Dissolved Inorganic Nutrient Biogeochemistry in an Urbanized Coastal Region: A Study of Dapeng Cove, Shenzhen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Trophic Status Assessment
2.3.1. Potential Eutrophication Index
2.3.2. Life Cycle Assessment
2.3.3. Trophic Index
2.3.4. Calculation of Trophic Income and Expenditure
2.3.5. Data Processing
3. Result
3.1. Seasonal Variation Characteristics of Physical and Chemical Factors in the Sea Area
3.2. Spatial Distribution Characteristics of Physical and Chemical Factors in the Sea Area
3.3. Correlation between Physical and Chemical Factors in the Sea Area
3.4. Eutrophication Assessment Model and Nutrition Index
3.5. Nutrient Budget Based on LOICZ Model
4. Discussion
4.1. Factors Influencing Temporal and Spatial Variations in Nutrients and Eutrophication Index
4.2. Analysis of the Characteristics of Nutrient Balance in Dapeng Cove
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, Q.; Cheng, T.; Song, J.; Zhou, J.; Hung, C.-C.; Cai, Z. Internal Nutrient Loading Is a Potential Source of Eutrophication in Shenzhen Bay, China. Ecol. Indic. 2021, 127, 107736. [Google Scholar] [CrossRef]
- Bui, L.T.; Tran, D.L.T. Assessing Marine Environmental Carrying Capacity in Semi-Enclosed Coastal Areas—Models and Related Databases. Sci. Total Environ. 2022, 838, 156043. [Google Scholar] [CrossRef]
- Wang, H.; Wang, G.; Gu, W. Macroalgal Blooms Caused by Marine Nutrient Changes Resulting from Human Activities. J. Appl. Ecol. 2020, 57, 766–776. [Google Scholar] [CrossRef]
- Santos, I.R.; Chen, X.; Lecher, A.L.; Sawyer, A.H.; Moosdorf, N.; Rodellas, V.; Tamborski, J.; Cho, H.-M.; Dimova, N.; Sugimoto, R.; et al. Submarine Groundwater Discharge Impacts on Coastal Nutrient Biogeochemistry. Nat. Rev. Earth Environ. 2021, 2, 307–323. [Google Scholar] [CrossRef]
- Béjaoui, B.; Basti, L.; Canu, D.M.; Feki-Sahnoun, W.; Salem, H.; Dahmani, S.; Sahbani, S.; Benabdallah, S.; Blake, R.; Norouzi, H.; et al. Hydrology, Biogeochemistry and Metabolism in a Semi-Arid Mediterranean Coastal Wetland Ecosystem. Sci. Rep. 2022, 12, 9367. [Google Scholar] [CrossRef] [PubMed]
- Williams, C. Combatting Marine Pollution from Land-Based Activities: Australian Initiatives. Ocean Coast. Manag. 1996, 33, 87–112. [Google Scholar] [CrossRef]
- Alam, M.W.; Xiangmin, X.; Ahamed, R. Protecting the Marine and Coastal Water from Land-Based Sources of Pollution in the Northern Bay of Bengal: A Legal Analysis for Implementing a National Comprehensive Act. Environ. Chall. 2021, 4, 100154. [Google Scholar] [CrossRef]
- Li, J.-M.; Jiang, S.-S. How Can Governance Strategies Be Developed for Marine Ecological Environment Pollution Caused by Sea-Using Enterprises?—A Study Based on Evolutionary Game Theory. Ocean Coast. Manag. 2023, 232, 106447. [Google Scholar] [CrossRef]
- Suthar, S.; Sharma, J.; Chabukdhara, M.; Nema, A.K. Water Quality Assessment of River Hindon at Ghaziabad, India: Impact of Industrial and Urban Wastewater. Environ. Monit. Assess. 2010, 165, 103–112. [Google Scholar] [CrossRef]
- Taylor, K.; Baron, K.S.; Gersberg, R.M. Effect of Secondary Treatment at the South Bay Ocean Outfall (SBOO) on Microbial Ocean Water Quality near the US-Mexico Border. Mar. Pollut. Bull. 2022, 183, 114098. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, R.; Ji, K.; Liu, X.; Geng, F.; Hao, X.; Lin, C. Phytoplankton Biomass Dynamics with Diffuse Terrestrial Nutrients Pollution Discharge into Bay. Chemosphere 2023, 313, 137674. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.M.; Li, L.W.; Zhang, G.L.; Liu, Z.; Yu, Z.; Ren, J.L. Impacts of Human Activities on Nutrient Transports in the Huanghe (Yellow River) Estuary. J. Hydrol. 2012, 430–431, 103–110. [Google Scholar] [CrossRef]
- Jung, J.; Furutani, H.; Uematsu, M.; Kim, S.; Yoon, S. Atmospheric Inorganic Nitrogen Input via Dry, Wet, and Sea Fog Deposition to the Subarctic Western North Pacific Ocean. Atmos. Chem. Phys. 2013, 13, 411–428. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, Q.; Wang, D.; Ding, D.; Cui, Z.; Shi, H. Spatiotemporal Evolution of Nutrients and the Influencing Factors in Laizhou Bay over the Past 40 Years. Mar. Pollut. Bull. 2022, 184, 114186. [Google Scholar] [CrossRef]
- Qi, Z.; Shi, R.; Yu, Z.; Han, T.; Li, C.; Xu, S.; Xu, S.; Liang, Q.; Yu, W.; Lin, H.; et al. Nutrient Release from Fish Cage Aquaculture and Mitigation Strategies in Daya Bay, Southern China. Mar. Pollut. Bull. 2019, 146, 399–407. [Google Scholar] [CrossRef]
- Han, T.; Qi, Z.; Shi, R.; Liu, Q.; Dai, M.; Huang, H. Effects of Seawater Temperature and Salinity on Physiological Performances of Swimming Shelled Pteropod Creseis Acicula During a Bloom Period. Front. Mar. Sci. 2022, 9, 806848. [Google Scholar] [CrossRef]
- Delgard, M.L.; Deflandre, B.; Kochoni, E.; Avaro, J.; Cesbron, F.; Bichon, S.; Poirier, D.; Anschutz, P. Biogeochemistry of Dissolved Inorganic Carbon and Nutrients in Seagrass (Zostera noltei) Sediments at High and Low Biomass. Estuar. Coast. Shelf Sci. 2016, 179, 12–22. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Wilkinson, W.B.; Leeks, G.J.L.; Morris, A.; Walling, D.E. Rivers and Coastal Research in the Land Ocean Interaction Study. Sci. Total Environ. 1997, 194–195, 5–14. [Google Scholar] [CrossRef]
- Ghosh, J.; Chakraborty, K.; Chanda, A.; Akhand, A.; Bhattacharya, T.; Das, S.; Das, I.; Hazra, S.; Choudhury, S.B.; Wells, M. Outwelling of Total Alkalinity and Dissolved Inorganic Carbon from the Hooghly River to the Adjacent Coastal Bay of Bengal. Environ. Monit. Assess. 2021, 193, 415. [Google Scholar] [CrossRef]
- Yang, B.; Gao, X.; Zhao, J.; Lu, Y.; Gao, T. Biogeochemistry of Dissolved Inorganic Nutrients in an Oligotrophic Coastal Mariculture Region of the Northern Shandong Peninsula, North Yellow Sea. Mar. Pollut. Bull. 2020, 150, 110693. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Cai, L.; Chen, B.; Chen, X.; Zheng, L.; Lin, S. How Do Spatial and Environmental Factors Shape the Structure of a Coastal Macrobenthic Community and Meroplanktonic Larvae Cohort? Evidence from Daya Bay. Mar. Pollut. Bull. 2020, 157, 111242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiong, L.; Zhang, J.; Jiang, Z.; Zhao, C.; Wu, Y.; Liu, S.; Huang, X. The Benthic Fluxes of Nutrients and the Potential Influences of Sediment on the Eutrophication in Daya Bay, South China. Mar. Pollut. Bull. 2019, 149, 110540. [Google Scholar] [CrossRef] [PubMed]
- GB 17378.4-2007; The Specification for Marine Monitoring Part 4: Seawater Analysis. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (GAQS-IQ): Beijing, China, 2007.
- GBT 12763.4-2007; The Spesification for Oceanographic Survey Part 4: Survey of Chemical Parameters in Sea Water. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (GAQS-IQ): Beijing, China, 2007.
- Pierangeli, G.M.F.; Domingues, M.R.; Choueri, R.B.; Hanisch, W.S.; Gregoracci, G.B.; Benassi, R.F. Spatial Variation and Environmental Parameters Affecting the Abundant and Rare Communities of Bacteria and Archaea in the Sediments of Tropical Urban Reservoirs. Microb. Ecol. 2022, 86, 297–310. [Google Scholar] [CrossRef] [PubMed]
- GB 17378.5-2007; The Speciation for Marine Monitoring Part 5: Sediment Analysis. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (GAQS-IQ): Beijing, China, 2007.
- Morelli, B.; Hawkins, T.R.; Niblick, B.; Henderson, A.D.; Golden, H.E.; Compton, J.E.; Cooter, E.J.; Bare, J.C. Critical Review of Eutrophication Models for Life Cycle Assessment. Environ. Sci. Technol. 2018, 52, 9562–9578. [Google Scholar] [CrossRef]
- Quaranta, G.; Bloundi, M.K.; Duplay, J.; Clauer, N. The Eutrophication Process of Nador’s Lagoon (Morocco) Evaluated by the Life Cycle Impact Assessment Method. Arab. J. Geosci. 2021, 14, 338. [Google Scholar] [CrossRef]
- Vollenweider, R.A.; Giovanardi, F.; Montanari, G.; Rinaldi, A. Characterization of the Trophic Conditions of Marine Coastal Waters with Special Reference to the NW Adriatic Sea: Proposal for a Trophic Scale, Turbidity and Generalized Water Quality Index. Environmetrics 1998, 9, 329–357. [Google Scholar] [CrossRef]
- Antonio-Robles, J.; Piñón-Gimate, A.; Sánchez, A.; Cervantes-Duarte, R.; Arreola-Lizárraga, J.A.; Casas-Valdez, M. Environmental Assessment of Three Different Sites in Shallow Environments of La Paz Bay (Gulf of California) Using the TRIX Index and Macroalgae Biomass. Part I. Reg. Stud. Mar. Sci. 2021, 48, 102041. [Google Scholar] [CrossRef]
- Giovanardi, F.; Vollenweider, R.A. Trophic Conditions of Marine Coastal Waters: Experience in Applying the Trophic Index TRIX to Two Areas of the Adriatic and Tyrrhenian Seas. J. Limnol. 2004, 63, 199–218. [Google Scholar] [CrossRef]
- Vybernaite-Lubiene, I.; Zilius, M.; Bartoli, M.; Petkuviene, J.; Zemlys, P.; Magri, M.; Giordani, G. Biogeochemical Budgets of Nutrients and Metabolism in the Curonian Lagoon (South East Baltic Sea): Spatial and Temporal Variations. Water 2022, 14, 164. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Yang, J.; Zheng, C.; Zhang, Y.; An, A.; Zhang, M.; Xiao, K. Nutrient Inputs through Submarine Groundwater Discharge in an Embayment: A Radon Investigation in Daya Bay, China. J. Hydrol. 2017, 551, 784–792. [Google Scholar] [CrossRef]
- Justić, D.; Rabalais, N.N.; Turner, R.E.; Dortch, Q. Changes in Nutrient Structure of River-Dominated Coastal Waters: Stoichiometric Nutrient Balance and Its Consequences. Estuar. Coast. Shelf Sci. 1995, 40, 339–356. [Google Scholar] [CrossRef]
- Cabral, A.; Bonetti, C.H.C.; Garbossa, L.H.P.; Pereira-Filho, J.; Besen, K.; Fonseca, A.L. Water Masses Seasonality and Meteorological Patterns Drive the Biogeochemical Processes of a Subtropical and Urbanized Watershed-Bay-Shelf Continuum. Sci. Total Environ. 2020, 749, 141553. [Google Scholar] [CrossRef] [PubMed]
- Ruardij, P.; Van Haren, H.; Ridderinkhof, H. The Impact of Thermal Stratification on Phytoplankton and Nutrient Dynamics in Shelf Seas: A Model Study. J. Sea Res. 1997, 38, 311–331. [Google Scholar] [CrossRef]
- Koeve, W. Wintertime Nutrients in the North Atlantic—New Approaches and Implications for New Production Estimates. Mar. Chem. 2001, 74, 245–260. [Google Scholar] [CrossRef]
- Cloern, J.E.; Jassby, A.D.; Schraga, T.S.; Nejad, E.; Martin, C. Ecosystem Variability along the Estuarine Salinity Gradient: Examples from Long-Term Study of San Francisco Bay. Limnol. Oceanogr. 2017, 62, S272–S291. [Google Scholar] [CrossRef]
- Liu, S.M.; Guo, X.; Chen, Q.; Zhang, J.; Bi, Y.F.; Luo, X.; Li, J.B. Nutrient Dynamics in the Winter Thermohaline Frontal Zone of the Northern Shelf Region of the South China Sea. J. Geophys. Res. Ocean. 2010, 115, C11020. [Google Scholar] [CrossRef]
- Norstog, J.L.; McCormick, S.D.; Kelly, J.T. Metabolic Costs Associated with Seawater Acclimation in a Euryhaline Teleost, the Fourspine Stickleback (Apeltes Quadracus). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2022, 262, 110780. [Google Scholar] [CrossRef]
- Ivanina, A.V.; Jarrett, A.; Bell, T.; Rimkevicius, T.; Beniash, E.; Sokolova, I.M. Effects of Seawater Salinity and pH on Cellular Metabolism and Enzyme Activities in Biomineralizing Tissues of Marine Bivalves. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 248, 110748. [Google Scholar] [CrossRef]
- Cloern, J.E. Patterns, Pace, and Processes of Water-Quality Variability in a Long-Studied Estuary. Limnol. Oceanogr. 2019, 64, S192–S208. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Wu, W.; Liu, J.; Ran, X.; Zhang, A.; Zang, J. Variations in the Marine Seawater Environment and the Dominant Factors in the Lianyungang Coastal Area. Reg. Stud. Mar. Sci. 2022, 52, 102276. [Google Scholar] [CrossRef]
- Jiang, Z.; Du, P.; Liao, Y.; Liu, Q.; Chen, Q.; Shou, L.; Zeng, J.; Chen, J. Oyster Farming Control on Phytoplankton Bloom Promoted by Thermal Discharge from a Power Plant in a Eutrophic, Semi-Enclosed Bay. Water Res. 2019, 159, 1–9. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, Q.; Shou, L.; Tang, Y.; Liu, Q.; Zeng, J.; Chen, Q.; Yan, X. The Impact of Suspended Oyster Farming on Macrobenthic Community in a Eutrophic, Semi-Enclosed Bay: Implications for Recovery Potential. Aquaculture 2022, 548, 737585. [Google Scholar] [CrossRef]
- Weissberger, E.J.; Glibert, P.M. Seasonal Gut Contents of the Eastern Oyster, Crassostrea Virginica, in the Rhode River, Chesapeake Bay, USA: Growth, Phytoplankton and Signature Pigment Data. Data Brief 2021, 37, 107176. [Google Scholar] [CrossRef]
- Gao, S.; Ren, S.; Xie, B.; Zhang, S.; Lu, J.; Fu, G. Interaction between Sea Surface Chlorophyll a and Seawater Indicators in the Sea Ranching Area: A Case Study in Haizhou Bay. Reg. Stud. Mar. Sci. 2022, 56, 102687. [Google Scholar] [CrossRef]
- GB 3097-1997; The Sea Water Quality Standard of China. Ministry of Environmental Protection of China: Beijing, China, 1997.
- GB 18668-2002; The People’s Republic of China National Standards—Marine Sediment Quality. China State Bureau of Quality and Technical Supervision: Beijing, China, 2002.
- Zhang, P.; Chen, Y.; Peng, C.; Dai, P.; Lai, J.; Zhao, L.; Zhang, J. Spatiotemporal Variation, Composition of DIN and Its Contribution to Eutrophication in Coastal Waters Adjacent to Hainan Island, China. Reg. Stud. Mar. Sci. 2020, 37, 101332. [Google Scholar] [CrossRef]
- Shih, C.-Y.; Liu, W.-C.; Kuo, T.-H.; Chan, Y.-F.; Lin, Y.-C.; Gong, G.-C.; Kang, L.-K.; Chang, J. Temporal Variations in the Expression of a Diatom Nitrate Transporter Gene in Coastal Waters off Northern Taiwan: The Roles of Nitrate and Bacteria. Cont. Shelf Res. 2021, 227, 104506. [Google Scholar] [CrossRef]
- Casareto, B.E.; Niraula, M.P.; Suzuki, Y. Dynamics of Organic Carbon under Different Inorganic Nitrogen Levels and Phytoplankton Composition. Estuar. Coast. Shelf Sci. 2012, 102–103, 84–94. [Google Scholar] [CrossRef]
- Zhao, B.; Yao, P.; Bianchi, T.S.; Arellano, A.R.; Wang, X.; Yang, J.; Su, R.; Wang, J.; Xu, Y.; Huang, X.; et al. The Remineralization of Sedimentary Organic Carbon in Different Sedimentary Regimes of the Yellow and East China Seas. Chem. Geol. 2018, 495, 104–117. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Shen, R.; Zhang, M.; Chen, F. Reducing Nutrient Increases Diatom Biomass in a Subtropical Eutrophic Lake, China–Do the Ammonium Concentration and Nitrate to Ammonium Ratio Play a Role? Water Res. 2022, 218, 118493. [Google Scholar] [CrossRef]
- Jurgensone, I.; Carstensen, J.; Ikauniece, A.; Kalveka, B. Long-Term Changes and Controlling Factors of Phytoplankton Community in the Gulf of Riga (Baltic Sea). Estuaries Coasts 2011, 34, 1205–1219. [Google Scholar] [CrossRef]
- Zheng, L.; Zhai, W.; Wang, L.; Huang, T. Improving the Understanding of Central Bohai Sea Eutrophication Based on Wintertime Dissolved Inorganic Nutrient Budgets: Roles of North Yellow Sea Water Intrusion and Atmospheric Nitrogen Deposition. Environ. Pollut. 2020, 267, 115626. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yu, W.; Chen, B.; Ma, Z.; Chen, G.; Ge, F.; An, S.; Han, W. Imbalanced Phytoplankton C, N, P and Its Relationship with Seawater Nutrients in Xiamen Bay, China. Mar. Pollut. Bull. 2023, 187, 114566. [Google Scholar] [CrossRef]
- Song, Y.; Guo, Y.; Liu, H.; Zhang, G.; Zhang, X.; Thangaraj, S.; Sun, J. Water Quality Shifts the Dominant Phytoplankton Group from Diatoms to Dinoflagellates in the Coastal Ecosystem of the Bohai Bay. Mar. Pollut. Bull. 2022, 183, 114078. [Google Scholar] [CrossRef]
- Pettine, M.; Casentini, B.; Fazi, S.; Giovanardi, F.; Pagnotta, R. A Revisitation of TRIX for Trophic Status Assessment in the Light of the European Water Framework Directive: Application to Italian Coastal Waters. Mar. Pollut. Bull. 2007, 54, 1413–1426. [Google Scholar] [CrossRef] [PubMed]
- Du, H.T.; Hieu, N.M.; Kunzmann, A. Negative Effects of Fish Cages on Coral Reefs through Nutrient Enrichment and Eutrophication in Nha Trang Bay, Viet Nam. Reg. Stud. Mar. Sci. 2022, 55, 102639. [Google Scholar] [CrossRef]
- Cervantes-Duarte, R.; Jimenez-Quiroz, M.d.C.; Funes-Rodriguez, R.; Hernandez-Trujillo, S.; Gonzalez-Armas, R.; Anaya-Godinez, E. Interannual Variability in the Trophic Status and Water Quality of Bahía Magdalena, Mexico, during the 2015–2018 Period: TRIX. Reg. Stud. Mar. Sci. 2021, 42, 101638. [Google Scholar] [CrossRef]
- Bordin, L.H.; Machado, E.d.C.; Carvalho, M.; Freire, A.S.; Fonseca, A.L.D.O. Nutrient and Carbon Dynamics under the Water Mass Seasonality on the Continental Shelf at the South Brazil Bight. J. Mar. Syst. 2019, 189, 22–35. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, T.M.; Arreola-Lizárraga, J.A.; Morquecho, L.; Mendez-Rodríguez, L.C.; Martínez-López, A.; Mendoza-Salgado, R.A. Detecting Eutrophication Symptoms in a Subtropical Semi-Arid Coastal Lagoon by Means of Three Different Methods. Wetlands 2017, 37, 1105–1118. [Google Scholar] [CrossRef]
- Yang, X.; Tan, Y. Effects of Shelf Seawater Intrusion on Phytoplankton Community Structure in Daya Bay in the Summer. Mar. Sci. 2019, 43, 96–105. [Google Scholar]
- Deb, S.; Guyondet, T.; Coffin, M.R.S.; Barrell, J.; Comeau, L.A.; Clements, J.C. Effect of Inlet Morphodynamics on Estuarine Circulation and Implications for Sustainable Oyster Aquaculture. Estuar. Coast. Shelf Sci. 2022, 269, 107816. [Google Scholar] [CrossRef]
- Noriega, C.; Araujo, M.; Flores-Montes, M.; Araujo, J. Trophic Dynamics (Dissolved Inorganic Nitrogen-DIN and Dissolved Inorganic Phosphorus-DIP) in Tropical Urban Estuarine Systems during Periods of High and Low River Discharge Rates. An. Acad. Bras. Ciênc. 2019, 91, e20180244. [Google Scholar] [CrossRef]
- Peng, T.; Zhu, Z.; Du, J.; Liu, J. Effects of Nutrient-Rich Submarine Groundwater Discharge on Marine Aquaculture: A Case in Lianjiang, East China Sea. Sci. Total Environ. 2021, 786, 147388. [Google Scholar] [CrossRef] [PubMed]
- Rodellas, V.; Garcia-Orellana, J.; Masqué, P.; Font-Muñoz, J.S. The Influence of Sediment Sources on Radium-Derived Estimates of Submarine Groundwater Discharge. Mar. Chem. 2015, 171, 107–117. [Google Scholar] [CrossRef]
- Hua, S.; Jing, H.; Yao, Y.; Guo, Z.; Lerner, D.N.; Andrews, C.B.; Zheng, C. Can Groundwater Be Protected from the Pressure of China’s Urban Growth? Environ. Int. 2020, 143, 105911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, X.; Xiao, K.; Zhang, Y.; Luo, M.; Zheng, C.; Li, H. Submarine Groundwater Discharge and Associated Nutrient Fluxes in the Greater Bay Area, China Revealed by Radium and Stable Isotopes. Geosci. Front. 2021, 12, 101223. [Google Scholar] [CrossRef]
- Xing, J.; Song, J.; Yuan, H.; Li, X.; Li, N.; Duan, L.; Qi, D. Atmospheric Wet Deposition of Dissolved Organic Carbon to a Typical Anthropogenic-Influenced Semi-Enclosed Bay in the Western Yellow Sea, China: Flux, Sources and Potential Ecological Environmental Effects. Ecotoxicol. Environ. Saf. 2019, 182, 109371. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.H.; Shi, J.H.; Gao, H.W.; Sun, Z. Atmospheric Dry and Wet Deposition of Nitrogen Species and Its Implication for Primary Productivity in Coastal Region of the Yellow Sea, China. Atmos. Environ. 2013, 81, 600–608. [Google Scholar] [CrossRef]
- Cui, D.-Y.; Wang, J.-T.; Tan, L.-J.; Dong, Z.-Y. Impact of Atmospheric Wet Deposition on Phytoplankton Community Structure in the South China Sea. Estuar. Coast. Shelf Sci. 2016, 173, 1–8. [Google Scholar] [CrossRef]
- Milinković, A.; Penezić, A.; Kušan, A.C.; Gluščić, V.; Žužul, S.; Skejić, S.; Šantić, D.; Godec, R.; Pehnec, G.; Omanović, D.; et al. Variabilities of Biochemical Properties of the Sea Surface Microlayer: Insights to the Atmospheric Deposition Impacts. Sci. Total Environ. 2022, 838, 156440. [Google Scholar] [CrossRef]
- Xie, L.; Gao, X.; Liu, Y.; Yang, B.; Wang, B.; Zhao, J.; Xing, Q. Biogeochemical Properties and Fate of Dissolved Organic Matter in Wet Deposition: Insights from a Mariculture Area in North Yellow Sea. Sci. Total Environ. 2022, 844, 157130. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.M.; Zhang, J.; Chen, S.Z.; Chen, H.T.; Hong, G.H.; Wei, H.; Wu, Q.M. Inventory of Nutrient Compounds in the Yellow Sea. Cont. Shelf Res. 2003, 23, 1161–1174. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, T.; Xia, J.; Ma, Y.; Zhang, T. Ecosystem Service Value Assessment for an Oyster Farm in Dapeng Cove. J. Fish. China 2014, 38, 853–860. [Google Scholar]
- Yin, L. Studies on Metabolic Physiology and Energy Budget of Crassostrea hongkongensis. Master’s Thesis, Hebei Normal University, Shijiazhuang, China, 2012. [Google Scholar]
- Miatta, M.; Snelgrove, P.V.R. Benthic Nutrient Fluxes in Deep-Sea Sediments within the Laurentian Channel MPA (Eastern Canada): The Relative Roles of Macrofauna, Environment, and Sea Pen Octocorals. Deep Sea Res. Part I Oceanogr. Res. Pap. 2021, 178, 103655. [Google Scholar] [CrossRef]
- Grenz, C.; Rodier, M.; Seceh, C.; Varillon, D.; Haumani, G.; Pinazo, C. Benthic Nutrients and Oxygen Fluxes at the Water Sediment Interface in a Pearl Farming Atoll (Ahe, Tuamotu, French Polynesia). Mar. Pollut. Bull. 2021, 173, 112963. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, J.S.; Kim, K.-T.; Kim, S.-L.; Yu, O.H.; Lim, D.; Kim, S.H. Low Benthic Mineralization and Nutrient Fluxes in the Continental Shelf Sediment of the Northern East China Sea. J. Sea Res. 2020, 164, 101934. [Google Scholar] [CrossRef]
- Preiner, S.; Dai, Y.; Pucher, M.; Reitsema, R.E.; Schoelynck, J.; Meire, P.; Hein, T. Effects of Macrophytes on Ecosystem Metabolism and Net Nutrient Uptake in a Groundwater Fed Lowland River. Sci. Total Environ. 2020, 721, 137620. [Google Scholar] [CrossRef]
- Ramesh, R.; Chen, Z.; Cummins, V.; Day, J.; D’Elia, C.; Dennison, B.; Forbes, D.L.; Glaeser, B.; Glaser, M.; Glavovic, B.; et al. Land–Ocean Interactions in the Coastal Zone: Past, Present & Future. Anthropocene 2015, 12, 85–98. [Google Scholar] [CrossRef]
- Yamamoto, T.; Hiraga, N.; Takeshita, K.; Hashimoto, T. An Estimation of Net Ecosystem Metabolism and Net Denitrification of the Seto Inland Sea, Japan. Ecol. Model. 2008, 215, 55–68. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Lai, J.; Pan, C.; Wang, S.; Fu, H.; Zhang, B.; Cui, Y.; Zhang, L. Spatiotemporal Distribution of Nitrogen Biogeochemical Processes in the Coastal Regions of Northern Beibu Gulf, South China Sea. Chemosphere 2020, 239, 124803. [Google Scholar] [CrossRef]
- Delgadillo-Hinojosa, F.; Zirino, A.; Holm-Hansen, O.; Hernández-Ayón, J.M.; Boyd, T.J.; Chadwick, B.; Rivera-Duarte, I. Dissolved Nutrient Balance and Net Ecosystem Metabolism in a Mediterranean-Climate Coastal Lagoon: San Diego Bay. Estuar. Coast. Shelf Sci. 2008, 76, 594–607. [Google Scholar] [CrossRef]
- Villegas-Ríos, D.; Álvarez-Salgado, X.A.; Piedracoba, S.; Rosón, G.; Labarta, U.; Fernández-Reiriz, M.J. Net Ecosystem Metabolism of a Coastal Embayment Fertilised by Upwelling and Continental Runoff. Cont. Shelf Res. 2011, 31, 400–413. [Google Scholar] [CrossRef]
- Feng, M.L.; Sun, T.; Zhang, L.X.; Shen, X.M. Net Ecosystem Metabolism Simulation by Dynamic Dissolved Oxygen Model in Yellow River Estuary, China. Procedia Environ. Sci. 2012, 13, 807–817. [Google Scholar] [CrossRef]
- Cabral, A.; Fonseca, A. Coupled Effects of Anthropogenic Nutrient Sources and Meteo-Oceanographic Events in the Trophic State of a Subtropical Estuarine System. Estuar. Coast. Shelf Sci. 2019, 225, 106228. [Google Scholar] [CrossRef]
- Kiwango, H.; Njau, K.N.; Wolanski, E. The Application of Nutrient Budget Models to Determine the Ecosystem Health of the Wami Estuary, Tanzania. Ecohydrol. Hydrobiol. 2018, 18, 107–119. [Google Scholar] [CrossRef]
Grade | Nutrient Level | DIN (mg/L) | SRP (mg/L) | N/P |
---|---|---|---|---|
I | Oligotrophic level | <0.20 | <0.030 | 8–30 |
Ⅱ | Moderate-level nutrient | 0.20–0.30 | 0.030–0.045 | 8–30 |
Ⅲ | Eutrophication | >0.30 | >0.045 | 8–30 |
IVp | Phosphate-limiting moderate-level nutrient | 0.20–0.30 | / | >30 |
Vp | Phosphate moderate limiting potential eutrophication | >0.30 | / | 30–60 |
VIp | Phosphate-limiting potential eutrophication | >0.30 | / | >60 |
IVN | Nitrogen-limiting moderate-level nutrient | / | 0.030–0.045 | <8 |
VN | Nitrogen moderate limiting potential eutrophication | / | >0.045 | 4–8 |
VIN | Nitrogen-limiting potential eutrophication | / | >0.045 | <4 |
Grade | TRIX Value | Trophic Status | Condition |
---|---|---|---|
I | 0–4 | Oligotrophic | Water poorly productive |
Ⅱ | 4–5 | Mesotrophic | Water moderately productive |
Ⅲ | 5–6 | Mesotrophic to eutrophic | Water moderately to highly productive |
Ⅳ | 6–10 | Eutrophic | Water highly productive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, F.; Chen, P.; Zhang, X. Dissolved Inorganic Nutrient Biogeochemistry in an Urbanized Coastal Region: A Study of Dapeng Cove, Shenzhen. Sustainability 2023, 15, 16591. https://doi.org/10.3390/su152416591
Tong F, Chen P, Zhang X. Dissolved Inorganic Nutrient Biogeochemistry in an Urbanized Coastal Region: A Study of Dapeng Cove, Shenzhen. Sustainability. 2023; 15(24):16591. https://doi.org/10.3390/su152416591
Chicago/Turabian StyleTong, Fei, Pimao Chen, and Xiumei Zhang. 2023. "Dissolved Inorganic Nutrient Biogeochemistry in an Urbanized Coastal Region: A Study of Dapeng Cove, Shenzhen" Sustainability 15, no. 24: 16591. https://doi.org/10.3390/su152416591
APA StyleTong, F., Chen, P., & Zhang, X. (2023). Dissolved Inorganic Nutrient Biogeochemistry in an Urbanized Coastal Region: A Study of Dapeng Cove, Shenzhen. Sustainability, 15(24), 16591. https://doi.org/10.3390/su152416591