Recycling Waste Plastics into Plastic-Bonded Sand Interlocking Blocks for Wall Construction in Developing Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Block Production and Testing
- Heaps of sand are sun-dried for at least 24 h.
- The dried river sand is then sieved to remove coarse aggregates.
- The shredded polyethylene waste is sun-dried for 24 h.
- The required quantities of the sand and PW are measured.
- The sand and plastic waste are spread out evenly.
- The plastic waste and sand are thoroughly mixed using a shovel. The shovel is used to turn over the mix by twisting from the centre to the sides. Mixing continues until a uniform plastic waste–sand mixture is achieved.
- The mixture is then fed into the locally fabricated extruder through a hopper.
2.3. Wall Panel Fabrication and Testing
- Unwanted protrusions on the interlocking keys are removed using a machine cutter.
- Full stretcher blocks are cut to form the half blocks shown in 2a.
- The interlocking keys are removed from the blocks to be used for the top course of the wall. The surfaces are then smoothened, as shown in 3a.
- The protrusions are locked into the grooves to form the interlocking keys that hold the wall together.
- Top-course interlocking blocks are laid.
- The completed wall is placed on a pay loader and transported to the mechanical testing area.
- The wall is transferred to the compression testing unit.
- The wall is properly aligned, directly under the loading beam prior to testing.
3. Results
3.1. Materials’ Characterisation
3.2. Block Testing
3.3. Failure Mechanisms
4. Discussion
Specimen | Constituent Materials | Dimensions (mm) (L × B × H) (mm) | Density (g·cm−3) | Average Compressive Strength (MPa) | Reference |
---|---|---|---|---|---|
Plastic-bonded sand interlocking blocks | Polyethylene waste, sand | 356 × 152 × 127 | 1.5–1.6 | 13.3–15.0 | - |
Rubberised interlocking units | Cement, fly ash, sand, crumb rubber, water | 250 × 125 × 105 | 1.7 | 18.5 | [53] |
Dry stack interlocking compressed earth | Compressed soil | 280 × 140 × 90 | - | 1.1 | [55] |
Cement interlocking blocks | Cement, quarry dust, sand, water | 300 × 150 × 200 | 1.4–1.5 | 15.2–19.0 | [54] |
Coconut fibre-reinforced concrete interlocking blocks | Cement, sand, coarse aggregates, coconut fibre, water | 400 × 200 × 195 | 2.1–2.3 | 16.5 | [68] |
Lightweight interlocking cement blocks | Cement, sand, expanded polystyrene beads, water | 600 × 200 × 200 | 0.8 | 4.9 | [69] |
Putra interlocking concrete blocks | Cement, sand coarse aggregate, water | 300 × 200 × 150 | - | 22.9 | [70] |
Steel fibre-reinforced concrete blocks | Cement, sand coarse aggregate, steel fibres, water | 600 × 200 × 300 | 1.5 | 6.1 | [71] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, M.; Gower, R.; Green, J.; Whitebread, E.; Lenkiewicz, Z.; Schroder, P. No Time to Waste: Tackling the Plastic Pollution before It’s Too Late; Tearfund: Teddington, UK, 2019. [Google Scholar]
- Wilson, D.C.; Rodic, L.; Modak, P.; Soos, R.; Carpintero, A.; Velis, K.; Iyer, M.; Simonett, O. Global Waste Management Outlook; Wilson, D.C., Cannon, T., Eds.; International Solid Waste Association: Rotterdam, The Netherlands, 2015; pp. 4–7. [Google Scholar]
- Crawford, C.B.; Quinn, B. Plastic production, waste and legislation. In Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2017; Volume 306, pp. 39–56. Available online: http://linkinghub.elsevier.com/retrieve/pii/B9780128094068000037 (accessed on 10 August 2023).
- Van Sebille, E.; Spathi, C.; Gilbert, A. The Ocean Plastic Pollution Challenge: Towards Solutions in the UK. Grantham Institute Briefing Paper. 2016; No. 19. Available online: www.imperial.ac.uk/grantham/publications (accessed on 12 August 2023).
- Sarkodie, S.A.; Owusu, P.A.; Rufangura, P. Impact Analysis of Flood in Accra, Ghana. Adv. Appl. Sci. Res. 2015, 6, 53–78. [Google Scholar] [CrossRef]
- Troutman, H.; Asiedu-Danquah, K. Plastic Waste Valorization as a Strategy to Manage Plastic Waste in a Developing Economy: A Case Study of Accra, Ghana. Master’s Thesis, Hafencity University, Hamburg, Germany, 2017. [Google Scholar]
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Gall, S.C.; Thompson, R.C. The impact of debris on marine life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Moore, C.J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 2008, 108, 131–139. [Google Scholar] [CrossRef]
- Gu, L.; Ozbakkaloglu, T. Use of recycled plastics in concrete: A critical review. Waste Manag. 2016, 51, 19–42. [Google Scholar] [CrossRef]
- Ismail, Z.Z.; AL-Hashmi, E.A. Use of waste plastic in concrete mixture as aggregate replacement. Waste Manag. 2008, 28, 2041–2047. [Google Scholar] [CrossRef]
- Koide, H.; Tomon, M.; Sasaki, T. Investigation of the use of waste plastic as an aggregate for lightweight concrete. In Challenges of Concrete Construction: Volume 5, Sustainable Concrete Construction; Emerald Publishing: Leeds, UK, 2002; pp. 177–185. [Google Scholar] [CrossRef]
- Gavela, S.; Karakosta, C.; Nydriotis, C.; Kaselouri-Rigopoulou, V.; Kolias, S.; Tarantili, P.A.; Magoulas, C.; Tassios, D.; Andreopoulus, A. A Study of Concretes Containing Thermoplastic Wastes as Aggregates. Material Science. 2007. Available online: https://www.semanticscholar.org/paper/A-STUDY-OF-CONCRETES-CONTAINING-THERMOPLASTIC-AS-Gavela-Karakosta/acffa8aabf92eedb7986cd73e3e69ffc14a9808e#citing-papers (accessed on 17 August 2023).
- Choi, Y.W.; Moon, D.J.; Chung, J.S.; Cho, S.K. Effects of waste PET bottles aggregate on the properties of concrete. Cem. Concr. Res. 2005, 35, 776–781. [Google Scholar] [CrossRef]
- Ohemeng, E.A.; Ekolu, S.O. Strength prediction model for cement mortar made with waste LDPE plastic as fine aggregate. J. Sustain. Cem.-Based Mater. 2019, 8, 228–243. [Google Scholar] [CrossRef]
- Zoorob, S.E.; Suparma, L.B. Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt). Cem. Concr. Compos. 2000, 22, 233–242. [Google Scholar] [CrossRef]
- Denning, J.; Carswell, J. Improvements in Rolled Asphalt Surfacings by the Addition of Organic Polymers; Transport and Road Research Laboratory (TRRL): Wokingham, UK, 1981. [Google Scholar]
- Salter, R.; Rafati-Afshar, F. Effect of Additives on Bituminous Highway Pavement Materials Evaluated by the Indirect Tensile Test; Transportation Research Board: Washington, DC, USA, 1987. [Google Scholar]
- King, G.; Muncy, H.; Prudhomme, J. Polymer modification: Binder’s effect on mix properties. Assoc. Asph. Paving Technol. Proc 1986, 55, 519–540. [Google Scholar]
- Bose, S.; Jain, P. Laboratory studies on the use of organic polymers in improvement of bituminous road surfacings. Highw. Res. Bull. 1989, 38, 63–79. [Google Scholar]
- Jain, P.K.; Sangita Bose, S.; Arya, I.R. Characterisation of polymer modified asphalt binders for roads and airfields. Polym. Modif. Asph. Bind. 1992, 341–355. [Google Scholar] [CrossRef]
- Akinpelu, M.; Dahunsi, B.I.O.; Olafusi, O.; Awogboro, O.; Quadri, A. Effect of polythene modified bitumen on properties of hot mix asphalt. ARPN J. Eng. Appl. Sci. 2013, 8, 290–295. [Google Scholar]
- Punith, V.S.; Veeraragavan, A.; Amirkhanian, S.N. Evaluation of Reclaimed Polyethylene Modified Asphalt Concrete Mixtures. Int. J. Pavement Res. Technol. 2011, 4, 1. [Google Scholar]
- Vasudevan, R.; Sekar, A.R.C.; Sundarakannan, B.; Velkennedy, R. A technique to dispose waste plastics in an ecofriendly way—Application in construction of flexible pavements. Constr. Build. Mater. 2012, 28, 311–320. [Google Scholar] [CrossRef]
- Consoli, N.C.; Montardo, J.P.; Prietto, P.D.M.; Pasa, G.S. Engineering behaviour of sand reinforced with plastic waste. J. Geotech. Geoenvironmental Eng. 2002, 128, 462–472. [Google Scholar] [CrossRef]
- Mansour, A.M.H.; Ali, S.A. Reusing waste plastic bottles as an alternative sustainable building material. Energy Sustain. Dev. 2015, 24, 79–85. [Google Scholar] [CrossRef]
- Lenkiewicz, Z.; Webster, M. Making Waste Work: Community Waste Management in Low and Middle Income Countries; CIWM: Northampton, UK, 2017. [Google Scholar]
- Tulashie, S.K.; Boadu, E.K.; Kotoka, F.; Mensah, D. Plastic wastes to pavement blocks: A significant alternative way to reducing plastic wastes generation and accumulation in Ghana. Constr. Build. Mater. 2020, 241, 118044. [Google Scholar] [CrossRef]
- Kumi-Larbi Jnr, A.; Galpin, R.; Manjula, S.; Lenkiewicz, Z.; Cheeseman, C. Reuse of Waste Plastics in Developing Countries: Properties of Waste Plastic-Sand Composites. Waste Biomass Valorization 2022, 13, 3821–3834. [Google Scholar] [CrossRef]
- Kumi-Larbi Jnr, A.; Yunana, D.; Kamsouloum, P.; Webster, M.; Wilson, D.C.; Cheeseman, C. Recycling waste plastics in developing countries: Use of low-density polyethylene water sachets to form plastic bonded sand blocks. Waste Manag. 2018, 80, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Yunana, D.A. Bottle Cap Plastic Bonded Sand as a Sustainable Construction Material. Master’s Thesis, Imperial College London, London, UK, 2017. [Google Scholar]
- Dalhat, M.A.; Wahhab, H.I.A.-A. Cement-less and asphalt-less concrete bounded by recycled plastic. Constr. Build. Mater. 2016, 119, 206–214. [Google Scholar] [CrossRef]
- Okyere, G. Reduction in National Housing Deficit Reassuring to Addressing Housing Challenges—Ministry of Works and Housing. 2021. Available online: https://www.mwh.gov.gh/reduction-in-national-housing-deficit-reassuring-to-addressing-housing-challenges/ (accessed on 30 May 2023).
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Degradation profile of polyethylene after artificial accelerated weathering. Polym. Degrad. Stab. 2003, 79, 385–397. [Google Scholar] [CrossRef]
- Regnier, A. A Feasible Study on the Degradation of Plastic Film Packaging. Master’s Thesis, Imperial College London, London, UK, 2018. [Google Scholar]
- ASTM D3418-15; Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2012; pp. 1–7. [CrossRef]
- Menczel, J.D.; Prime, R.B. Thermal Analysis of Polymers: Fundamentals and Applications; Menczel, J.D., Prime, R.B., San, J., Eds.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2009; pp. 1–314. [Google Scholar]
- Opara, H.E.; Eziefula, U.G.; Eziefula, B.I. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete. Sel. Sci. Pap. J. Civ. Eng. 2018, 13, 127–134. [Google Scholar] [CrossRef]
- ASTM D6913/D6913M-17; Standard Test Methods for Particle Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–34. [CrossRef]
- Texas Department of Transport. Test Procedure for Laboratory Classification of Soils for Engineering Purposes TxDOT Designation: Tex-142-E. Construction Division. 1999, p. 1. Available online: https://www.bing.com/ck/a?!&&p=c51b02b270ea190aJmltdHM9MTcwMTQ3NTIwMCZpZ3VpZD0wYWQ2ZDVhZC01NDcxLTY0YmQtMWIyOS1jNjYzNTUzNjY1M2YmaW5zaWQ9NTIxNA&ptn=3&ver=2&hsh=3&fclid=0ad6d5ad-5471-64bd-1b29-c6635536653f&psq=41.+Texas+Department+of+Transport.+Test+Procedu (accessed on 17 August 2023).
- ASTM C140/C140M-23; Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units. ASTM International: West Conshohocken, PA, USA, 2023; pp. 1–34. [CrossRef]
- Caro, E.; Comas, E. Polyethylene comonomer characterization by using FTIR and a multivariate classification technique. Talanta 2017, 163, 48–53. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Luijsterburg, B.; Goossens, H. Assessment of plastic packaging waste: Material origin, methods, properties. Resour. Conserv. Recycl. 2014, 85, 88–97. [Google Scholar] [CrossRef]
- Babaghayou, M.I.; Mourad, A.-H.I.; Lorenzo, V.; de la Orden, M.U.; Urreaga, J.M.; Chabira, S.F.; Sebaa, M. Photodegradation characterization and heterogeneity evaluation of the exposed and unexposed faces of stabilized and unstabilized LDPE films. Mater. Des. 2016, 111, 279–290. [Google Scholar] [CrossRef]
- Setiawan, A.H.; Aulia, F. Blending of low-density polyethylene and poly-lactic acid with maleic anhydride as a compatibilizer for better environmentally food-packaging material. IOP Conf. Series Mater. Sci. Eng. 2017, 202, 12087. [Google Scholar] [CrossRef]
- Minick, J.; Moet, A.; Baer, E. Morphology of HDPE/LDPE blends with different thermal histories. Polymer 1995, 36, 1923–1932. [Google Scholar] [CrossRef]
- Hameed, T.; Hussein, I.A. Melt miscibility and mechanical properties of metallocene LLDPE blends with HDPE: Influence of Mw of LLDPE. Polym. J. 2006, 38, 1114–1126. [Google Scholar] [CrossRef]
- Prasad, A.A. Quantitative analysis of low density polyethylene and linear low density polyethylene blends by differential scanning calorimetery and fourier transform infrared spectroscopy methods. Polym. Eng. Sci. 1998, 38, 1716–1728. [Google Scholar] [CrossRef]
- NETZSCH. NETZSCH Application Sheet 004: Polyethylene LDPE, LLDPE, HDPE. 2006. Available online: https://analyzing-testing.netzsch.com/_Resources/Persistent/c/f/f/6/cff6350afb31f4e7c71490d456c2e48691c50364/2006-044_Polyethylene_LDPE_LLDPE_HDPE.pdf (accessed on 17 August 2023).
- Al-Fakih, A.; Mohammed, B.S.; Wahab, M.M.A.; Liew, M.S.; Amran, Y.M.; Alyousef, R.; Alabduljabbar, H. Characteristic compressive strength correlation of rubberized concrete interlocking masonry wall. In Structures; Elsevier: Amsterdam, The Netherlands, 2020; Volume 26, pp. 169–184. [Google Scholar]
- Jaafar, M.S.; Thanoon, W.A.; Najm, A.M.S.; Abdulkadir, M.R.; Ali, A.A.A. Strength correlation between individual block, prism and basic wall panel for load bearing interlocking mortarless hollow block masonry. Constr. Build. Mater. 2006, 20, 492–498. [Google Scholar] [CrossRef]
- Sturm, T.; Ramos, L.F.; Lourenço, P.B. Characterization of dry-stack interlocking compressed earth blocks. Mater. Struct. 2015, 48, 3059–3074. [Google Scholar] [CrossRef]
- Martínez-Romo, A.; González-Mota, R.; Soto-Bernal, J.J.; Rosales-Candelas, I. Investigating the degradability of HDPE, LDPE, PE-BIO and PE-OXO Films under UV-B Radiation. J. Spectrosc. 2015, 2015, 965–970. [Google Scholar] [CrossRef]
- Khabbaz, F.; Albertsson, A.C.; Karlsson, S. Chemical and morphological changes of environmentally degradable polyethylene films exposed to thermo-oxidation. Polym. Degrad. Stab. 1999, 63, 127–138. [Google Scholar] [CrossRef]
- Liu, M.; Horrocks, A.R.; Hall, M.E. Correlation of physicochemical changes in UV-exposed low density polyethylene films containing various UV stabilisers. Polym. Degrad. Stab. 1995, 49, 151–161. [Google Scholar] [CrossRef]
- Hu, X. Wavelength sensitivity of photo-oxidation of polyethylene. Polym. Degrad. Stab. 1997, 55, 131–134. [Google Scholar]
- Tidjani, A. Comparison of formation of oxidation products during photo-oxidation of linear low density polyethylene under different natural and accelerated weathering conditions. Polym. Degrad. Stab. 2000, 68, 465–469. [Google Scholar] [CrossRef]
- Peterson, J.D.; Vyazovkin, S.; Wight, C.A. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 2001, 202, 775–784. [Google Scholar] [CrossRef]
- Ojeda, T.F.M.; Dalmolin, E.; Forte, M.M.C.; Jacques, R.J.S.; Bento, F.M.; Camargo, F.A.O. Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym. Degrad. Stab. 2009, 94, 965–970. [Google Scholar] [CrossRef]
- Hoekstra, H.D.; Spoormaker, J.L.; Breen, J. Mechanical and morphological properties of stabilized and non-stabilized HDPE films versus exposure time. Angew. Makromol. Chem. 1997, 247, 91–110. [Google Scholar] [CrossRef]
- Baiden, B.K.; Asante, C.K.O. Effects of orientation and compaction methods of manufacture on strength properties of sandcrete blocks. Constr. Build. Mater. 2004, 18, 717–725. [Google Scholar] [CrossRef]
- Afzal, Q.; Abbas, S.; Abbass, W.; Ahmed, A.; Azam, R.; Rizwan Riaz, M. Characterization of sustainable interlocking burnt clay brick wall panels: An alternative to conventional bricks. Constr. Build. Mater. 2020, 231, 117190. [Google Scholar] [CrossRef]
- Uzoegbo, H.C.; Senthivel, R.; Ngowi, J.V. Load Capacity of Dry-Stack Masonry Walls—The Masonry Society. Int. Mason. Soc. 2007, 1, 41–52. [Google Scholar]
- Fundi, S.I.; Kaluli, J.W.; Kinuthia, J. Performance of interlocking laterite soil block walls under static loading. Constr. Build. Mater. 2018, 171, 75–82. [Google Scholar] [CrossRef]
- Ali, M.; Gultom, R.J.; Chouw, N. Capacity of innovative interlocking blocks under monotonic loading. Constr. Build. Mater. 2012, 37, 812–821. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Sivalingam, I.; Rafiudeen, M.R.; Nanayakkara, A. Development of Interlocking Lightweight Cement Blocks. 2013. Available online: https://www.researchgate.net/publication/281653059 (accessed on 5 August 2023).
- Safiee, N.A.; Mohd Nasir, N.A.; Ashour, A.F.; Abu Bakar, N. Behaviour of interlocking mortarless hollow block walls under in-plane loading. Aust. J. Struct. Eng. 2018, 19, 87–95. [Google Scholar] [CrossRef]
- Sarath, P.; Pradeep, P.I.; Babu, S.S. Investigation on strength parameters of interlocking hollow block strengthened with steel fibres. J. Eng. Res. Appl. 2015, 5, 111–117. [Google Scholar]
- Ahmad, Z.; Othman, S.Z.; Yunus, B.M.; Mohammed, A. Behaviour of masonry wall constructed using interlocking soil cement bricks. World Acad. Sci. Environ. Technol. Int. J. Civ. Environ. Eng. 2011, 5, 804–810. [Google Scholar]
Plastic Waste Binder (PWB) Type | PWB Content (wt.%) | Sand Content (wt.%) | Processing Temperature (°C) |
---|---|---|---|
Water sachet | 25.0 | 75.0 | 250–300 |
Bottle caps | 25.0 | 75.0 | 250–300 |
Water sachet + bottle caps | 25.0 | * 80:20 | 250–300 |
Sample | Crystallinity (%) | Heat of Fusion (J/g) | Melting Temperature (°C) | |||
---|---|---|---|---|---|---|
1st Heating | 2nd Heating | 1st Heating | 2nd Heating | 1st Heating | 2nd Heating | |
WS1 | 38.87 | 43.82 | 113.9 | 128.4 | 126.5 | 135.4 |
WS2 | 34.20 | 21.21 | 100.2 | 62.14 | 124.4 | 127.5 |
WS3 | 27.78 | 27.42 | 81.39 | 80.34 | 125.5 | 129.4 |
Bottle caps | 56.49 | 59.96 | 165.5 | 175.7 | 133.0 | 138.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumi-Larbi Jnr, A.; Mohammed, L.; Tagbor, T.A.; Tulashie, S.K.; Cheeseman, C. Recycling Waste Plastics into Plastic-Bonded Sand Interlocking Blocks for Wall Construction in Developing Countries. Sustainability 2023, 15, 16602. https://doi.org/10.3390/su152416602
Kumi-Larbi Jnr A, Mohammed L, Tagbor TA, Tulashie SK, Cheeseman C. Recycling Waste Plastics into Plastic-Bonded Sand Interlocking Blocks for Wall Construction in Developing Countries. Sustainability. 2023; 15(24):16602. https://doi.org/10.3390/su152416602
Chicago/Turabian StyleKumi-Larbi Jnr, Alexander, Latifatu Mohammed, Trinity Ama Tagbor, Samuel Kofi Tulashie, and Christopher Cheeseman. 2023. "Recycling Waste Plastics into Plastic-Bonded Sand Interlocking Blocks for Wall Construction in Developing Countries" Sustainability 15, no. 24: 16602. https://doi.org/10.3390/su152416602
APA StyleKumi-Larbi Jnr, A., Mohammed, L., Tagbor, T. A., Tulashie, S. K., & Cheeseman, C. (2023). Recycling Waste Plastics into Plastic-Bonded Sand Interlocking Blocks for Wall Construction in Developing Countries. Sustainability, 15(24), 16602. https://doi.org/10.3390/su152416602