more comprehensively.

2. Method
2.1. Introduction to the Optimization Model for Preventive Maintenance of Bridges

Timing decisions for preventive maintenance of bridges not only need to fulfil the
requirements of the maintenance authority but must also comply with the logical constraints
between the objectives and the relevant norms. In the context of the dual carbon objective,
this study considers the economic and environmental benefits of the bridge preventive
maintenance process. The total cost of bridge maintenance (denoted by C) is also used as
the optimal objective of the model to determine the best maintenance scheme. The specific
maintenance decision model is shown in Equation (1).

In this model, we integrate economic and environmental friendliness, intending to
provide more comprehensive guidance for bridge maintenance decision making.

min Ci = MCi + TCi (1)

where Ci represents the total maintenance cost of i scheme; MCi represents the maintenance
cost of i scheme; and TCi represents the carbon emission cost of using i scheme.

Figure 1 illustrates a specific model for preventive maintenance decision making.
Based on the literature and data studies, it is more economical to perform preventive
maintained when the structural condition of the bridge is in Class 2. The preventive
maintenance of bridges used in this paper is for Class 2 and Class 3 bridges. When
the technical condition of the bridge drops below λ, it is the earliest time for preventive
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maintenance, and the maintenance effect will be enhanced by ϕ; when the technical
condition of the bridge drops to 60 points, it is the latest time for preventive maintenance.
The specific preventive maintenance timing λ is then calculated by the model.
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2.1.1. Fundamental Assumptions and Constraint Conditions

After bridge maintenance activities, the structural technical conditions undergo in-
tricate changes. The current research struggles to precisely depict the trend of health
status in various structures post different maintenance measures. Hence, simplifying the
optimization model for bridge preventive maintenance becomes essential. The following
assumptions underpin the preventive maintenance decision optimization model:

• Without considering the specific maintenance measures in the model, the degradation
law of bridge technical condition does not change after maintenance.

• After each preventive maintenance, the improvement value of the technical condition
of the bridge is the same, set to 8.

• The value of the technical condition index after each maintenance will not exceed the
technical condition score after the last maintenance.

When optimizing the maintenance strategy of highway bridges, it is necessary to
ensure that the calculation time is not greater than the established maintenance cycle.
Therefore, there are the following three constraints:

• When D(t) ≥ λ, perform only routine maintenance;
• When 60 ≤ D(t) < λ, take preventive maintenance measures;
• When tp1 + (i − 1) tp > T, the calculation ends.

Where D(t) is the technical condition of the bridge structure, and t is the established
maintenance cycle (year) of the bridge structure.

2.1.2. Preventive Maintenance Process for Bridges

Through a comprehensive inspection of the actual situation of the bridge, combined
with the evaluation criteria of the technical status of the bridge, the bearing capacity,
structural integrity, service life, and overall safety status of the bridge are evaluated. Based
on the long-term inspection data of the bridge, a technical condition degradation model is
established, and all preventive maintenance schemes are obtained in combination with the
preventive maintenance strategy of this paper. The research process is shown in Figure 2.
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Figure 2. Bridge preventive maintenance flow chart.

2.2. Degradation Law of Bridge Technical Condition
2.2.1. Assessment of Bridge Technical Condition

At present, the technical condition evaluation of highway bridges in China adopts the
method of combining hierarchical comprehensive evaluation with a single control index
of bridges. Referring to the standard of the Technical Condition Assessment Standard for
Highway Bridges (JTG/T H21-2011 [24]), the classification of bridge technical condition is
shown in Table 1. Among the classifications, a score of 100 points indicates that the bridge’s
technical condition is intact, and a score of 0 indicates that the bridge’s technical condition
is the worst. The scope of preventive maintenance of bridges used in this paper is Level 2
and Level 3 bridges.

Table 1. Classification boundary of bridge technical conditions.

Technical Condition
Evaluation

Technical Condition Grade

Level 1 Level 2 Level 3 Level 4 Level 5

Description of
bridge state New state Minor

defect
Medium

defect
Larger
defect

Severe
defect

(D) [90, 100] [80, 90) [60, 80) [40, 60) [0, 40)

2.2.2. Model of Bridge Technical Degradation

In the decision-making model for the preventive maintenance of highway bridges,
understanding the functional relationship between the technical status and time of highway
bridges is crucial. The aim is to keep the bridge in a high-performance state through
preventive maintenance, optimizing both maintenance funds and strategies. This section,
therefore, establishes the degradation function model for highway bridges.

For the same bridge type, the function curves of the degradation model are different
due to different regions and load levels. Various studies have established degradation
models based on bridge reliability [25–27] and bridge technical condition indicators [28].
For example, regarding the linear degradation model, the method is relatively simple but
cannot consider complex and changeable factors, while the exponential function model can
consider more factors affecting the degradation of the bridge, but with a lack of theoretical
basis. In this paper, the residual strength theory of materials is used for reference. The
theoretical formula delineates the degradation trend of material strength, manifesting an
initial slow decline followed by a rapid decline, consistent with the degradation pattern
observed in a substantial number of bridges in the United States. Based on the material
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residual strength model in reference [29], this paper establishes the degradation model of
highway bridge technical condition as follows:

D(t) = 100[1 − (t/N)b] (2)

where t is the service time, N is the target life, and b is the environmental load index.

2.3. Bridge Preventive Maintenance Costs

In the maintenance decision-making process of highway bridges, the remaining life
of highway bridges is first predicted, and then the preventive maintenance timing is
reasonably arranged according to the development trend of technical conditions during
the operation period. During the operation of highway bridges, the time value of funds is
considered through the treatment of preventive maintenance. Therefore, the calculation
model of the preventive maintenance cost in the planned bridge maintenance cycle is
calculated according to Equation (3):

MC(tp1, tp) =

n(tp1,tp)

∑
i=1

MCi(tp1, tp)
1

(1 + r)tp1+(i−1)tp
(3)

where MC(tp1, tp) is the cost of the preventive maintenance of bridges.
Different maintenance measures will bring different maintenance costs. With refer-

ence to the maintenance costs in actual case projects, this paper takes the value of CNY
130,000 [30–32]. tp is the time interval of preventive maintenance; tp1 is the start time of the
first preventive maintenance; MCi(tp1, tp) is the single maintenance cost; n(tp1, tp) is the
number of preventive maintenances carried out during the life cycle of the bridge; i is an
integer variable; and r is the discount rate, taking 6% as the reference value [33].

2.4. Carbon Emission Costs

Within the decision-making process for the preventive maintenance of bridges, fac-
toring in the cost of carbon emissions is a pivotal consideration. This encapsulates the
influence of maintenance activities on the environment through carbon emissions. To trans-
late carbon emissions into a monetary value, one can use the price of emission allowances
in the carbon market as a benchmark. The emission allowance price designates the cost
of trading carbon dioxide emission rights in the carbon market, customarily expressed as
the price per metric ton of carbon dioxide emission rights. Hence, converting the carbon
emissions generated from the preventive maintenance of bridges into monetary terms can
be achieved by multiplying them with the price per metric ton of carbon dioxide emission
rights, as depicted in Equation (4).

TC(tp1, tp) =

n(tp1,tp)

∑
i=1

T(CO2)i(tp1, tp) ∗ C(CO2)i(tp1, tp) (4)

where T(CO2)i(tp1, tp) is the carbon emissions at the time of the ith maintenance. C(CO2)i(tp1, tp)
is the carbon price at the time of the ith maintenance.

2.4.1. Calculation of Carbon Emissions

The carbon emissions in the bridge maintenance stage are calculated according to the
engineering design and completion data [34]. The carbon emissions in the maintenance
process are evaluated according to the combination of maintenance plan, project scale,
and maintenance materials. Under the preventive maintenance mode, the carbon dioxide
emissions of single maintenance are shown in Table 2.
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Table 2. Carbon emissions for preventive maintenance method.

Maintenance
Segment

Maintenance
Material Waste Construction Machinery

Office Space Traffic Impact Total Emissions

Single-curing
carbon emissions/t 300 15 39 101.98 455.98

Using the traditional carbon emission calculation method, the total amount of carbon
emissions generated by the bridge during maintenance can be expressed as Equation (5).

TCO2 = ∑
m

Fm × Em (5)

where TCO2 represents the carbon emissions of the statistical object; Fm represents the
carbon emission factor of the mth curing method; and Em represents the consumption of the
mth maintenance method.

Conventional statistical approaches conventionally assume a fixed value for Emt
over a specific timeframe. In practice, it is vital to evaluate the influence of delayed
emissions [35,36]. Employing the dynamic carbon emission factor serves to capture the
delayed effects of carbon emissions being released. The carbon emissions over the time
interval [0, T] are expressed by Equation (6).

TCO2(T) = ∑
m

T

∑
t

Fmt × Emt (6)

where Fmt is the dynamic carbon emission factor of the maintenance activity m at time t,
and Emt is the carbon emission of the maintenance mode m at time t.

Owing to natural decomposition and degradation mechanisms, the concentration of
carbon emissions in the atmosphere typically undergoes an annual decline, consequently
diminishing the greenhouse effect. Hence, the dynamic carbon emission factor offers a
more accurate approach to characterizing carbon emissions. It takes into consideration
potential future variations, not just current concentrations. This is of paramount importance
in crafting climate change policies and assessing the influence of carbon emissions. In
accordance with the research outcomes presented in reference [37], the computational
formula for the dynamic carbon emission factor (Equation (7)) is obtained through the
fitting of equivalent carbon emission factors at various time intervals.

Fmt = −3.43 × 10−5t2 − 6.20 × 10−3t2 + 9.87 × 10−1 (7)

2.4.2. Calculation of Carbon Trading Price

The carbon price is intricately connected to a complex array of external factors, encom-
passing the economy, energy landscape, climate dynamics, and energy policies. It exhibits
distinctive traits, including non-linearity, fluctuation, and multi-frequency attributes [38].
Relying solely on historical data for predicting carbon prices would neglect the impact of
future macroeconomic shifts, energy price fluctuations, and relevant policies on carbon
pricing. Particularly in the context of China, the dual carbon goals will inevitably drive an
increase in carbon pricing. Ignoring this fact would lead to a significant underestimation of
China’s future carbon prices [22].

CHINAGEM-E stands out as a dynamic recursive computable general equilibrium
model of the Chinese economy, accounting for both energy and carbon emissions consid-
erations [39]. Rooted in the foundational CHINAGEM model, this model encompasses
input–output structures, production theories, final demand mechanisms, labor and capital
dynamics, as well as various miscellaneous equations [40]. Through the utilization of the
CHINAGEM-E model, we have the capability to simulate equilibrium trends in carbon
pricing across varying scenarios. This paper delineates two scenarios: (1) the baseline
scenario and (2) the 2060 carbon neutrality scenario. The baseline scenario provides an
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illustration of China’s future economic development without the dual carbon goals. The
2060 carbon neutrality scenario paints a picture of China achieving the dual carbon goals as
per the plan. Before 2023, carbon prices are derived from the actual carbon trading prices
in various markets in China and then aggregated using a weighted average algorithm to
arrive at the annual composite prices. Within the baseline scenario, carbon prices from
2023 to 2040 are established in accordance with the findings of the International Energy
Agency’s ”World Energy Outlook,” while projections for carbon prices from 2041 to 2060
are extrapolated based on historical carbon trading prices. Within the 2060 carbon neutrality
scenario, carbon prices are projected based on assumptions within the model.

Drawing from the findings in references [41,42], and utilizing the CHINAGEM-E
model based on the predicted future carbon emissions trajectory in both the baseline
scenario and the 2060 carbon neutrality scenario, we obtain the forecasted Chinese carbon
prices, as depicted in Figure 3. This paper scrutinizes the trajectory of future carbon prices
in China. The forecast indicates an ascending trend from 2022 to 2060 under both the
baseline scenario and the 2060 carbon neutrality scenario. Significantly, in the 2060 carbon
neutrality scenario, carbon prices are projected to ultimately surge to almost five times that
of the baseline scenario. It is imperative to bear in mind that the carbon prices forecasted by
the CHINAGEM-E model encompass the exertion level needed to realize the dual carbon
goals, representing the overall societal carbon cost. While this can serve as a gauge for
carbon pricing in the carbon market, it may not be synonymous.
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3. Results and Discussion

To validate the proposed maintenance optimization algorithm, we selected a reinforced
concrete continuous beam bridge in Ningbo, China, situated on the Yongtaiwen Expressway.
The bridge, measuring 382.7 m in total length and featuring two one-way lanes, was
constructed and opened for traffic in 1999. As depicted in Figure 4, the overall condition of
the bridge is satisfactory, but some components exhibit signs of deterioration.

In 2016, the annual inspection was carried out. According to the results of on-site
inspection, the overall condition of the bridge is good, and it is classified as a Class 2 bridge.
The main defect of the superstructure is a small number of longitudinal and transverse
cracks at the bottom of the beam. The main defects of the substructure are the slight
settlement and damage of the abutment slope protection. The main defects of the bridge
deck system are several potholes found in the bridge deck pavement, slight damage in
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the anchorage zone of the expansion joint, multiple concrete rust expansions and exposed
reinforcement in the anti-collision guardrail, and about 30% of the drainage holes being
blocked. The technical condition of the bridge is evaluated according to the reference [24]
and the bridge’s technical condition score is 84.8.
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Owing to the shared environmental context, a specific bridge can function as a repre-
sentative case for the maintenance environment of bridges in that particular region. This
assumption is predicated on the notion that factors impacting maintenance needs, such
as climate, traffic patterns, and material properties, display a certain level of uniformity
among bridges within the same geographic area. At the same time, these bridges belong to
the category of concrete girder bridges. Based on the previous test data of the bridge and
46 similar bridges around it, the fitted curve shown in Figure 5 and the fitting equation of
the technical condition of the bridge in its natural state (Equation (8)) are obtained.

D(t) = 100[1 − (t/45)2] (8)
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3.1. Bridge Preventive Maintenance Scheme

As shown in Figure 5, using the previous inspection data of the case bridge and the
decision-making model (technical condition degradation model and preventive mainte-
nance model) established in this study, all optional preventive maintenance schemes are
obtained, including detailed information on the first maintenance timing and the mainte-
nance interval of the maintenance scheme.

In all preventive maintenance schemes, three core scenarios are provided for bridge
preventive maintenance. By comparing and analyzing the optimal maintenance strategies of
bridges in three scenarios, it provides a decision-making reference for low-carbon maintenance.

3.1.1. Maintenance Cost Based on Time Effect

Under the condition of the same first maintenance timing, the greater the maintenance
interval, the smaller the maintenance cost; under the condition of the same maintenance
interval, the smaller the first maintenance time, the smaller the maintenance cost. These
two trends show that when the maintenance cost is determined, the lower the number of
maintenances, the smaller the maintenance cost.

In the case of only considering the maintenance cost, the optimal maintenance plan is
that the first preventive maintenance timing is 75 points, the maintenance interval is 5a,
and the total maintenance cost is CNY 11.02 million. The bridge degradation curve of the
optimal maintenance scheme is shown in Figure 6.
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3.1.2. Comprehensive Maintenance Cost Based on Baseline Carbon Price

In the baseline scenario, the carbon price shows a slow upward trend. In this sce-
nario, the maintenance cost gradually decreases with the increase of maintenance inter-
val. The optimal maintenance scheme is that the first preventive maintenance timing is
90 points, the maintenance interval is 11 years, and the comprehensive maintenance cost is
CNY 40.50 million. The bridge degradation curve of the optimal maintenance scheme is
shown in Figure 7.

3.1.3. Comprehensive Maintenance Cost Based on the Dual Carbon Goals

In the context of the dual carbon goals, the carbon price gradually exceeds the baseline
scenario after 2030, and the carbon price by 2060 is close to five times the baseline carbon
price. Under the same maintenance interval, the greater the first maintenance timing, the
lower the maintenance cost, and the trend is completely opposite to that of scenario 1.
The main reason is that the increasing carbon price leads to a cost of carbon emissions far
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greater than the maintenance cost. Based on the situation of the dual carbon goals, the
optimal maintenance scheme is that the first preventive maintenance timing is 90 points, the
maintenance interval is 11 years, the comprehensive maintenance cost is CNY 90.74 million,
and the comprehensive maintenance cost increases by CNY 50.24 million. The bridge
degradation curve is shown in Figure 7, and the optimal maintenance scheme is the same
as that in the baseline scenario.
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3.2. Comparative Analysis of the Optimal Solution

As shown in Figure 8, the maintenance cost is the highest in scenario 3 and the lowest
in scenario 1. As shown in Figure 9, of the two scenarios considering the cost of carbon
emissions, the cost of carbon emissions in scenario 3 is the highest. In scenario 3, the carbon
price under the dual carbon goals is considered. Due to the rapid rise of the carbon price,
the cost of carbon emission is gradually increasing, and the comprehensive cost of bridge
maintenance is also increasing.
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3.3. Discussion

With China‘s goal of achieving carbon peak and carbon neutrality, the “double control”
action, that is, controlling total energy consumption and improving energy efficiency, has
become an important driving force, requiring all industries to significantly reduce carbon
emissions [43]. In this context, policymakers believe that the implementation of carbon
pricing is one of the effective means to encourage the construction industry to eliminate
high-carbon development [44]. In addition, in the process of promoting carbon neutrality
in China, implementing zero-carbon standards and establishing a carbon emissions trading
market will be the main measures to regulate and constrain the construction industry.
These changes will also have a profound impact on the maintenance of bridges and other
infrastructure. Therefore, it is a crucial task to evaluate the emission reduction effect and
sustainability of existing infrastructure.

In this study, we incorporate the persistence effect of carbon emissions and carbon
price forecasts into the framework of bridge preventive maintenance decision making and
analyze the differences in maintenance decisions under different maintenance scenarios
through a case study. The persistent effect of carbon emissions is the level of destruction of
greenhouse gases, including carbon dioxide, at a certain time in the future. Due to natural
decomposition and destruction mechanisms, the concentration of carbon emissions in the
atmosphere usually decreases every year, which also weakens the greenhouse effect [45].

As shown in Figure 10, in the two scenarios considering carbon prices, the average
cost of carbon emissions accounts for more than 50% of the total costs, which is much
higher than the maintenance cost. At the same time, the average cost of carbon emissions in
scenario 3 is higher than that in scenario 2. The research in this paper can provide guidance
for conservation agencies and researchers in making actual conservation decisions and
achieve the goal of low-carbon conservation while also achieving lower-cost conservation.
Of course, the research in this paper is limited by the lack of data samples, and only
highway girder bridges within the same area are considered. In future research, more
bridge data should be added to optimize the maintenance decision-making framework of
this paper.

The goal of curbing carbon emissions through carbon trading will also lead to the
increase of carbon prices. How to achieve a balance between carbon emissions and carbon
prices is an important research direction in the future, which is of great significance for
bridge maintenance and other infrastructure.
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4. Conclusions

(1) This paper establishes a decision-making model for the preventive maintenance of
bridges with the objective of minimizing the total cost of maintenance and carbon
emissions. The model comprises two components: the degradation of a bridge’s
technical condition and the carbon emission costs. For the first time in this study,
carbon pricing is integrated with the timing of preventive maintenance. By examining
the impact of carbon price trends under dual carbon goals on the maintenance cost of
bridges, optimal maintenance solutions can be provided to maintenance institutions,
achieving both economic and sustainable maintenance.

(2) Utilizing the theory of material degradation and data from 46 bridges in the same
region, a power-function-based degradation model for the technical condition of high-
way bridges is established. This model characterizes the natural degradation process
of bridges, displaying a trend of slow degradation followed by rapid deterioration.

(3) Through practical calculations, considering the dual carbon targets and the continued
impact of carbon emissions, carbon emission costs account for over 50% of the total
costs. This case illustrates that future research needs to enhance the focus on carbon
emission cost studies in the maintenance process.

(4) In this study, the preventive maintenance decision-making model is only applied to a
single bridge. In the future, the model can be extended to the maintenance process of
bridge networks at the road network level.
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