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Abstract: Nowadays, hybrid renewable systems can be the best solution for meeting electricity
demand, especially where grid extension and environmental issues are important. This study
aimed to find the best combination of the typical components used in East Java, Indonesia. In
this regard, four types of photovoltaic (PV) panels, four types of wind turbines, and two types
of batteries were selected, and the HOMER software simulated all possible combinations of the
systems, including 32 scenarios (Sen). Then, considering the most important 15 parameters, such as
pollutant emissions and economic values, the results were analyzed and sorted by the multicriteria
decision-making (MCDM) method to find the best scenario for the case-study region. The results
showed that SunPower E20-327 as PV, Eocycle EO10 10 kW as wind turbine, and Generic 1 kWh
Li-Ion as the battery could be the best selection to design a hybrid renewable system for the
case-study region since it can fulfill both economic and environmental needs. The cost of energy
(COE) of the best-designed system and net present cost (NPC) are 0.24 ($/kWh) and 1.64 million $,
respectively, where the renewable fraction (RF) is 55.1% and the scaled annual average load is
1126 kWh/day. The results of the sensitivity analysis on the best scenario’s parameters (where
the capital cost of PV, battery, and wind turbine changes from 0.6 to 1.2, from 0.7 to 1.2, and from
0.7 to 1.4 of the current price, and diesel price from 0.5 to 1.1 ($/L)) showed that the RF, COE, and
NPC values ranged between 51% to 93%, 0.2 to 0.3 ($/kWh), and 1.4 to 2.1 (million $), respectively.

Keywords: hybrid; renewable; TOPSIS; solar; wind; energy

1. Introduction

With growing populations and energy consumption worldwide, supplying reliable
electricity is crucial for everyone [1]. Most electricity is provided through fossil fuels with
high greenhouse gas emissions. One of the best solutions for reducing CO2 emissions is
employing hybrid renewable energies [2–4]. Considering the prediction of CO2 emission
in many types of research and the importance of reducing emissions [5], based on the
availability of resources in a location, wind turbines [6], PV panels [7,8] Fuel cells [9], and
geothermal energy can be employed to supply clean energy. In this regard, designing
an optimum system specific to a location and selecting the best cost components is a
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critical problem that researchers should solve [10,11]. Fortunately, the share of using and
installing renewable energies worldwide has been remarkable in recent years, as shown
in Figure 1 [12]. According to Figure 1, Indonesia’s share of renewable energies in final
energy consumption has been descending due to the increasing electricity demand. It is
necessary to increase renewables share to fulfill all the electricity demand and supply
within the country.
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Figure 1. Share of renewable energies in final energy consumption.

In 2014, some targets were set for renewable energies in Indonesia. Although many
studies have been conducted on renewables in the country, there are geographical, insti-
tutional, and investment limitations that must be considered. The government should
revise its politics so that individual and private sectors can cooperate in extending renew-
ables economically [13]. In 2004, Indonesia changed from an oil exporter to an importer
due to extreme energy consumption and population growth. In addition, since Indone-
sia has a shape that has been extended or elongated, extending the national electricity
network is difficult and has many problems. Hence, renewables, especially stand-alone
hybrid systems, should be significantly considered and developed to compensate for
the lack of energy. The country could use diesel generators and coal in the short term;
considering that diesel has lower emissions than coal, the government has allocated more
subsidies for diesel, which is supplied through imports, but in the long term, renewables
should be employed for power generation [14]. At present, PNN and its subsidiaries
conduct around 80% of the total power generation in the country [15]; feed-in tariffs
are variable from district to district, and a specific budget is allocated for renewables,
especially solar, micro-hydro, and biogas [16]. Although about 95% of people have
access to the grid, most are outside Jawa-Bali, so, they cannot use reliable and cheap
electricity [17]. According to the national planning agency, by 2030 greenhouse gas
emissions will increase up to 60% compared to 2020. In 2020, 46% of GHG was from the
energy sector, but in 2030 50% of GHG will come from energy consumption. In 2016, the
country committed to the United Nations Framework Convention to reduce GHG [18].
Some research has been done on hybrid renewable systems in Indonesia with different
goals, mainly towards finding optimum systems for the case studies.

Hidayat et al. [19], considering that not all people in Indonesia have access to electricity
and the instability of weather conditions, studied a hybrid system in Malang regency in
terms of costs, power output, and pollutant emissions and concluded that a hybrid system
is not economically feasible; however, it is more suitable where environmental issues are
important. Junus et al. [20] studied different hybrid systems to reach the best cost-effective
solution to supply the electricity demand in Malang. Although there is good biosource
potential in the region, it is not well used. In this respect, various components such as
bio- and diesel generators were investigated in the design steps. They also considered
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emissions and compared systems’ COEs. The results showed that bio-generators cause a
68% and 6% reduction in fuel consumption and NPC, respectively. Compared to a system
without a wind turbine, systems with wind turbines have lower NPCs. Aditya et al. [21]
designed an economical hybrid system with and without a diesel generator for a remote
area on Ur island. The obtained results showed lower COE for the system, including the
diesel generator, since it needs more PV and batteries to supply electricity demand. They
conducted sensitivity analyses on the amount of GHI, wind speed, diesel price, operation
and maintenance (O&M), and capital costs of the components and found that wind speed
and battery’s initial cost have the highest effect on COE. Azahra et al. [22] pointed out that
most of Indonesia’s power systems need low capacity, which diesel generators can provide.
They studied a hybrid renewable system in which COE is significantly lower than a diesel
power plant where the optimization strategy is cycle charging. In addition, when they
chose the load-following strategy, the results showed more RF; consequently, the system
was more environmentally friendly. The sensitivity analysis results on the price of batteries
and diesel price showed that they remarkably affect the system’s operation. Syafii et al. [23]
studied a hybrid system in Mentawai in which pumped hydro storage was used instead of
batteries. They concluded that systems without wind turbines have lower COEs and are
more economical. Although the calculated COEs are higher than electrical utility tariffs,
this system is applicable for remote areas and leads to reducing the country’s emissions.
The use of wind turbines was also reported to be nonprofitable for the case-study region.
Bukit et al. [24] mentioned that Pemping island is far from the surrounding cities and
there are 40 kW diesel generators to supply power, but the transportation of diesel fuel
to the power station is expensive and will increase the final energy costs. They could
decrease COE with a hybrid system by 31% compared to using diesel generator systems.
Javed et al. [25] mentioned that there is not enough research on the loss-of-power-supply
probability in Indonesia when they studied a hybrid system in Jiuduansha. They employed
a hybrid system and minimized it using a genetic algorithm (GA) to find the optimum
combination of the components when economic aspects and the system’s reliability were
their primary concerns. The results showed that GA is generally superior to HOMER
software in terms of run-time optimization. They also disclosed that wind turbines have
the lowest effect on the system’s sizing. Their sensitivity analyses on the system’s reliability
showed that remote areas should first consider a small power supply probability loss since
it significantly decreases capital cost and COE. Nugroho et al. [26] relied on the fact that
the remote areas in Indonesia generally use diesel generators (due to the grid-extension
prices, including submarine cables) which have high pollutant emissions, designed a hybrid
renewable system for the Eastern region. They compared two systems with and without
wind turbines with a system that just uses diesel generators; the results showed 21% and
53% reduction in COE and fuel consumption (emission). In addition, the results showed
that wind turbines will not significantly affect the systems’ power generation but increases
the COE and NPC.

Although there has been much research on finding optimum hybrid systems in In-
donesia [27–30], various components have not been investigated to find the appropriate
equipment for the case-study regions. Knowledge of the suitable components helps re-
searchers to analyze other combinations and hybrid systems accurately. In this study, a
possible combination of the components is discussed using selected scenarios considering
the components used in previous studies, and optimum solutions are found using HOMER
software. The selected scenarios are then ranked by the MCDM method, and the best
components for the case-study region are introduced. In the methodology section, the
case-study region is introduced, the technical information of the components is classified,
and finally the MCDM method and the selected criteria are described. In the results and
discussion section, the results obtained from HOMER software and the MCDM method
are reported, and some sensitivity analyses were done for the best-choice scenario. The
numerical results of the studies mentioned above are presented in Table 1.
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Table 1. Renewable hybrid systems in Indonesia.

Ref. Location Usage Hybrid System Grid COE
($/kWh) RF (%)

[19] Malang Residential PV/Wind/Gen/Batt Off/Grid 0.254 100
[20] Malang Public PV/Wind/Gen/Batt Off/Grid 1.23 100
[21] Ur Residential PV/Wind/Gen/Batt Off/Grid 0.276 95
[22] East Residential PV/Gen/Batt Off/Grid 0.135 34.5
[23] Mentawai Residential PV/Wind/Gen/Batt Off/Grid 0.17 30.1
[24] Pemping Residential PV/Gen/Batt Off/Grid 0.22 39.4
[25] Jiuduansha Residential PV/Wind/Batt Off/Grid 0.11 100
[26] East Residential PV/Wind/Gen/Batt Off/Grid 0.156 47

2. Methodology

This section presents the case-study region, loads, and renewable sources. Then, the
characteristics of the components—wind turbines, PV panels, batteries, and generators—are
discussed. The proposed scenarios are presented, and finally the MCDM method and its
alternatives and criteria are discussed.

2.1. Case Study Region

The selected case-study region is located in Ponorogo Regency, East Java, Indonesia.
The latitude and longitude of the case study are 111.56136 and −7.99872, respectively. East
Java and Ponorogo have around 40 million and 1 million people, respectively. Figure 2 [31]
shows the clearness index and solar radiation and Figure 3 the wind speed in the region.
Figure 2 showed that the location has appropriate radiation for power generation, especially
from April to October when the clearness index is high, which means that PV panels can
receive more sunrays. Figure 3 [31] and Figure 4 [32] also show the wind speed and mean
power density heat map in the selected location that has the highest power generation
potential from wind turbines. The yearly average wind speed of the location is 4.28 m/s,
and from April to October is more than the rest of the months and can be a good feature for
wind turbines. The case study’s usage is proposed residential, so the load is assumed on
average to be constantly 1126 kWh/day. The location of the selected case-study region is
shown in Figure 5.
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Figure 2. Solar GHI and clearness index for Ponorogo.

In this study, inflation and discount rate are assumed to be 1.5% and 3.5% for all
scenarios [20], and the capacity shortage and project’s lifetime are considered to be around
1% and 20 years, respectively. Table 2 shows the selected components used in the literature
review: four wind turbines, four PV panels, two batteries, and one generator. The selected
components are typical in the case-study region and are vastly used in hybrid renewable
systems research. For instance, lead acid batteries and lithium ion batteries are challenging
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choices for researchers. It could be noted that usually, generators do not have a remarkable
effect on the system’s final costs and sizing, so only one type of generator is considered in
this study. In addition, it should be mentioned that the prices of PV panels increased by
USD400 compared to the mentioned references due to the use of vertical tracker systems in
the simulation steps.
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Table 2. Name and prices of the selected components.

PV Ref. Model Capital Cost ($) Replacement ($) O&M ($)

P1 [30] CS6U-330P 1445/kW 1445/kW 7/year
P2 [20] SunPower E20-327 2400/kW 1600/kW 30/year
P3 [23] Sharp ND-250CS 1600/kW 1500/kW 34.5/year
P4 [21] CanadianSolar MaxPower CS6X-325P 950/kW 950/kW 11/year

Wind
T1 [30] AWS 5.1 kW 7387/kW 7387/kW 95/kW
T2 [20] Eocycle EO10 10 kW 29,000/item 25,000/item 50/year
T3 [21] AWS HC 1.5 kW 3600/item 3600/item 100/year
T4 [33] Pika T701 1.5 kW 5995/item 5995/item 100/year

Generator [31] Generic Small Genset (size-your-own) 500/kW 500/kW 0.03/op.hr

Battery
B1 [31] Generic 1 kWh Li-Ion 600/kWh 600/kWh 10/year
B2 [31] Generic 1 kWh Lead Acid 300/kWh 300/kWh 10/year

Converter
[30] Hoppecke 24 OPzS 3000, 7.15 kW Lead Acid 585/item 585/item 6/year

2.2. Scenarios

The selected scenarios are defined by all 32 possible combinations of the components
mentioned in Table 1. The number of each scenario shows which components have been
used: the first number shows the type of PV, the second number is the type of turbine, and
the third number is for the battery. For instance, 322 (PV type, wind turbine type, battery
type) means PV3 (P3-Sharp ND), wind turbine 2 (T2-Eocycle), and battery 2 (B2-lead acid).
Table 3 shows all the proposed scenarios.

Table 3. The proposed combination of the components as scenarios.

111 112 121 122 131 132 141 142

211 212 221 222 231 232 241 242

311 312 321 322 331 332 341 342

411 412 421 422 431 432 441 442

According to the general configuration shown in Figure 6 [31], all the mentioned
scenarios are optimized by HOMER software, and the results are reported in the Results
and Discussion section.
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Figure 6. Schematic view of the proposed systems.
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After finding the optimum system for each scenario, the most important
parameters—the size of the PV (kW), the number of wind turbines, the size of the
generators (kW), the size of the batteries (kWh), COE ($/Wh), NPC (million $), operation
cost ($/year), initial cost ($), RF (%), fuel consumption (L/year), return on investment
(RI/year), excess electricity (%), unmet electricity (%), salvage ($), and total emissions
(kg/year)—are reported. Then, the MCDM method was used to select the best scenario.

2.3. MCDM Method

This method includes five general steps. This study has 32 scenario options (rows in
Table 4) and 15 criteria as mentioned above (columns in Table 4).

Table 4. The obtained results of the simulated scenarios in HOMER Pro 3.14.2 software.

Sen. PV
(kW)

Wind
Quantity

Gen
(kW)

Battery
(kWh)

COE
($/Wh)

NPC
(M$)

OP
($/year) Cost ($) RF (%) Fuel

(L/year)
RI
(year)

Excess
Elect (%)

Unmet
(%)

Salvage
($)

Emission
(kg/year)

111 241 80 717 $0.26 $1.73 $53,630 $845,712 74.3 34,283 4.88 14 0.656 207,391 91,084.06

112 181 80 501 $0.29 $1.93 $87,296 $481,978 53 62,691 3.08 13.2 0.622 122,802 166,557.24

121 148 8 80 411 $0.23 $1.52 $46,288 $756,378 74.7 34,448 4.03 23.7 0.402 148,515 91,520.18

122 134 10 60 440 $0.24 $1.64 $57,939 $676,523 69.3 40,418 3.71 30.1 0.615 63,206 107,382.06

131 220 13 80 659 $0.26 $1.73 $54,600 $826,249 72.9 36,155 4.8 13.6 0.608 221,165 96,055.54

132 158 24 80 468 $0.28 $1.92 $84,385 $525,509 55.5 59,679 3.37 11.5 0.598 131,105 158,553.85

141 236 80 721 $0.26 $1.73 $53,901 $841,523 74 34,822 4.87 13.7 0.655 211,090 92,514.51

142 178 80 509 $0.29 $1.93 $87,451 $480,757 52.9 62,879 3.08 12.5 0.627 128,237 167,056.46

211 126 80 149 $0.29 $1.95 $90,025 $463,630 34.8 82,692 3.19 10.5 0.564 101,316 219,695.6

212 163 80 513 $0.31 $2.11 $90,484 $616,707 51.7 64,654 4.16 9.36 0.673 130,396 171,771.94

221 80.6 9 60 207 $0.24 $1.64 $60,928 $633,450 55.1 56,791 3.67 23.2 0.482 47,563 150,881.47

222 91.1 10 80 336 $0.26 $1.77 $66,455 $673,643 64 49,014 3.84 24.2 0.57 27,109 130,221.1

231 108 32 80 140 $0.29 $1.94 $85,244 $527,943 40.8 75,302 3.45 9.58 0.511 23,669 200,062.58

232 140 33 80 468 $0.31 $2.09 $85,887 $667,738 55.6 59,685 4.59 8.85 0.613 43,326 158,570.85

241 118 80 152 $0.29 $1.95 $91,202 $443,246 33.8 84,028 3.05 8.51 0.582 99,573 223,245.73

242 163 80 513 $0.31 $2.11 $90,484 $616,707 51.7 64,654 4.16 9.36 0.673 130,396 171,771.94

311 247 80 694 $0.26 $1.79 $54,918 $878,854 73.8 34,989 5.2 15.1 0.652 245,753 92,958.63

312 182 80 501 $0.29 $1.97 $88,021 $510,389 52.9 62,934 3.35 12.2 0.64 159,336 167,202.47

321 136 8 80 399 $0.23 $1.56 $48,501 $753,335 73.3 36,414 4.12 20.8 0.478 166,906 96,744.77

322 137 10 60 434 $0.25 $1.67 $58,397 $700,106 69.3 40,475 3.87 29.9 0.614 88,421 10,7534.07

331 216 21 80 608 $0.26 $1.78 $55,898 $851,536 72.5 36,789 5.1 13.4 0.595 244,172 97,741.11

332 162 25 80 460 $0.29 $1.96 $84,654 $556,051 55.7 59,413 3.64 11.4 0.617 159,420 157,849.62

341 247 80 694 $0.26 $1.79 $54,918 $878,854 73.8 34,989 5.2 15.1 0.652 245,753 92,958.63

342 183 80 498 $0.29 $1.97 $87,974 $511,412 52.9 62,862 3.36 12.4 0.633 157,717 167,010.46

411 265 80 704 $0.23 $1.57 $50,128 $740,190 74.7 33,424 3.96 20.8 0.628 207,680 88,799.38

412 253 60 629 $0.27 $1.80 $78,687 $493,840 59.6 52,570 2.97 26.6 0.637 162,738 139,667.05

421 187 7 80 457 $0.21 $1.42 $42,079 $718,750 77 30,957 3.77 27.3 0.297 147,261 82,244.33

422 157 8 60 417 $0.23 $1.54 $58,940 $566,503 68.4 41,715 3.17 29 0.589 35,865 110,827.09

431 265 80 704 $0.23 $1.57 $50,128 $740,190 74.7 33,424 3.96 20.8 0.627 207,680 88,799.38

432 238 12 60 604 $0.27 $1.79 $77,165 $514,371 60.6 51,313 3.09 25.4 0.642 18,686 136,326.93

441 265 80 704 $0.23 $1.57 $50,128 $740,190 74.7 33,424 3.96 20.8 0.627 207,680 88,799.38

442 253 60 629 $0.27 $1.80 $78,687 $493,840 59.6 52,570 2.97 26.6 0.637 162,738 139,667.05

In the first step, the objective matrix’s values are normalized through Equation (1),
where Xij means the present matrix values, R is the normalized values, and m is the number
of alternatives [34]:

Rij =
Xij√

∑m
i=1 X2

ij

(1)
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Then, the required weights must be multiplied by the normalized matrix. The weights
for each criterion can be obtained through the entropy method using the following steps:
where m is the number of alternatives (here, 32) and Wi is the weight of each scenario.

k =
1

Ln(m)
(2)

Ej = −k ×
m

∑
i=1

RijLn Rij (3)

Dj = 1 − Ej (4)

Wi =
Dj

∑ Dj
(5)

After the weights have been multiplied by the normalized matrix, the V matrix is
obtained, and the positive (V+) and negative (V−) ideal solutions must be determined. In
this regard, the criteria should be separated into negative and positive values.

In this study, the size of the PV (kW) is considered a negative criterion, since the higher
the PV, the more it needs land for installation, and it increases the expenses (there is also
the issue of limited land availability). The number of wind turbines is also considered a
negative criterion for the same reasons mentioned for PV panels. The size of the generators
(kW) is considered negative for their emissions. The size of the batteries (kWh) is considered
negative for the same reasons mentioned for PV panels. COE ($/Wh), NPC (million $),
return on investment (year), operation cost ($/year), and initial cost ($) are considered such
that the lower they are, the more economic the system is, so they are considered negative. In
addition, fuel consumption (L/year) and total emissions (kg/year) are considered negative
criteria, since the lower they are, the more environmentally friendly the system is. Excess
electricity (%) is considered negative since it shows the system is overdesigned. Unmet
electricity (%) is also considered negative since the system could not have been provided
electricity. Salvage ($) is considered negative since the study’s goal is designing optimum
systems, while higher salvage values show that the remaining components will be sold
after the project’s lifetime. RF (%) is considered a positive criterion since it shows the share
of renewables used in the system.

In the next step, the relative distance of each solution from positive and negative
solutions must be calculated through Equations (2) and (3), respectively, where n is the
number of criteria and Vij are values of the V matrix [34].

S+
i =

√√√√ n

∑
j=1

(
Vij − V+

j

)2
(6)

S−
i =

√√√√ n

∑
j=1

(
Vij − V−

j

)2
(7)

In the next step, the closeness coefficient of each option to the best solution can be
obtained as in Equations (4) [34].

Pi =
S−

i
S−

i + S+
i

(8)

The final step is the sorting of the obtained Pi values from largest to smallest to
determine the best possible solution. The more the Pi value for a scenario, the more it is
suitable for selection.
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3. Results and Discussion

This section presents the results obtained from the simulated systems in the HOMER
software [31] in Table 3. Then, the MCDM method results are presented in Figure 7. Other
important results are also presented in Table 4, including the results of all the 15 parameters
selected as criteria for the MCDM method. Based on the reported results in this table, the
general analyses of the designed systems are presented in Sections 3.1–3.3.
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Figure 7. The obtained Pi values through the MCDM method for 32 scenarios.

3.1. Components
3.1.1. PV Panels

PV panels range between 80.6 and 265 kW, where PV1, PV2, PV3, and PV4 are used
on average at 187, 124, 189, and 235 kW, respectively, which means that in the case of using
PV2 (SunPower E20-327), the lower capacity PV will be used (this will reduce the needed
land space for installation). Minimum and maximum PV panels are used in scenarios 221
and 441, respectively.

3.1.2. Wind Turbines

Wind turbines are not used in some of the optimized scenarios. Turbines T1 and T4
are not used in any scenario. Maximum wind power is used in scenarios 122, 222, and
322, where T2 is in the proposed system. In the mentioned scenarios, 10 T2 (Eocycle EO10
10 kW) turbines are optimized, meaning that 100 kW of wind power should be installed. In
17 scenarios, wind turbines are not used, which means that the optimization and hybrid
systems are sensitive to wind turbines due to their high price, power curve, and wind
sources. Hence, this component must be carefully selected since it can significantly change
the optimization results.

3.1.3. Batteries

All the scenarios use battery banks to store excess electricity when the demand load
is lower than the power produced by the wind turbines and PV panels. Minimum and
maximum battery usage are 140 and 721 kWh for 231 and 141 scenarios, respectively. The
results show that on average, B1 (generic 1 kWh Li ion) and B2 (generic 1 kWh lead acid)
were used at 507 and 497 kWh in all scenarios.

3.2. Economic Parameters

The maximum and minimum COE ranges are 0.21 to 0.31 ($/kWh), belonging to the
212–232–242 and 421 scenarios, respectively. The NPC ranges are 1.42 to 2.11 (million $);
the former belonging to scenario 421 and the latter belonging to 212 and 242 scenarios.
The operation and maintenance costs (OP) that the system owner must pay every year
ranged between 42,079 and 91,202 ($), respectively, where the minimum and maximum
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refer to scenarios 421 and 241. The initial capital for creating and installing a hybrid system
is another important economic factor that affects the decision to select a scenario since
the primary finance sources are always limited. The lowest and highest initial capital
values are 443,246 and 878,854 ($), which belong to scenarios 241 and 311, respectively. The
return on investment (RI) rates are 2.97 to 5.2 (years) compared to the base case scenario
when only generators produce all the system’s electricity. The lowest and the highest RIs
refer to 442–412 and 341 scenarios, respectively. Last but not least, salvage shows the
system’s revenues. In this study, since there is no proposed electricity sell-back, the values
of salvages mean that some of the components can be reused after the project’s lifetime.
Since this is not the purpose of the study, the higher the salvage values, the less suited the
scenario. The minimum and maximum salvage values are 18,686 and 245,753 ($), belonging
to scenarios 432 and 341, respectively. Considering the obtained COE values of all scenarios
and comparing them with Table 1 values, the accuracy of the simulated values is confirmed.

3.3. Environmental Parameters

Renewable fraction as a general factor that shows how much electricity is produced
by renewable components, such as wind turbines and PV panels, can generally show how
much a system is environmentally friendly. Environmental factors are mostly intercon-
nected, e.g., the higher the RF, the lower the fuel consumption and pollutant emission.
These factors are also affected by the amount of excess electricity, e.g., when a system
has a high renewable fraction, its excess electricity is also high: it is overdesigned and
maybe uses more generators, consequently producing more pollutants. The RF values
are between 33.8% and 77%, and the former and the latter are for scenarios 241 and 421,
respectively. Fuel consumption ranges from 30,957 to 84,028 (L/year) for scenarios 421 and
241, respectively. The summation of pollutant emission ranges, including carbon dioxide,
carbon monoxide, unburned hydrocarbons, particulate matter, sulfur dioxide, and nitrogen
oxides are 82,244 to 223,245 (kg/year), where the lower and the higher values belong to
scenarios 421 and 241, respectively.

3.4. MCDM

The identified scenarios are ranked using the MCDM method in consideration of all
technical, economic, and environmental factors. In this regard, considering 32 scenarios
as alternatives and 15 techno-economic and environmental factors reported in Table 4 as
criteria, the MCDM method’s results are shown in Figure 6. As seen, scenario 221, due to
its highest Pi value, is the best choice, where the type of PV is SunPower E20-327, the type
of wind turbine is Eocycle EO10 10 kW, and the type of battery is generic 1 kWh Li ion. In
addition, the results showed that the lowest value of Pi belongs to scenario 442 considering
all the factors mentioned together.

3.5. Analysis of Scenario 221

The obtained results showed that PV panels, wind turbines, and diesel generators
produce 25%, 42%, and 33% of total electricity, respectively. The initial capital for the
PV, turbine, generator, converter, and batteries are 193,502, 261,000, 30,000, 24,747, and
124,200 ($), respectively. The capacity shortage in this scenario is 1.1%, which means
that this scenario cannot supply 1.1% of the total demand load. Generators on average
consume 156 L/day of diesel fuel, mostly from November to March. Figure 8 shows
the monthly average electricity production by each component. As seen, from May to
September, wind turbines provide most of the electricity, while PV panels produce an
almost constant amount of electricity during the year. It is evident that PV panels can
only produce electricity when there is sunlight.

The typical components for power production for three days of a year are shown in
Figure 9. For instance, on July 29 at noon, only wind turbines and PV panels are working
and providing electricity. Considering the power curves in Figure 9, at this time, power
production is more than the demand load, meaning that the batteries are being charged
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if they were not filled previously. On July 28 at 18:00, generators and batteries provide
electricity along with wind turbines since the demand load is so much compared to other
times and days. In addition, at this time, due to the lack of sunlight, PV panels do not
work. According to the figures, most of the power production by the generators is at
night and when the demand load is very high. Another conclusion from this figure is
that peak times significantly affect the size of the components; hence, controlling the
demand load during peak hours can reduce the size of the components and consequently,
the COE and NPC values.
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3.6. Sensitivity Analysis

The results of the MCDM method showed that scenario 221 is the best choice, and
sensitivity analysis was done on some of the important changeable parameters, such as the
capital cost of PV, wind turbines, batteries, and diesel fuel price. These sensitivity analyses
help us to assess alterations in prices over time and changes in location with similar load
demands and renewable resources. They also help in determining the economic and
environmental results that would be obtained by simulating the same hybrid systems in a
new case-study region.

Figure 10 shows that increasing the capital cost of PV panels from 0.6 to 1.2 of
the current price decreases RF from 73% to 58% and increases the system’s COE from
0.210 to 0.230 ($/kWh). In addition, the NPC values would be increased from 1.45 to
1.60 (million $). In this scenario, CO2 emissions increase from 93,409 to 139,909 (kg/year).
On the other hand, increasing the capital cost of the wind turbine by 0.7 to 1.4 of the cur-
rent price changes the COE and NPC values from 0.210 to 0.240 ($/kWh) and from 1.45
to 1.80 (million $), respectively, but the value of Rf will be constant at 73%. Consequently,
the CO2 emissions will not significantly change.
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Figure 11 shows the sensitivity analysis results on the capital cost of the battery and
diesel fuel price. As seen in this figure, increasing the capital cost of the battery by 0.7 to
1.2 of the current price will not significantly change the RF, CO2 emission, COE, or NPC
values. In contrast, increasing the diesel fuel price from 0.5 to 1.1 ($/L) would increase
the RF values from 51% to 93%. In addition, the COE, NPC, and CO2 emission values
will be changed from 0.2 to 0.3 ($/kWh), from 1.4 to 2.1 (million $), and from 161,146 to
27,723 (kg/year), respectively.
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4. Conclusions

In the current study, typical components that have been used in some of the studies
conducted in the case-study region were investigated, and their combination has created
32 different scenarios. All the proposed systems were modeled in HOMER software to
find the optimal sizing of the components. Using the MCDM method and considering
15 economic, technical, and environmental parameters as the criteria, the scenarios were
sorted to find the best solution. The main findings of this study are as follows.

• The most economic and environmentally friendly system is scenario 421, where the
considered criteria are NPC, COE, and emissions, including Canadian Solar MaxPower
CS6X-325P as PV, Eocycle EO10 10 kW as wind turbine, and generic 1 kWh Li ion as
the battery. The COE, NPC, and emission values are 0.21 ($/kWh), 1.42 (million $),
and 82,244 (kg/year), respectively.

• If all the economic, technical, and environmental parameters are considered together,
the best choice is scenario 221, which included SunPower E20-327 as PV, Eocycle EO10
10 kW as wind turbine, and generic 1 kWh Li ion as the battery. This system’s COE, NPC,
and emissions are 0.24 ($/kWh), 1.64 million ($), and 150,881 (kg/year), respectively.

• These two mentioned points showed that systems with the lowest NPC, COE, and
pollutant emissions cannot always be the best choice. This fact becomes clearer when
all the technical, economic, and environmental parameters are considered as the
criteria since the best economic or environmental option is not necessarily the best
choice executable.

• Changing the wind turbine’s capital cost by 0.7 to 1.4 current price and PV panels’
price from 0.6 to 1.2 current price would drive the RF, COE, and NPC values from 52%
to 73%, 0.210 to 0.270 ($/kWh), and 1.45 to 1.80 (million $), respectively, and increase
the CO2 emissions from 93,409 to 139,909 (kg/year).

• Changing the batteries’ capital cost by 0.7 to 1.2 of the current price and diesel fuel
price from 0.5 to 1.1 ($/L) would increase the RF, COE, and NPC values by 51% to
83%, 0.2 to 0.3 ($/kWh), and 1.4 to 2.1 (million $), respectively, and decrease the CO2
emissions from 161,146 to 27,723 (kg/year).

Other suggestions for future studies would be investigating other locations, other
components, other resources, and grid-connected hybrid renewable systems.
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