Distribution, Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons in Farmland Soil of Helan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Reagents and Standards
2.4. Sample Extraction
2.5. Instrumental Analysis
2.6. Quality Control
2.7. Absolute Principal Component Scores/Multiple Linear Regression (APCS-MLR)
- (1)
- The contents of all PAHs were normalized, and the normalized factor fractions were obtained from the analysis of the principal components as follows:
- (2)
- For all elements, we established an artificial sample with 0 content and calculated the factor scores of the 0-content sample; Z0i was the factor fraction of the sample with 0 content, which was calculated as follows:
- (3)
- The factor fraction of each sample was subtracted from the factor fraction of the 0-content sample to obtain the APCS of each PAH element.
- (4)
- The multivariate linear regression of APCS with PAH content data could be converted into the contribution of each pollution source to each sample as follows:
2.8. Health Risk Assessment
2.9. Monte Carlo Simulation
2.10. Methods of Data Analysis
3. Results
3.1. Concentration and Distribution of PAHs in Soils
3.2. Source Identification of PAHs in Soils
3.3. Health Risk Assessment
4. Discussion
5. Conclusions
- (1)
- Σ7PAHs in the study area were higher in farmland soil, with a detection rate of 100% for all PAHs except BaA, BkF, and DahA. The highest average concentration of a single component was observed for Chry (344.00 ng·g−1), followed by BaA (305.91 ng·g−1).
- (2)
- According to the APCS-MLR source apportionment analysis, the primary contributors to soil PAHs in Helan were from combustion sources (biomass, diesel, and natural gas combustion) and transportation sources (gasoline vehicle and traffic exhaust emission). This finding indicated that human activities, such as biomass burning, mechanization, and automobile use, have an obvious impact on the PAHs content in the study area.
- (3)
- The carcinogenic risk showed that PAHs in Helan farmland soil did not present potential health risks to adults, but did present carcinogenic risks for children via ingestion with the mean intake of 1.28 × 10−5. The sensitivity analysis revealed that the soil particle uptake rate was the most sensitive to the health risks of children and adults with a risk probability of 26% and 52%. The results indicated that reducing oral intake could reduce the health risks of PAHs to human.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lynch, S.M.; Rebbeck, T.R. Bridging the Gap between Biologic, Individual, and Macroenvironmental Factors in Cancer: A Multilevel Approach. Cancer Epidemiol. Biomark. Prev. 2013, 22, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-H.; Wang, G.-L.; Chai, Y.; Zhang, G.; Li, J.; Feng, J. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotoxicol. Environ. Saf. 2009, 72, 1614–1624. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yu, X.; Liu, Z.; Sun, Y. Occurrence, characteristics and sources of polycyclic aromatic hydrocarbons in arable soils of Beijing, China. Ecotoxicol. Environ. Saf. 2018, 159, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Achten, C.; Andersson, J.T. Overview of Polycyclic Aromatic Compounds (PAC). Polycycl. Aromat. Compd. 2015, 35, 177–186. [Google Scholar] [CrossRef]
- Jia, J.; Bi, C.; Guo, X.; Wang, X.; Zhou, X.; Chen, Z. Characteristics, identification, and potential risk of polycyclic aromatic hydrocarbons in road dusts and agricultural soils from industrial sites in Shanghai, China. Environ. Sci. Pollut. Res. 2017, 24, 605–615. [Google Scholar] [CrossRef]
- Tarafdar, A.; Sinha, A. Public health risk assessment with bioaccessibility considerations for soil PAHs at oil refinery vicinity areas in India. Sci. Total Environ. 2018, 616–617, 1477–1484. [Google Scholar] [CrossRef]
- Menzie, C.A.; Potocki, B.B.; Santodonato, J. Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 1992, 26, 1278–1284. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Zhang, F.; Li, F.; Zhou, M. Polycyclic aromatic hydrocarbons in farmland soils around main reservoirs of Jilin Province, China: Occurrence, sources and potential human health risk. Environ. Geochem. Health 2018, 40, 791–802. [Google Scholar] [CrossRef]
- Najurudeen, N.A.N.B.; Khan, F.; Suradi, H.; Mim, U.A.; Raim, I.N.J.; Rashid, S.B.; Latif, M.T.; Huda, M.N. The presence of polycyclic aromatic hydrocarbons (PAHs) in air particles and estimation of the respiratory deposition flux. Sci. Total Environ. 2023, 878, 163129. [Google Scholar] [CrossRef]
- Wu, J.; Yang, G.; Chen, H.; Zhai, Y.; Teng, Y.; Li, J.; Chen, R. Source apportionment and source specific health risk assessment of HMs and PAHs in soils with an integrated framework in a typical cold agricultural region in China. Sci. Total Environ. 2023, 904, 167337. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, H.; Duan, L. Pollution characteristics and population health risks of polycyclic aromatic hydrocarbons (PAHs) in coking contaminated soils. Environ. Chall. 2022, 9, 100613. [Google Scholar] [CrossRef]
- Zeng, S.; Ma, J.; Yang, Y.; Zhang, S.; Liu, G.-J.; Chen, F. Spatial assessment of farmland soil pollution and its potential human health risks in China. Sci. Total Environ. 2019, 687, 642–653. [Google Scholar] [CrossRef]
- Liu, Z.; Teng, Y.; Huang, B.; Li, Z.; Luo, Y. Distribution and source analysis of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Yangtze River Delta region. Acta Pedol. Sin. 2010, 47, 1110–1117. [Google Scholar]
- Qiu, H.; Liu, Y.-X.; Xie, X.-F.; Zhang, M.; Wang, W. Distribution characteristics and source analysis of polycyclic aromatic hydrocarbons in salinized farmland soil from the oil mining area of the Yellow River Delta. Environ. Sci. 2019, 40, 3509–3518. [Google Scholar] [CrossRef]
- Li, X.; Guan, X.; Ma, J.; Fang, D.; Qiu, X. Contamination and risk assessment of polycyclic aromatic hydrocarbons in farmland soils of Zhejiang Province, China. J. Agro-Environ. Sci. 2019, 38, 1531–1540. [Google Scholar]
- Li, T.C.; Li, W.; Yuan, C.Y.; Tao, S. Distribution of Polycyclic Aromatic Hydrocarbons in Surface Soils of Yinchuan Plain and Surrounding Areas. J. Agro-Environ. Sci. 2014, 33, 2136–2142. [Google Scholar] [CrossRef]
- Shi, R.; Li, X.; Yang, Y.; Fan, Y.; Zhao, Z. Contamination and human health risks of polycyclic aromatic hydrocarbons in surface soils from Tianjin coastal new region, China. Environ. Pollut. 2021, 268, 115938. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, H.; Guo, G.; Semple, K.T.; Jones, K.C. Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. J. Environ. Manag. 2019, 251, 109512. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Malik, A.; Kumar, R.; Saxena, P.; Sinha, S. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere. Environ. Monit. Assess. 2007, 136, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.-L.; Li, Y.-F.; Qi, H.; Sun, D.-Z.; Liu, L.-Y.; Wang, D.-G. Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere 2010, 79, 441–447. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, X.; Lei, L. Polycyclic aromatic hydrocarbons in the centralized wastewater treatment plant of a chemical industry zone: Removal, mass balance and source analysis. Sci. China Chem. 2012, 55, 416–425. [Google Scholar] [CrossRef]
- Bao, H.; Hou, S.; Niu, H.; Tian, K.; Liu, X.; Wu, F. Status, sources, and risk assessment of polycyclic aromatic hydrocarbons in urban soils of Xi’an, China. Environ. Sci. Pollut. Res. 2018, 25, 18947–18959. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.-X.; Zhou, X.-P.; Lei, C.-N.; Peng, Y.-W.; Zhang, S.-L. Source Apportionment of Soil PAHs in Lanzhou Based on GIS and APCS-MLR Model. Environ. Sci. 2021, 42, 3904–3912. [Google Scholar] [CrossRef]
- Lu, X.; Kang, X.; Wei, Y.; Wang, F.; Bai, H.; Pan, J. Spatial Distribution and Sources of PAHs in Farmland Soil of Peri-urban Areas: A Case Study of Zhougang, Nanjing. Chin. J. Soil Sci. 2021, 52, 286–296. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y.; Du, L.; Yu, Y. Contamination level, sources, and health risk of polycyclic aromatic hydrocarbons in suburban vegetable field soils of Changchun, Northeast China. Sci. Rep. 2022, 12, 11301. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Ma, Y.; Qi, Y.; Zhong, Y.; Sha, X. Health risk assessment of groundwater nitrogen pollution in Yinchuan plain. J. Contam. Hydrol. 2022, 249, 104031. [Google Scholar] [CrossRef]
- Peng, C.; Chen, W.; Liao, X.; Wang, M.; Ouyang, Z.; Jiao, W.; Bai, Y. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ. Pollut. 2011, 159, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Öberg, T.; Bergbäck, B. A Review of Probabilistic Risk Assessment of Contaminated Land (12 pp). J. Soils Sediments 2005, 5, 213–224. [Google Scholar] [CrossRef]
- Peng, C.; Cai, Y.; Wang, T.; Xiao, R.; Chen, W. Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area. Sci. Rep. 2016, 6, 37084. [Google Scholar] [CrossRef]
- Tong, R.; Yang, X.; Su, H.; Pan, Y.; Zhang, Q.; Wang, J.; Long, M. Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai. Sci. Total Environ. 2018, 616–617, 1365–1373. [Google Scholar] [CrossRef]
- Chen, J.-W.; Wang, S.-L.; Hsieh, D.P.H.; Yang, H.-H.; Lee, H.-L. Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Sci. Total Environ. 2012, 417–418, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Sun, T.; Fan, Z. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z. Migration and Storage Potential of Soil Organic Carbon in Maize Field in the Eastern Foot of Helan Mountains. Master’s Thesis, Ningxia University, Ningxia, China, 2021. [Google Scholar]
- Sushkova, S.; Minkina, T.; Deryabkina, I.; Rajput, V.; Antonenko, E.; Nazarenko, O.; Yadav, B.K.; Hakki, E.; Mohan, D. Environmental pollution of soil with PAHs in energy producing plants zone. Sci. Total Environ. 2019, 655, 232–241. [Google Scholar] [CrossRef]
- The Technical Specification for Soil Environmental Monitoring; The State Environmental Protection Administration: Beijing, China, 2004.
- Xia, Z.; Wang, Y.; Bai, Y. Spatial distribution characteristics and source apportionment of soil PAHs in Shizuishan city based on GIS and PMF model. Environ. Sci. 2020, 41, 5656–5667. [Google Scholar] [CrossRef]
- Soil and Sediment—Determination of Polycyclic Aromatic Hydocabons—High Performance Liquid Chromatography; The State Environmental Protection Administration: Beijing, China, 2016.
- Bai, Y.; Zhang, Y.; Liu, X.; Wang, Y. The spatial distribution and source apportionment of heavy metals in soil of Shizuishan, China. Environ. Earth Sci. 2023, 82, 494. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Exposure Factors Handbook; United States Environmental Protection Agency: Washington, DC, USA, 1997.
- Wu, B.; Zhang, Y.; Zhang, X.-X.; Cheng, S.-P. Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data. Sci. Total Environ. 2011, 410–411, 112–118. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, J.; Chang, S.X.; Collins, C.; Xu, J.; Liu, X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environ. Int. 2019, 128, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Chen, H.; Song, L.; Yao, Z.; Meng, F.; Teng, Y. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Sci. Total Environ. 2019, 694, 133819. [Google Scholar] [CrossRef]
- Huang, Y.-N.; Dang, F.; Li, M.; Zhou, D.-M.; Song, Y.; Wang, J.-B. Environmental and human health risks from metal exposures nearby a Pb-Zn-Ag mine, China. Sci. Total Environ. 2020, 698, 134326. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 1996, 11, 121–127. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Yang, P.; Qiao, X.; Tian, F. Polycyclic aromatic hydrocarbons in Dalian soils: Distribution and toxicity assessment. J. Environ. Monit. 2006, 9, 199–204. [Google Scholar] [CrossRef]
- Wang, D.; Ma, J.; Li, H.; Zhang, X. Concentration and Potential Ecological Risk of PAHs in Different Layers of Soil in the Petroleum-Contaminated Areas of the Loess Plateau, China. Int. J. Environ. Res. Public Health 2018, 15, 1785. [Google Scholar] [CrossRef]
- Suman, S.; Sinha, A.; Tarafdar, A. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci. Total Environ. 2016, 545–546, 353–360. [Google Scholar] [CrossRef]
- Edwards, N.T. Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment—A review. J. Environ. Qual. 1983, 12, 427–441. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, S.; Wang, L.; Zhen, Q.; Han, F.; Zhang, X. Distribution, Origins and Hazardous Effects of Polycyclic Aromatic Hydrocarbons in Topsoil Surrounding Oil Fields: A Case Study on the Loess Plateau, China. Int. J. Environ. Res. Public Health 2020, 17, 1390. [Google Scholar] [CrossRef]
- Duval, M.M.; Friedlander, S.K. Source Resolution of Polycyclic Aromatic Hydrocarbons in the Los Angeles Atmosphere Application of a Chemical Species Balance Method with First Order Chemical Decay; University of California: Oakland, CA, USA, 1981. [Google Scholar]
- Wu, J.; Xiong, L.J.; Sha, C.Y.; Tang, H.; Lin, K.F.; Li, D.Y.; Shne, C. Comparison and source apportionment of PAHs pollution of runoff from roads in suburb and urban areas of Shanghai. Environ. Sci. 2019, 40, 2240–2248. [Google Scholar] [CrossRef]
- Wang, R.; Liu, G.; Chou, C.-L.; Liu, J.; Zhang, J. Environmental Assessment of PAHs in Soils Around the Anhui Coal District, China. Arch. Environ. Contam. Toxicol. 2010, 59, 62–70. [Google Scholar] [CrossRef]
- Fraser, M.P.; Cass, G.R.; Simoneit, B.R.T. Air Quality Model Evaluation Data for Organics. 6. C3–C24 Organic Acids. Environ. Sci. Technol. 2003, 37, 446–453. [Google Scholar] [CrossRef]
- Fang, X.; Wu, L.; Zhang, Q.; Zhang, J.; Wang, A.; Zhang, Y.; Zhao, J.; Mao, H. Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement. Transp. Res. Part. Transp. Environ. 2019, 67, 674–684. [Google Scholar] [CrossRef]
- Li, F.; Wu, S.; Wang, Y.; Yan, D.; Qiu, L.; Xu, Z. A new spatially explicit model of population risk level grid identification for children and adults to urban soil PAHs. Environ. Pollut. 2020, 263, 114547. [Google Scholar] [CrossRef]
- Cao, W.; Yin, L.; Zhang, D.; Wang, Y.; Yuan, J.; Zhu, Y.; Dou, J. Contamination, Sources, and Health Risks Associated with Soil PAHs in Rebuilt Land from a Coking Plant, Beijing, China. Int. J. Environ. Res. Public Health 2019, 16, 670. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhao, H.; Zhao, J.; Xu, Z.; Wu, S. Mapping the Finer-Scale Carcinogenic Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Soil—A Case Study of Shenzhen City, China. Int. J. Environ. Res. Public Health 2020, 17, 6735. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Cao, S.-Y.; Nuerla, A.; Yusuyunjiang, M.; Abdugheni, A.; Xie, X.-X.; Gulisitan, A.; Liu, H.-J. Pollution characteristics and risk assessment of polycyclic aromatic hydrocarbons in farmland soil and crops in the suburbs of Urumqi. Environ. Sci. 2023, 44, 4039–4051. [Google Scholar] [CrossRef]
- Ge, W.; Cheng, Q.-Q.; Chai, C.; Zeng, L.-S.; Wu, J.; Chen, Q.-H.; Zhu, X.-W.; Ma, D. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons in agricultural soils from Shandong. Environ. Sci. 2017, 38, 1587–1596. [Google Scholar] [CrossRef]
- Chen, Y. Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soil and Maize along Roadside. Master’s Thesis, Northeast Normal University, Jinlin, China, 2019. [Google Scholar]
- Chen, F.; Wang, C.; Zhang, L.; Wei, X.; Wang, Q. Characteristics sources apportionment and risk assessment of polycyclic aromatic hydrocarbons in agricultural soils from zinc smelting area, Guizhou Province. Acta Sci. Circumstantiae 2017, 37, 1515–1523. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Lu, X.-L.; Wei, Y.-C.; Zhu, C.-D.; Pan, J.-J. Pollution characteristics and risk assessment of polycyclic aromatic hydrocarbons in a suburban farmland soil. Environ. Sci. 2021, 42, 5510–5518. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Zhang, F.; Liu, X.; Zhou, M. Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin, China. Ecotoxicol. Environ. Saf. 2018, 156, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Niu, J.; Wang, L. Contamination and risk assessment of PAHs in agricultural soil from wastewater irrigated area. Environ. Chem. 2017, 36, 1622–1629. [Google Scholar]
- Ding, Y.; Huang, H.; Zhang, Y.; Zheng, H.; Zeng, F.; Chen, W.; Qu, C.; Li, X.; Xing, X.; Qi, S. Polycyclic aromatic hydrocarbons in agricultural soils from Northwest Fujian, Southeast China: Spatial distribution, source apportionment, and toxicity evaluation. J. Geochem. Explor. 2018, 195, 121–129. [Google Scholar] [CrossRef]
- Zhou, L.; Xue, N.; Li, F.; Han, B.; Cong, X.; Li, H.; Yan, Y. Distribution source analysis and risk assessment of polycyclic aromatic hydrocarbons in farmland soils in Huanghuai Plain. China Environ. Sci. 2012, 32, 1250–1256. [Google Scholar]
- Ma, Y.; Cheng, L.; Ruan, Z.-Y.; Shi, P.-F.; Lu, C.-J.; Yun, X.-T.; Li, L.-Y.; Xu, Y.-Q.; Shi, Y. Polycyclic aromatic hydrocarbons in surface soil of China (2000–2020): Temporal and spatial distribution influencing factors. Environ. Sci. 2021, 42, 1065–1072. [Google Scholar] [CrossRef]
- Cao, W.; Geng, S.; Zou, J.; Wang, Y.; Guo, Y.; Zhu, Y.; Dou, J. Post relocation of industrial sites for decades: Ascertain sources and human risk assessment of soil polycyclic aromatic hydrocarbons. Ecotoxicol. Environ. Saf. 2020, 198, 110646. [Google Scholar] [CrossRef] [PubMed]
- Souza, K.F.; Carvalho, L.R.; Allen, A.G.; Cardoso, A.A. Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxy-PAH compounds in atmospheric particulate matter of a sugar cane burning region. Atmos. Environ. 2014, 83, 193–201. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Wei, C.; Han, Y.; Cao, J.; Zhan, C.; Wilcke, W. Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs and azaarenes) in soils from China and their relationship with geographic location, land use and soil carbon fractions. Sci. Total Environ. 2019, 690, 1268–1276. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, M.; Chen, Q.; Zhu, C.; Jie, J.; Li, X.; Dong, X.; Miao, Z.; Shen, M.; Bu, Q. Spatial, seasonal and particle size dependent variations of PAH contamination in indoor dust and the corresponding human health risk. Sci. Total Environ. 2019, 653, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhu, Y.; Zhuo, S.; Liu, W.; Zeng, E.Y.; Wang, X.; Xing, B.; Tao, S. Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion. Environ. Int. 2017, 108, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.-H.; Li, G.-L.; Wang, X.-M.; Peng, P.; Bai, J. Combination of Unmix and positive matrix factorization model identify-ing contributions to carcinogenicity and mutagenicity for polycyclic aromatic hydrocarbons sources in Liaohe delta reed wetland soils, China. Chemosphere 2015, 120, 431–437. [Google Scholar] [CrossRef]
- Xu, J.; Wang, H.; Sheng, L.; Liu, X.; Zheng, X. Distribution Characteristics and Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Momoge Wetland, China. Int. J. Environ. Res. Public Health 2017, 14, 85. [Google Scholar] [CrossRef]
- Cao, S.; Duan, X.; Zhao, X.; Ma, J.; Dong, T.; Huang, N.; Sun, C.; He, B.; Wei, F. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci. Total Environ. 2014, 472, 1001–1009. [Google Scholar] [CrossRef]
- Wu, J.; Bian, J.; Wan, H.; Ma, Y.; Sun, X. Health risk assessment of groundwater nitrogen pollution in Songnen Plain. Ecotoxicol. Environ. Saf. 2021, 207, 111245. [Google Scholar] [CrossRef]
- Xing, X.; Mao, Y.; Hu, T.; Tian, Q.; Chen, Z.; Liao, T.; Zhang, Z.; Zhang, J.; Gu, Y.; Bhutto, S.U.A.; et al. Spatial distribution, possible sources and health risks of PAHs and OCPs in surface soils from Dajiuhu Sub-alpine Wetland, central China. J. Geochem. Explor. 2020, 208, 106393. [Google Scholar] [CrossRef]
- Wu, S.; Liu, X.; Liu, M.; Chen, X.; Liu, S.; Cheng, L.; Lin, X.; Li, Y. Sources, influencing factors and environmental indications of PAH pollution in urban soil columns of Shanghai, China. Ecol. Indic. 2018, 85, 1170–1180. [Google Scholar] [CrossRef]
- Yang, W.; Lang, Y.-H.; Bai, J.; Li, Z.-Y. Quantitative evaluation of carcinogenic and non-carcinogenic potential for PAHs in coastal wetland soils of China. Ecol. Eng. 2015, 74, 117–124. [Google Scholar] [CrossRef]
- Tong, R.; Yang, X. Environmental health risk assessment of contaminated soil based on Monte Carlo Method: A case of PAHs. Environ. Sci. 2017, 38, 2522–2529. [Google Scholar] [CrossRef]
Parameter | Unit | Type of Function Distribution | Value | |
---|---|---|---|---|
Child | Adult | |||
EF | d·a−1 | Triangular distribution | 350 [40] | |
Ringest | mg·d−1 | Triangular distribution | 66, 103, 161 [41] | 4, 30, 52 [41] |
AF | mg·cm−2 | Lognormal distribution | 0.65, 1.2 [42] | 0.49, 0.54 [42] |
Rinhal | m3·d−1 | Common practice | 8.6 [43] | 19 [43] |
ED | a | Common practice | 6 [32] | 24 [32] |
PEF | m3·kg−1 | Common practice | 1.36 × 109 [32] | |
BW | kg | Lognormal distribution | 16.68, 1.48 [43] | 57.03, 1.18 [43] |
AT | d | Common practice | 25,550 (carcinogenic) [32] | |
SA | m2 | Common practice | 0.23 [43] | 0.54 [43] |
ABF | - | Common practice | 0.01 (carcinogenic) [32] |
PAHs | Sfi Value of PAHs /(kg·d−1·mg−1) | ||
---|---|---|---|
SFingest | SFdermal | SFinhal | |
Chry | 7.30 × 10−3 | 3.10 × 10−3 | 1.46 × 10−2 |
BaA | 7.30 × 10−1 | 3.10 × 10−1 | 1.46 |
BbF | 7.30 × 10−1 | 3.10 × 10−1 | 1.46 |
BkF | 7.30 × 10−2 | 3.10 × 10−2 | 1.46 × 10−1 |
BaP | 7.30 | 3.10 | 14.6 |
DahA | 7.30 | 3.10 | 14.6 |
InP | 7.30 × 10−1 | 3.10 × 10−1 | 1.46 |
Risk Level | Degree of Risk | The Range of Risk Score |
---|---|---|
I | Low risk | 1 × 10−6~1 × 10−5 |
II | Low–medium risk | 1 × 10−5~5 × 10−5 |
III | Medium risk | 5 × 10−5~1 × 10−4 |
IV | Medium–high risk | 1 × 10−4~5 × 10−4 |
V | High risk | 5 × 10−4~1 × 10−3 |
VI | Extra-high risk | 1 × 10−3~5 × 10−3 |
PAH Compounds | Ring of Numbers | Range (ng·g−1) | Mean (ng·g−1) | Median (ng·g−1) | Standard Deviation (ng·g−1) | Coefficient of Variation | Detection Rate |
---|---|---|---|---|---|---|---|
Chry | 4-ring | 1.96~344.00 | 86.59 | 25.57 | 89.96 | 1.04 | 1 |
BaA | 4-ring | N.D.~305.91 | 82.30 | 66.18 | 66.27 | 0.81 | 0.97 |
BbF | 5-ring | 2.34~136.63 | 33.34 | 19.37 | 28.54 | 0.86 | 1 |
BkF | 5-ring | N.D.~263.38 | 66.07 | 31.75 | 60.37 | 0.91 | 0.98 |
BaP | 5-ring | 0.66~188.61 | 32.19 | 22.10 | 34.69 | 1.08 | 1 |
DahA | 5-ring | N.D.~267.53 | 45.26 | 43.43 | 35.33 | 0.78 | 0.91 |
InP | 6-ring | 0.79~214.46 | 62.42 | 32.22 | 56.27 | 0.90 | 1 |
∑7PAHs | / | 17.82~1544.73 | 408.18 | 255.95 | 325.65 | 0.80 | 1 |
PAH Compounds | Factor | Common Variables | |
---|---|---|---|
1 | 2 | ||
Chry | 0.924 | 0.332 | 0.963 |
BaA | 0.819 | 0.336 | 0.784 |
BbF | 0.962 | 0.142 | 0.945 |
BkF | 0.962 | 0.244 | 0.984 |
BaP | 0.269 | 0.798 | 0.709 |
DahA | 0.194 | 0.790 | 0.661 |
InP | 0.893 | 0.404 | 0.961 |
Eigen value | 5.115 | 0.892 | |
Explain the total variance/% | 73.073 | 12.745 | |
Cumulative explained total variance/% | 73.073 | 85.818 |
Population | Carcinogenic Effect Intake (mg·kg−1·d−1) | |||||
---|---|---|---|---|---|---|
Statistic | CRingest | CRdermal | CRinhal | |||
Child | CR | Max | 4.24 × 10−5 | 9.16 × 10−8 | 4.21 × 10−9 | / |
Min | 8.11 × 10−8 | 9.63 × 10−11 | 8.05 × 10−12 | / | ||
Mean | 1.28 × 10−5 | 3.18 × 10−8 | 1.27 × 10−9 | / | ||
TCR | Total | 8.99 × 10−5 | 2.23 × 10−7 | 8.92 × 10−9 | 9.00 × 10−5 | |
Adult | CR | Max | 1.99 × 10−11 | 3.08 × 10−6 | 3.6 × 10−9 | / |
Min | 3.81 × 10−14 | 5.89 × 10−9 | 6.90 × 10−12 | / | ||
Mean | 6.03 × 10−12 | 9.32 × 10−7 | 1.09 × 10−9 | / | ||
TCR | Total | 4.22 × 10−11 | 6.53 × 10−7 | 7.65 × 10−9 | 6.60 × 10−7 |
Regions | Land Use | ∑7PAHs (ng·g−1) | Mean (ng·g−1) | Reference |
---|---|---|---|---|
Urumqi | farmland | 10.07~1461.78 | 88.11 | [58] |
Shandong | farmland | 11.10~1416.2 | 189.7 | [59] |
Changchun | farmland | 328.30~2411.7 | 1020.6 | [60] |
Guizhou | farmland | 27.4~2188 | 280.0 | [61] |
Nanjing | farmland | 8.74~141.66 | 50.90 | [62] |
Zhejiang | farmland | 8.41~145 | / | [15] |
Yinma River Basin | farmland | 116.71~401.06 | 271.69 | [63] |
Shanxi | farmland | 2.08~55 | 76.65 | [64] |
Fujian | farmland | 1.42~579.69 | 65.54 | [65] |
Huanghuai Plain | farmland | 12.03~537.95 | 51.45 | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Wang, Y.; Zhang, Y.; Bai, Y. Distribution, Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons in Farmland Soil of Helan, China. Sustainability 2023, 15, 16667. https://doi.org/10.3390/su152416667
Zhang R, Wang Y, Zhang Y, Bai Y. Distribution, Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons in Farmland Soil of Helan, China. Sustainability. 2023; 15(24):16667. https://doi.org/10.3390/su152416667
Chicago/Turabian StyleZhang, Ruiyuan, Youqi Wang, Yuhan Zhang, and Yiru Bai. 2023. "Distribution, Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons in Farmland Soil of Helan, China" Sustainability 15, no. 24: 16667. https://doi.org/10.3390/su152416667
APA StyleZhang, R., Wang, Y., Zhang, Y., & Bai, Y. (2023). Distribution, Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons in Farmland Soil of Helan, China. Sustainability, 15(24), 16667. https://doi.org/10.3390/su152416667