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Abstract: Measuring the impact of extreme winds is important in high-speed railway bridge con-
struction to avoid the risk of engineering accidents. This study presents an early-warning framework
for high-speed railway (HSR) bridge construction under extreme wind conditions, using a long-span
continuous beam bridge constructed in a typhoon-prone area as a case study. Specifically, on-site
wind environment measurements during a typhoon are utilized, and parameters such as fluctuating
wind turbulence intensity, gust factor, turbulence integral scale, and power spectral density are
employed to characterize the wind environment. Multi-step prediction of gust wind speed during
the bridge construction is performed using the hybrid Back Propagation-Genetic Algorithm (BP-GA).
Hierarchical warnings and control actions are proposed and implemented based on the prediction
results. The analysis results of wind parameters revealed a discrepancy between the measured and
specified typhoon turbulence intensities, with the windward turbulence intensity being lower than
specified. The longitudinal average gust factor exceeded the transverse value. The prediction curve
based on the BP-GA algorithm closely resembles the actual curve, meeting accuracy requirements.
Notably, the one-step prediction provided the most accurate results. Based on the predicted wind
speed trend for the upcoming half-hour, appropriate hierarchical warnings and control measures
were conducted.

Keywords: high-speed railway bridge; construction; extreme winds; prediction; early warning;
machine learning

1. Introduction

In the process of long-span bridge construction, the orderly management of site
construction has certain benefits for the sustainable development of local resources [1]. The
construction safety of a long-span bridge is not only related to the safety and quality of the
project, but its smooth construction also enables more rapid improvement in local traffic
movement and promotes the rapid development of the economy [2]. Accidents caused by
wind are more likely to occur on long-span bridges during their construction and operation
over waterways or in mountainous regions [3]. Measuring and predicting wind speed
accurately is an efficient way to ensure the construction safety of long-span bridges [4],
especially those facing extreme weather conditions. Early-warning systems for bridge
construction in such adverse scenarios rely on advanced wind speed prediction methods.

Wind speed prediction approaches can be broadly categorized into physical meth-
ods [5], statistical methods [6], and hybrid physical statistical models [7]. Specifically,
physical models demand meteorological data, such as atmospheric pressure, humidity, and
temperature. These models tend to excel in forecasting over longer time horizons, typically
exceeding 12 h. However, they may be less reliable for short-term wind speed predictions.
Compared with physical methods, statistical approaches employ time series data to build
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models and predict wind speed. An example of a widely used statistical method is the
Autoregressive Integrated Moving Average (ARIMA) [6], which assumes linear relation-
ships in time series data. However, ARIMA may suffer from reduced accuracy when wind
characteristics exhibit non-linearity and non-stationarity. Hybrid models combine multiple
approaches to account for various components in the wind speed dataset. Typical hybrid
models include ARIMA-ANN, ARIMA-SVR, and ARIMA-ANFIS, which merge linear
and nonlinear models to capture the complexities of wind speed time series. However,
this assumption of linear and nonlinear components within the data can limit forecasting
performance in certain circumstances. Other hybrid models involve data preprocessing
techniques, such as wavelet transform, empirical mode decomposition, variational mode
decomposition, and empirical wavelet transform. These techniques are employed to im-
prove forecasting accuracy by extracting inherent information from nonstationary time
series. Machine learning methods have emerged as promising tools for forecasting wind
speed, offering advantages in accuracy and robustness [7].

The southeast coastal region of China is a key construction zone for the country’s
railroad network. Numerous high-speed railway (HSR) lines in this region are already
under construction or are slated for development. However, this region’s proximity to the
Pacific Ocean means that it is annually subjected to typhoons and other extreme weather
events, posing significant challenges to the construction of HSR bridges [8]. Continuous
beam bridges for HSRs differ from typical railroad bridges due to higher requirements for
construction accuracy, engineering quality, and the final quality of the completed bridge.
Within the atmospheric boundary layer, wind speed increases with height above ground,
leading to larger wind loads acting on the superstructure of the continuous beam bridges.
This is particularly crucial during the maximum cantilever construction stage, which has
a low self-oscillation frequency. Static wind loads can generate significant internal forces
at the root of the box beam and the bottom of the pier [9–11], risking lateral overturning
and other accidents. Fluctuating wind loads can induce wind-caused shaking vibration
of cantilevered box beams, which not only increases the force on the root of the box
beam but can also lead to fatigue cracking in the concrete. Additionally, typhoons pose a
serious threat to the safety of ancillary structures and personnel during the construction of
continuous beam bridges [12–14].

This study takes a typical long-span HSR continuous beam bridge on the southeast
coast as the engineering background, with wind environment measurements being taken
on-site. Utilizing the hybrid Back Propagation-Genetic Algorithm (BP-GA), gust wind
speed was predicted during construction. The resulting predictions can inform hierarchical
typhoon warnings and control measures.

2. Machine Learning-Based Wind Speed Early-Warning Framework

During the construction phase of large-span HSR continuous beam bridges, typhoons
and other severe weather conditions can potentially cause lateral overturning of the maxi-
mum cantilever, leading to economic losses and even fatalities. These accidents are often
linked to peak gust wind speeds from typhoons. Therefore, accurate short-term gust wind
speed predictions are crucial for implementing timely risk prevention and control measures,
ultimately reducing the likelihood of such accidents [15].

2.1. BP Neural Network

The backpropagation (BP) neural network is a multi-layer feedforward network
trained with error backpropagation. It uses gradient search techniques to minimize the
mean square error between the actual and desired output values. If the mean square error
of the output values is not minimized, it enters a backpropagation iteration to calculate
and correct the error. After repeated learning, it determines the effect of the error on the
weights and thresholds of the network [16]. The BP neural network can approximate any
nonlinear mapping with arbitrary precision, which has strong multidimensional nonlinear
learning ability and good robustness. The network structure is shown in Figure 1.
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Figure 1. Structure of the BP neural network.

For the output layer,
ok = f (netk), k= 1, 2, . . . , l (1)

netk =
m

∑
j=1

wjkyj, k= 1, 2, . . . , l (2)

For the hidden layer,
yj = f (netj), j= 1, 2, . . . , m (3)

netj =
n

∑
i=1

vijxi, j= 1, 2, . . . , m (4)

In this case, the unipolar Sigmoid function is used as the transformation function, and
the formula is as follows

f (x) =
1

1 + e−x (5)

The input and output data are normalized before training the network by

xi =
xi − xmin

xmax − xmin
(6)

where xi is the layer i input vector, x = (x1, x2, xi, . . ., x)n
T; yj is the output vector of the jth

hidden layer, y = (y1, y2, yj, . . ., y)m
T; ok is the output vector of the kth layer, o = (o1, o2,

ok, . . ., o)l
T; netk and netj are the kth and jth network layers, respectively; vij is the weight

between the i-th input layer and the j-th implied layer; wjk is the weight from the j-th
hidden layer to the k-th output layer; xmin, xmax are the minimum and maximum values,
respectively, in the input; xi is the normalized input variable; and e is the natural exponent,
with a value of approximately 2.718.

2.2. BP-GA

The main drawbacks of the BP neural network are its slow learning speed and the
tendency to become stuck in local minima. Therefore, in the wind speed prediction process,
we introduce the genetic algorithm (GA). First, GA is used to obtain a global optimum for
the initial weights of the BP neural network, and then the training continues. This process
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addresses the two aforementioned drawbacks of the BP neural network and accelerates
the network’s convergence speed. The wind speed prediction process based on the BP-GA
algorithm is shown in Figure 2.
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2.2.1. Individual Coding and Population Initialization

When analyzing problems using GA, it is necessary to encode the individuals. In cases
involving multivariable and high-dimensional problems, real values of variables are used
for encoding [17]. Each individual corresponds to a string of real numbers representing
the weights between the input and hidden layers, the hidden layer thresholds, the weights
between the hidden and output layers, and the output layer thresholds [18].

Since the neural network has multiple inputs, undetermined weights, and thresholds,
real number encoding is used for individual coding in this study. Based on the BP neural
network structure shown in Figure 1, the process of individual encoding and population
initialization begins with generating a population of N individuals. The length of the encoding
for each individual is determined by the number of initial weights and threshold values in the
various structural layers of the BP neural network and can be represented as follows

S = n × q + q × m + q + m (7)
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In Equation (7), S denotes the individual coding length; n is the number of nodes in
the input layer of the BP neural network; q is the number of nodes in the hidden layer; and
m is node number in the output layer.

2.2.2. Adaptation Function

The fitness value F of an individual is given by the sum of the absolute errors between
the wind speed prediction output and the expected network output values [19], and it can
be calculated using the following formula

F = k

(
n

∑
i=1

|yi − oi|
)

(8)

where yi is the desired output of the ith node; oi is the predicted output of the ith node; k is
the customization coefficient; and n is the number of network output nodes.

2.2.3. Selection Operations

In the wind speed prediction model, the roulette wheel selection method is used for
the selection operation. The probability of selecting individual i, denoted as pi, is

fi =
k
Fi

(9)

pi =
fi

N
∑

j=1
f j

(10)

where Fi is the fitness value of individual i; k is the coefficient; N is the number of individuals in
the population; and fi and fj are the fitness measures of selected individuals i and j, respectively.

2.2.4. Cross Operation

Since the individuals use real number encoding, real number crossover is used for the
crossover operation, and the formula is as follows

akj = akj(l − b) + al jb (11)

al j = al j(l − b) + akjb (12)

where akj is the influence factor of node k on node j; alj is the influence factor of node l on
node j; and b is the weight value, which takes the range of [0, 1].

2.2.5. Variant Operations

To prevent the algorithm from falling into local minima, a mutation mechanism is
introduced, and the gene aij mutation operates as follows

aij =

{
aij + (aij − amax)× f (g), r > 0.5
aij + (amin − aij)× f (g), r ≤ 0.5

(13)

f (g) = r2(1 − g/Gmax)
2 (14)

where aij is the jth gene of individual i; amax, amin are the upper and lower limit values
of gene aij, respectively; g is the number of iterations; Gmax is the maximum number of
evolutions; r2 is the number of random numbers; and r is the probability of variation, which
takes the value range of [0, 1].
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3. Validation and Application
3.1. Wind Environment Monitoring System for the Bridge Site

The proposed early-warning framework is applied to a long-span HSR continuous
bridge on the east coast of China. The main span of this bridge is 268 m, with a combination
of 68 m + 132 m + 68 m, as shown in Figure 3. The box girder 0# block adopts the bracket
cast-in-place technique, and the remaining segments adopt cantilever pouring. The beam
body is temporarily cemented to the pier body, and the maximal length of the cantilever on
both sides during the construction period is 65 m. The whole width of the bridge is 31 m,
and the hanging basket construction scheme is adopted. The height of the cantilever root is
about 11 m and the closing place is 4.5 m.
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Figure 3. Elevation arrangement of the long-span HSR bridge (unit: m).

A 3D ultrasonic wind anemometer is installed for the on-site measurement of the wind
environment. The meter can measure wind of 0~45 m/s and 0~65 m/s, respectively, provid-
ing sound temperature, sound speed, and three-way (UVW) vector output at 20 Hz/32 Hz
output frequency. The on-site anemometer is installed at the bridge deck position of the 0#
block of the main beam, as shown in Figure 4.
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Figure 4. Schematic diagram of anemometer arrangement.

3.2. Wind Characteristics Analysis

The mean and fluctuating characteristics are two main features of wind. Specifically,
the mean wind characteristics are mainly described by parameters such as mean wind speed
and wind direction; the fluctuating wind characteristics mainly include parameters such as
turbulence intensity, gust factor, and power spectral density [13]. Wind characteristics were
calculated using measured data from 10 August 2019, 22:00 to 11 August 2019, 08:00 during
Typhoon Lekima. The measured wind speed samples during this period are presented in
Figure 5, and the sampling frequency of the anemometer adopted is 32 Hz.
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Figure 5. Sample of measured wind speed and direction during the typhoon.

3.2.1. Mean Wind Speed and Direction

Wind speed is a vector with time-varying characteristics determined by attack angle,
direction and speed. To analyze the wind characteristics of the measured wind samples
in various directions, the original wind speed within the basic time interval is typically
decomposed into two orthogonal wind speed time series, namely, windward (along-wind)
and crosswind directions. According to the Wind-resistant Design Specification for High-
way Bridges (JTG/T 3360-01-2018) in China [14], the mean wind speed and the mean wind
direction for each typhoon with a basic time interval of 10 min are calculated separately by
the vector decomposition method. The mean wind speed is calculated by:

U =

√
(ux)

2 +
(
uy
)2 (15)

where ux and uy are the mean wind speeds in the two axial directions in the right-angle
coordinate system, respectively; and U is the average wind speed.

The mean wind direction is calculated by the formula

Φ =

{
arccos ux

U
ux > 0

360◦ − arccos ux
U

ux < 0
(16)

On this basis, the downwind fluctuating wind speed u and the crosswind fluctuating
wind speed v are:

u = ux cos ϕ + uy sin ϕ − U (17a)

v = −ux sin ϕ + uy cos ϕ (17b)

Using the above method, we obtained the measured mean wind speed over 10 h,
as well as the measured fluctuating wind speeds in both the downwind and crosswind
directions, as shown in Figures 6 and 7.
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Figure 6. Measured average wind speed during the typhoon.
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3.2.2. Turbulence Intensity

Turbulence intensity is a measure of turbulence development intensity, represented as
the ratio of the standard deviation of wind speed to the wind speed itself. It is expressed
as follows

Ii =
σi

U
i = u, v (18)

where (Iu σu) and (Iv σv) are the turbulence intensity (RMS of fluctuating wind speed) in
the downwind and crosswind directions, respectively. The turbulence intensity in the
two directions for the period when the typhoon passed through the bridge site area is
shown in Figure 8.
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3.2.3. Gust Factor

The gust factor represents the proportional coefficient between the instantaneous gust
wind speed within a time interval (typically 3 s) and the average wind speed over the basic
time interval T. The respective formulas for calculating the crosswind Gv and windward
gust factors Gu are

Gu = 1 +
max[u3s(t)]

UT
(19a)

Gv =
max[v3s(t)]

UT
(19b)

where u3s(t) and v3s(t) are the mean wind speeds in the downwind and crosswind direc-
tions during the 3 s period, respectively; and UT is the average wind speed within the basic
time distance T. The graph of the downwind and crosswind gust factors for the period
when the typhoon passed through the bridge site area can be seen in Figure 9.

3.2.4. Turbulence Integral Scale

The turbulence integral scale is an important parameter for measuring the average size
of vortices in fluctuating winds. The autocorrelation function integration method is utilized
to calculate the downwind turbulence integral scale Lu and the crosswind turbulence
integral scale, Lv, as follows

Li =
UT

σ2
i

∫ ∞

0
Ri(τ)dτ i = u, v (20)

where σ2
i and Ri(τ) are the variance and autocorrelation functions of fluctuating wind

speed, and τ is the time interval. To avoid the error caused by the small size of Ri(τ),
the upper limit of integration in Equation (20) is usually taken as τ, corresponding to
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Ri(τ) = 0.05σ2
i . The downwind turbulence integral scale of the typhoon is calculated and

is shown in Figure 10.
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3.2.5. Turbulent Power Spectral Density

The contribution of each motion period component in the fluctuating wind can be
represented by the power spectral density. According to the Kolmogorov hypothesis and



Sustainability 2023, 15, 16921 11 of 18

the Monin–Obukhov similarity theory, the power spectral density function of the steady
fluctuating wind can be expressed as follows

nS(n)
u2∗

=
A f γ

(B + C f α)β
(21)

where f = nz/U is the Monin coordinate; and A, B, C, α, β, γ are the six parameters to be
determined and fitted using the least squares method.

The Kaimal spectrum is the horizontal fluctuating wind spectrum model recom-
mended by China’s specification:

S(n) =
200 f u2

∗

n(1 + 50 f )5/3 (22)

where S(n) is the density function of the fluctuating wind power spectrum in the horizontal
direction, f = nz/U is the Monin coordinate, u∗ is the drag velocity of the wind, n is the
pulsation frequency of the wind, z is the height above the ground or water surface, and
U is the mean wind speed at z. Using the measured wind speed during the typhoon as
a sample, the power spectrum of the measured downwind wind speed is calculated and
compared with the empirical spectral model, as shown in Figure 11.
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3.3. Model Training and Prediction
3.3.1. Setting of Model-Related Parameters

When building a wind speed prediction model, the number of layers of the BP neural
network structure needs to be determined first. A BP neural network with a three-layer
structure can approximate any complex nonlinear mapping with arbitrary accuracy [20,21];
thus, a three-layer BP network structure is adopted in this study.

During network training, the input and output of the network need to be set, and a
step-by-step incremental approach is used to train the model. The first nth wind speed
values are used as inputs for the BP network, and the n + 1th wind speed value is used as
the output. When performing wind speed prediction, the number of nodes in the output
layer is set as 1. Referring to the results of related research on BP neural networks for wind
speed prediction [22,23], it is determined that the number of input nodes for wind speed
samples is 15. That is, the first 15 wind speed values are used as inputs to predict the 16th
wind speed value.
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Determining the number of nodes is relatively difficult in the hidden layer. Currently,
it can be determined based on empirical formulas [24] and trial calculations, namely:

q =
√

n + l + a (23)

where n and l represent the number of neurons in the input and output layers, respectively,
and a ∈ [0, 10]. Based on the results of the calculation from Equation (23) and the simulation
results using Matlab software (Matlab R2020b), it is found that when the number of neuron
nodes in the hidden layer is five, the error is relatively small. In this section, the number
of nodes in the hidden layer of the neural network is chosen to be five. In addition, when
training the neural network structure, it is necessary to determine related parameters such
as the learning rate, error precision, and maximum number of training iterations. Detailed
values can be seen in Table 1.

Table 1. Relevant parameters for training BP neural networks.

Parameter Name Parameter Value

Learning rate 0.01
Tolerance accuracy 1 × 10−6

Maximum number of training sessions 1000

GA is adopted for optimization to obtain suitable weights and thresholds, and the length
of the individual code is determined from Equation (15): S = 15 × 5 + 5 × 1 + 5 + 1 = 86. The
values of the relevant parameters are shown in Table 2.

Table 2. Relevant parameters of GA.

Parameter Name Parameter Value

Initial population size 5
Length of individual encoding 86

Number of optimization generations 50
Probability of crossover operation 0.08
Probability of mutation operation 0.09

3.3.2. Prediction Results

The data consist of wind speeds from 1 August 2019, 00:00:00 to 31 August 2019,
23:50:00, including wind speed data measured at the bridge site during Typhoon Lekima.
There are a total of 4464 wind speed data points, with the first 3125 wind speed data points
utilized as training samples and the remaining 1339 as testing samples. The basic prediction
time interval is 10 min. A rolling forecast method with a 15-step lead time is used, which
means that all the previous 15 wind speed values are used to predict the 16th wind speed
value, the 2nd to 16th wind speed values are used to predict the 17th wind speed value, and
so on. The structure of the wind speed prediction neural network is shown in Figure 12.

The forecast wind speeds using prediction based on one to five steps ahead are shown
in Figure 13. The red solid line is the real wind speed curve, and the blue dashed line
is the wind speed prediction curve. It is seen that the predicted curve fits the actual
curve, meeting the requirements of prediction accuracy, and that the one-step prediction is
the best.
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3.3.3. Performance Assessment Guidelines

To verify the stability and accuracy of the model, this section evaluates the prediction
performance using three criteria: coefficient of determination (R2), mean absolute error
(MAE), and root mean square error (RMSE), which are defined as follows

R2 =

n
∑

i=1
(yi −

⌢
y i)

2

n
∑

i=1
(yi − y)2

(24)

MAE =

n
∑

i=1

∣∣∣yi −
⌢
y i

∣∣∣
N

(25)

RMSE =

√√√√√ n
∑

i=1
(yi −

⌢
y i)

2

N
(26)

where yi and ŷi denote the measured and predicted values of wind speed, and N denotes
the number of samples. The larger the coefficient of determination of the model R2, the
smaller the values of MAE and RMSE, and the better the prediction performance of the
model. The results of R2, MAE and RMSE for gust wind speed prediction are shown in
Table 3.

As shown in Table 3, by comparing the prediction errors for one to five steps ahead, it
is evident that as the number of prediction steps increases, the prediction error also becomes
larger. The prediction error is smallest for a one-step forecast, where the training dataset’s
R2, MAE, and RMSE values are 0.967, 0.561, and 0.787, respectively. For the test set, the R2,
MAE, and RMSE values are 0.864, 0.489, and 0.734, respectively. The advantage of five-step
ahead prediction is that it can directly predict five steps, while single-step prediction cannot.
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If single-step prediction is used to directly predict five steps ahead, a time paradox results.
One-step ahead prediction can perform superposition training prediction and achieve the
purpose of five-step ahead prediction with a much smaller error because the input is the
most recent data.

Table 3. R2, MAE, and RMSE results for gust wind speeds.

Predicted Step Size Training Set/Test Set R2 MAE RMSE

1
training set 0.967 0.561 0.787

test set 0.864 0.489 0.734

2
training set 0.940 0.782 1.071

test set 0.743 0.700 1.015

3
training set 0.917 0.926 1.240

test set 0.676 0.790 1.154

4
training set 0.901 1.019 1.357

test set 0.610 0.886 1.246

5
training set 0.882 1.105 1.479

test set 0.573 0.929 1.304

3.4. Wind Speed Warning and Hierarchical Control

For long-span HSR bridges, wind load has a significant impact during the cantilever
construction stage. As the wind load increases, site management will progressively im-
plement control measures, including halting hoisting operations, evacuating construction
personnel, and temporarily reinforcing the structure. Thus, it is essential to incorporate
wind speed prediction techniques to forecast wind speeds at the construction site and
implement proactive countermeasures to ensure on-site construction safety.

Based on Wind Resistance Design Specification for Highway Bridges [24], a wind
level, wind speed, and terrestrial surface phenomena contrast table describes that under the
action of a level 6 strong wind, large tree branches sway, electrical wires make a humming
sound, and walking is difficult, with a wind speed range of 10.8–13.8 m/s. Under a level
8 gale, “people feel significant resistance while walking”, with a wind speed range of
17.2–20.7 m/s. Furthermore, the Technical Specification for Construction Safety of Railway
Bridges and Culverts [25] states that crane lifting operations are not allowed under adverse
weather conditions or wind forces of level 6 or higher. The Technical Specification for Safety
of Installation, Use and Disassembly of Building Hoist in Construction [26] specifies that
tower crane and elevator installation construction are prohibited when wind speeds exceed
13 m/s, and the use of construction elevators is forbidden when wind speeds at the top
exceed 20 m/s. In summary, when wind speeds exceed 13 m/s, lifting operations should be
suspended on-site, and when wind speeds exceed 20 m/s, on-site workers should evacuate
to a safe location as soon as possible.

To avoid cracks at the base of reinforced concrete piers under the influence of strong
typhoons, it is necessary to calculate the stress at the base of the reinforced concrete piers
under typhoon conditions. Furthermore, implementing temporary reinforcement measures
in advance ensures that the stress at the pier base meets crack-resistance requirements.
According to the Code for Design of Railway Bridges and Culverts [27], the crack-resistance
safety factor during the construction period of the bridge pier is taken as 1.1, and the limit
tensile strength of the pier concrete is denoted as fct. The controlling tensile stress at the base
of the pier during construction is fct/1.1. By performing time-domain analysis on large-span
high-speed rail continuous beam bridges in the maximum dual-cantilever state during
construction, the controlling tensile stress f at the base of the pier can be back-calculated
when it reaches the controlling stress. The maximum 10 min mean gust wind speed at the
bridge deck level can then be determined, and this can serve as the threshold for Level I
wind speed alarms

[
UI
]
. When the maximum gust wind speed at the bridge deck level

within the next half hour, as predicted by wind speed forecasting methods, exceeds the
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aforementioned wind speed alarm value, temporary reinforcement measures should be
applied to the bridge piers to ensure their crack-resistance safety.

Based on the on-site measured typhoon data, a wind speed prediction method is pro-
posed to forecast the maximum gust wind speed at the bridge deck for the next half hour
during construction. With the gust wind speed predictions and the results of bridge vibration
analysis, we implemented graded warnings and control measures for on-site construction.

(1) When the predicted maximum gust average wind speed Umax is greater than 13 m/s
for the next half hour, which is equivalent to a Class 6 wind speed, a Class III response
is initiated and on-site lifting operations are halted.

(2) When the predicted maximum gust average wind speed Umax exceeds 20 m/s for
the next half hour, which is equivalent to a Class 8 wind speed, a Class II response is
activated and all on-site construction personnel are evacuated.

(3) When the predicted maximum gust average wind speed Umax for the next half hour
surpasses the Level I response threshold, a Level I response is initiated and temporary
reinforcement measures, such as wind cables on the bridge abutment, are taken to
ensure the structure’s safety against wind loads. For the background engineering
cases, the calculated bridge deck location Level I wind speed response threshold is
52 m/s. The grading and early-warning and control system is illustrated in Figure 14.
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4. Conclusions

The safe construction of the long-span bridges can ensure the timely opening traffic
arteries in a locality and improve the speed of economic development. The wind environ-
ment in the construction process of long-span bridges affects the construction efficiency and
safety; thus, it is vital to predict the wind environment effectively. This study proposes an
early-warning framework for bridge construction under severe weather conditions based on
machine learning. A long-span HSR continuous girder bridge in the southeast coastal region is
used to demonstrate this framework. Firstly, commonly used wind characteristic parameters
for characterizing the wind environment in the bridge site area are calculated, including the
fluctuating wind turbulence intensity and gust factors. Simultaneously, a prediction of gust
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wind speed during bridge construction was made based on the hybrid BP-GA. The typhoon
grading early-warning and control system for the construction site can then be implemented
based on the prediction results. The main conclusions are as follows:

(1) With the increase in the number of prediction steps, the prediction error became larger
and larger. The error of the one-step prediction was the smallest, with the training set
values of R2, MAE and RMSE being 0.967, 0.561 and 0.787, respectively. The test set
values of R2, MAE and RMSE were 0.864, 0.489 and 0.734, respectively.

(2) Using the hybrid BP-GA, a multi-step ahead prediction of gust wind speed during
the construction period of a large-span bridge was conducted. The prediction results
show that the prediction curve is close to the actual curve and meets the prediction
accuracy requirements, with the one-step prediction having the best performance.

(3) Based on the measured wind data of the bridge site area during the construction
period, the gust wind speed prediction method based on BP-GA was used to predict
the wind speed trend in the next half hour. Afterward, a graded early-warning and
control system were implemented.
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