
Citation: Ortega, A.; Cano-Delgado,

A.M.; Prieto, B.; González, J. Design

of a Standard and Programmatically

Accessible Interface for Smart Meters

to Allow Monitoring Automation of

the Energy Consumed by the

Execution of Computer Software.

Sustainability 2023, 15, 1900. https://

doi.org/10.3390/su15031900

Academic Editor: Ke Xing and Bin

Huang

Received: 22 December 2022

Revised: 13 January 2023

Accepted: 16 January 2023

Published: 19 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Design of a Standard and Programmatically Accessible
Interface for Smart Meters to Allow Monitoring Automation of
the Energy Consumed by the Execution of Computer Software
Alberto Ortega * , Abel Miguel Cano-Delgado , Beatriz Prieto and Jesús González

Department of Computer Engineering, Automation and Robotics, CITIC, University of Granada,
18010 Granada, Spain
* Correspondence: aoruiz@ugr.es

Abstract: Software has become more computationally demanding nowadays, turning out high-
performance software in many cases, implying higher energy and economic expenditure. Indeed,
many studies have arisen within the IT community to mitigate the environmental impact of software.
Collecting and measuring software’s power consumption has become an essential task. This paper
proposes the design of a standard interface for any currently available smart meter, which is program-
matically accessible from any software application and can collect consumption data transparently
while a program is executed. This interface is structured into two layers. The former is a driver that
provides an OS-level standard interface to the meter, while the latter is a proxy offering higher-level
API for a concrete programming language. This design provides many benefits. It makes it possible
to substitute the meter for a different device without affecting the proxy layer. It also allows the
presence of multiple proxy implementations to offer a programmatic interface to the meter for several
languages. A prototype of the proposed interface design has been implemented for a concrete smart
meter and OS to demonstrate its feasibility. It has been tested with two experiments. Firstly, its correct
functioning has been validated. Later, the prototype has been applied to monitor the execution of a
high-performance program, a machine learning application to select the most relevant features of
electroencephalogram data.

Keywords: energy metering system; software power consumption

1. Motivation

Gone are the days when computers were used for a single purpose and existed solely
for scientific, government, or banking applications. Today, there is at least one computer in
any home, which can be used for a wide variety of applications, such as office suites, image
processing solutions, video editing software, video broadcasting, or playing video games,
to name some of the most common ones.

Many of the above programs are executed daily on personal computers, either as
part of a profession or as part of a hobby. On the one hand, these everyday tasks can
usually become quite intensive for the computer. On the other hand, the advancement of
programming techniques in recent years, along with the development of more powerful
computers, has resulted in more advanced, heavier, and resource-intensive software.

These trends can lead to an increase in the power consumption of computers and,
taking into account the enormous number of personal computers in the world, their
overall energy consumption is prone to grow too. In short: more intensive programs,
executed on more powerful computers, which consume more energy, increase overall
energy consumption. In fact, Andrae et al. predict in [1] that, in a worst-case scenario,
information and communication technologies could consume up to 51% of the world’s
electricity by 2030 and contribute 23% of greenhouse gas production.

Sustainability 2023, 15, 1900. https://doi.org/10.3390/su15031900 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15031900
https://doi.org/10.3390/su15031900
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5493-8868
https://orcid.org/0000-0002-5413-5141
https://orcid.org/0000-0003-0187-6533
https://orcid.org/0000-0002-0415-1821
https://doi.org/10.3390/su15031900
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15031900?type=check_update&version=1

Sustainability 2023, 15, 1900 2 of 16

Therefore, the consumption caused by software is worth measuring and analyzing.
Mainly, three approaches can be applied to obtain consumed energy, either for the exe-
cution of a program or for other scenarios [2–4]: estimating the consumption through a
customized model, aggregating the power consumed by the different parts of a system, or
metering the consumption of the whole system globally, with the latter being widely used
to measure the power consumed by personal computers [5–15]. However, the collection
of energy measurements for this approach becomes cumbersome since although device
manufacturers provide human-friendly interfaces, neither of them meets any standard nor
allows programmatic access to the meter, which makes it difficult or even impossible for
programs to be aware of their consumed power while being executed [16]. This paper aims
to design such an interface to allow any program to access its current energy consumption
transparently, regardless of the smart meter connected between the computer and the
wall outlet.

The rest of the paper is organized as follows: Section 2 presents the most relevant
antecedents and current developments related to this work. Later, Section 3 describes
the design of the proposed standard and programmatically accessible interface for smart
meters. Section 4 details a prototype implementation of this proposal for a concrete OS
and measurement device, a Linux OS, and an openZmeter, respectively. Next, Section 5
validates the interface prototype implementation, and finally, some conclusions and a
future work proposal are drawn in Section 6.

2. State-of-the-Art

The energy consumed by any program can be estimated through a mathematical model
specifically designed to calculate the power consumption derived from its execution on a
concrete computer system. This kind of model must be designed specifically for each pro-
gram, and their parameters (both program- and computer-related) must be adjusted using
experimental measurements acquired through many executions. However, this approach
presents one significant drawback. The slight energy variations caused by circumstances be-
yond the execution of a program are hard to estimate and, therefore, the consumption they
calculate may be inaccurate. For example, the power consumption caused by the processor
cooling system may be estimated by the maximum value of this parameter provided by the
computer’s constructor. Nevertheless, since the cooling system adapts its operation to the
processor’s temperature, which may vary during the program’s execution, its consumption
will be overestimated. Thus, it is usually assumed that each computer subsystem will
produce a linear power consumption regarding its utilization. Notwithstanding, the aging
of the cooling system’s fan usually produces it slight deformations, which probably will
increase its power consumption, motivating the use of more powerful techniques, such as
machine learning [17]. Therefore, estimation models are commonly used for large computer
systems, such as datacenters [18,19], rather than personal computers, because measuring
their actual overall consumption is more complicated than estimating it with a reasonable
error rate. Surveys on energy estimation models have also been reported in other fields,
such as on GPUs [20], multicore processors [21], mobile devices [22,23], HPC systems [24],
or for the execution of machine learning algorithms [16,17,25].

The direct metering and sub-metering approaches avoid the inaccuracy of energy esti-
mation by measuring the actual system consumption. Sub-metering consists of measuring
the consumption of the different computer subsystems (such as the CPU, GPU, memory,
disk, network interface devices, power conversion, etc.) and then expressing the system’s
power consumption as the aggregation of the power drawn by its subcomponents. Separate
metering hardware can be used to collect the consumption data of the different computer
subsystems, including devices such as current sensors, current clamps, data acquisition
cards, and microcontrollers. Measurements can be performed, for example, on the different
output lines from the system’s DC power supply connected to distinct parts of the com-
puting system (motherboard, disk, etc.). However, it is not physically possible to obtain
direct measurements of consumption of all the low-level components (inside the chips),

Sustainability 2023, 15, 1900 3 of 16

although it is possible to use counters and hardware registers that are included as utilities
or interfaces by the processor manufacturers for thermal and power management to obtain
indirect measurements of such components [26,27]. With this type of interface, it is possible,
for example, to develop tools to control the operation (on/off) of fans or to monitor power
consumption. The RAPL (running average power limit) interface, introduced by Intel in
their Sandy Bridge processor architecture [28], is an example of such an interface. Notwith-
standing, sub-metering presents some drawbacks too. Firstly, some measurements can only
be obtained indirectly through specific interfaces for each subsystem, not being as accurate
as actual measures obtained directly. Secondly, the metering infrastructure connected to
the different computer subsystems may introduce some overhead. Thirdly, monitoring
may not be possible directly or indirectly for some components of the computer. Thus,
the aggregation of all the gathered measurements will result in an inaccurate estimation
of the actual energy consumption caused by the program execution. Despite the above,
the separate sub-meters allow extraction and integration of information from different
subsystems to achieve a unified, real-time, and intelligent view of the responsibility of the
distinct elements in the overall consumption [21,27].

Finally, the direct or global metering approach involves using an external energy
measurement device, connected in series with the computer power cable to the wall outlet,
to obtain an accurate measurement of the actual energy consumed by the computer while
executing a program. Different commercial measuring devices exist, along with many other
custom approaches based on microcontrollers [6–12,16,25,29]. Direct metering is indeed
used for the realization of the Green500 supercomputer ranking [30,31]. An example of
a direct metering approach is proposed in [13], where the actual power consumption
data of some algorithms executed on a Raspberry Pi are gathered through a NI USB-
6210 DAS (data acquisition system), which provides accurate measures of the power and
consumption over time. There are also more approaches based on using a DAS to obtain
the energy measurements of running programs [14,15], but suffering all of them from the
same drawbacks: DASs are rather expensive devices and can be accessed only through the
interface provided by their manufacturer.

Using a conventional and cheaper energy metering device may ease energy consump-
tion studies, although the manufacturer’s interface may not always be versatile enough to
perform downstream data analyses conveniently. For example, Prieto et al. use openZme-
ter (oZm) [32,33], an inexpensive and off-the-shelf energy metering device, to perform
a computer-to-computer comparison of the power consumption of several programs [5].
However, the energy-related data gathered by oZm must be processed manually. The
program to be measured must generate start and stop timestamps at the beginning and
end of its execution, respectively. Then, once the program is run, the consumption data
must be exported from the oZm Web interface to a spreadsheet (in Excel format). Finally,
the start and stop timestamps must be located within the spreadsheet to identify the time
interval exactly corresponding to the program execution to extract its energy measures.

It is clear, then, that measuring the energy consumed by the execution of a program is
a complicated challenge that has been addressed in different ways in the literature with
more or less precision. In addition, after analyzing the approaches described above, a direct
method based on using any conventional and cheap metering device (as in [5]), able to
measure different magnitudes accurately, is preferred, although there still exists a lack of
any standard interface for such kind of device that allows programs to access the meter
automatically and transparently, which motivates its design, described below.

3. Design of a Standard and Programmatically Accessible Interface for Smart Meters

This work proposes the design of a standard interface to allow automatic monitoring
of the energy consumed by the execution of a program and even to let programs be aware of
their energy consumption. This design is structured into two abstraction layers, as shown
in Figure 1, which provides great flexibility. For example, it lets substitute the meter with
a different one transparently, simply by replacing the driver layer with another one that

Sustainability 2023, 15, 1900 4 of 16

allows access to the new meter and respects the driver’s standard interface. Implementing
proxies for different programming languages (Python, Java, C, etc.) is also possible so that
any program, regardless of its implementation language, can access information on its
real-time energy consumption. In addition, even several proxies for different programming
languages can co-exist in the computer.

Driver

In
te

rfa
ce

programmatic
access

standard interface

direct energy metering
& configuration

raw energy-related data,
parameter values

Python
Proxy ...

Program
1 ...Program

2
Program

N

U
se

r

Sp
ac

e

Ke
rn

el

Sp
ac

e

Meter Device

Personal
Computer

C
Proxy

Java
Proxy

Figure 1. Design diagram of the standard and programmatically accessible interface for smart meters.

3.1. Driver Layer

The low-level layer, called the driver, integrates the measurement device with the PC’s
operating system (OS), as Figure 2 shows. It should be noted that this layer is not really a
driver per se since the meter is a device separated from the PC. However, treating the meter
as any other PC’s peripheral would allow access to it via the interface provided by the OS
to communicate with the PC’s subsystems, facilitating a standard interface to the energy-
related data programmatically accessible at the OS level. As any driver, it should also
hide all the technical details of the meter and be in charge of all the communication issues
between the meter and the computer (authentication credentials, connection protocols, etc.).

The driver should be tightly integrated with both the metering device and the PC’s
OS where the program is running. Thus, its implementation will depend on the chosen
meter and the specific OS installed on the computer. A prototype implementation of the
driver for a concrete meter and OS is discussed below in Section 4.2.

Sustainability 2023, 15, 1900 5 of 16

No

Yes Proxy
request?

 O
S-

le
ve

l
st

an
da

rd
 in

te
rfa

ce

D
riv

er

Meter Device

Connect to the meter

Perform
operation Wait

Proxy

Figure 2. State diagram showing the general behavior of the driver.

3.2. Proxy Layer

The high-level layer, or proxy, should rely on the driver to supply a standard API
to access the energy-related measures from a specific programming language. Since this
layer provides an API to access the OS-level interface provided by the driver for a con-
crete programming language, this API may be defined through a set of functions or by
a proxy object, depending on the nature of the language. Moreover, several APIs could
be implemented to support programmatic access to the meter from different languages
on the same computer. In either case, a program has only to invoke a determined proxy
function/method to obtain any energy measurement or get/modify any meter parameter,
with all the proxy functions being designed to access the standard interface to the meter
provided by its driver.

The proxy should also provide some functionalities at a higher level of abstraction,
such as the continuous monitoring of a program’s energetic behavior throughout its execu-
tion, whose data would make it possible to design and fit a model of the program. It could
even provide access to any instantaneous energy measurement in real-time, allowing the
design of schedulers that dynamically plan the program’s execution to minimize its energy
consumption, such as that proposed in [16]. Thus, any implementation of the proxy should
supply at least the following functions/methods:

• start(filename, magnitude_list): Begins a continuous measurement of the desired en-
ergetic magnitudes. The program should now switch to using two threads: one to
run the main program or workload (main thread) and another to handle its energy
measurement (measurement thread). The latter should execute an infinite measure-
ment loop that periodically gathers the values of all the magnitudes in the list from
the driver interface and remains asleep between measurements to minimize its impact
on the main thread. Figure 3 shows how the continuous measurement of energy-
related magnitudes should work internally. As a result, a file with the given name
should be generated. It should store all the gathered data in CSV format, with the
first column being a timestamp and the remaining ones containing the values for the
measured magnitudes. These data could be used, for instance, to generate a model of
the application’s energetic behavior.

• stop(): Finishes the continuous measurement initiated by start(). It should terminate
the measurement thread and close the CSV file.

Sustainability 2023, 15, 1900 6 of 16

• get(magnitude/parameter): Returns the instantaneous value of any magnitude or config-
uration parameter. It could be used, for example, to feed an energy-aware scheduler
that plans the execution of an application to minimize its energy consumption.

• set(parameter, value): Sets a new value for a configuration parameter. It could be used
to modify the continuous measurement sampling period of energy-related data.

En
er

gy
 m

ea
su

re
m

en
t

Ti
m

e

W
or

kl
oa

d

Main
Thread

start()

stop()

Measurement
Thread

Measurement loop

1. sleep(sampling_period);
2. readValues(magnitudes_list);

Figure 3. Continuous measurement of energy measurements in the proxy.

4. Prototype Implementation of the Standard and Programmatically Accessible
Interface for Smart Meters

Once the design of the standard interface for smart meters has been presented, this
section details the implementation of a prototype of it for Linux systems. The driver layer
has been implemented to access an oZm meter while the proxy layer defines an API for the
C programming language.

4.1. Openzmeter Overview

In 2011, researchers from the University of Almería designed an open-source smart me-
ter and power quality analyzer characterized by its accuracy and reliability: an easy-to-use
device named openZmeter (Figure 4). This device was intended to be installed in buildings
to collect and process information regarding power supply and energy consumption [32,33]
and, unlike other devices available on the market, the oZm has a more comprehensive
range of functionalities, follows several international standards such as IEC 61000-4-30 and
EN 50160, and offers a comparable measurement error compared to the competition.

As Figure 5 shows, the workflow of oZm starts with the current and voltage sensor,
passes to an STM32 microdriver that acquires and preprocesses the samples, and com-
municates with a NanoPi NEO AIR board, which processes and stores the information,
implements the server and deploys the web application. More specific details about oZm
can be found in [32].

oZm provides a web-based simple but efficient data query system supported by a
server running under OpenWRT Linux. Once connected to the network, and with the
device to be measured connected to one of its possible three power outlets, it is ready
to provide various types of energy-related data via the web interface. In addition, oZm
can calculate the actual cost associated with the energy outlay corresponding to a specific
period of use from different electricity tariffs. Figure 6 shows an example of the oZm web
interface appearance.

Sustainability 2023, 15, 1900 7 of 16

Figure 4. openZmeter device.

Power Supply

Voltage Level

Current Sensor

STM32

Buffer

Signals

AD
C

SP
I

G
PI

O

Is
ol

at
io

n U
SB

N L

Main Board
NanoPI AIR

Buffer

Analysis

Storage

FrontEnd

API

Figure 5. Flowchart for the oZm’s electronic scheme.

Figure 6. Screenshot of the oZm web interface.

Notwithstanding, it can be seen how this web-based graphical interface, quite useful
for conventional users to monitor appliances or even whole homes visually, is not so
appropriate for a computer program to query its real-time power consumption, for example.
Therefore, it is necessary to have a programmatic and accurate solution for integration into
programs, such as the one proposed in Section 3.

Sustainability 2023, 15, 1900 8 of 16

4.2. Driver Layer Prototype

This section describes the implementation of a driver prototype for the oZm device as
a kernel module for Linux systems. Since this prototype aims to demonstrate the feasibility
of the proposed design of a standard interface to provide programmatical access to smart
meters, only a partial implementation of the driver has been carried out. As described in
Section 3.1, the driver should facilitate a standard interface to access all the magnitudes
measured by the meter. Thus, since the access to whatever measure provided by oZm
is performed through this interface, implementing the access to just any of them and
validating its correct operation can verify the design of the proposed interface design.
Therefore, only access to the instantaneous power has been implemented in the prototype.
Later, the rest of the magnitudes provided by oZm can easily be supported analogously.

As a Linux kernel module, it should be written in the C language and run in kernel
space [34], a different place in memory with its own mapping, where software runs using
the highest priority level offered by the microprocessor (supervisor mode). On the contrary,
the proxy will run in user space, where applications run at the lowest priority level [35].
The driver is responsible for connecting to the meter, receiving commands from the proxy,
and returning data to it. Thus, it should provide a standard but simple interface to the
proxy. To this end, with it being one of the novel proposals in this work, the sysfs virtual
file system was used.

4.2.1. Sysfs as OS-level Interface for the Meter

The sysfs [36] was introduced with the Linux 2.6 kernel. It is, in short, a virtual file
system. As with any file system, it allows access to the information it handles through
folders and files. However, instead of providing access to data already stored in physical
devices (such as hard disks or pen drives) or data accessible via a network (remote file
systems or cloud storage), it allows access to kernel objects by writing to and reading from
specific virtual files organized among virtual folders. Since devices can be considered
kernel objects, as their access by a program always is supervised by the OS, the sysfs allows
both sending configuration parameters and getting data from a device by just writing
to and reading from the corresponding virtual files in the sysfs, as Figure 7 shows. This
mechanism is commonly used as a method of communication between the user (from both
a program or the command console) and the kernel [37,38]. It offers two main benefits:

• Like any virtual file system, the Linux kernel creates the entire sysfs tree at system
startup, invoking the different device drivers attached to it. The sysfs also disappears
when the system shuts down, leading to an automatic cleanup of directories and files
if the meter is removed.

• Any virtual file must only handle one single value. Users or programs can get the
value of a concrete device parameter/input or set a new value for a parameter/output
simply by reading or writing to its associated file, respectively.

Thus, the OS-level standard interface proposed to access any energy meter is composed
of the energy_meter subdirectory in the sysfs and, inside, all the necessary files to send
commands and receive information from the device. Each device’s configurable parameter
or possible input/output datum is linked to just one virtual file in the sysfs. This design is
highly scalable, capable of supporting any functionality implemented by the device, and
even able to support new functionalities that may be incorporated in future versions of
the meter.

In addition, this approach provides the advantage that it is possible to communicate
with the driver and, therefore, with the device, simply by reading or writing text files from
the terminal console, with simple shell commands, for example, without the need to use
the proxy.

Sustainability 2023, 15, 1900 9 of 16

sysfs

Read

Write

Extern
Agent

Driver

energy_meter
Magnitude 1

Magnitude 2

...

Parameter 1

Parameter 2

...

Send value Request value

e.g., proxy, bash
terminal, etc.

Meter Device

Figure 7. Usage of sysfs as OS-level interface for the meter.

4.2.2. Driver Installation

As with any other loadable Linux kernel module, the configuration parameters of the
oZm driver layer should be stored within one or several files in the PC’s/etc/modprobe.d
folder, along with the rest of the configuration files used by modprobe, the Linux tool used
to load a module dynamically to the Linux kernel. These files should be protected by the
Linux file permissions system to avoid security issues. So an installation script has been
developed for this task. Since oZm is connected to the same router as the PC, as Figure 8
shows, both an IP address and a TCP port are necessary to establish a connection with the
meter, so the installation script asks these parameters to the system’s administrator and
stores them in the ozm-connection.conf file, within the /etc/modprobe.d folder. A login and
password are also needed to access the oZm server, so the installation script gathers these
data and stores them in the ozm-credentials.conf file, also in the /etc/modprobe.d folder.

Router

Computing
machine openZmeter

Send requests /
Receive replies

Send requests /
Receive replies

Power supply

Figure 8. System interconnection.

Sustainability 2023, 15, 1900 10 of 16

Finally, since the driver is implemented as a kernel module, it leverages the dynamic
kernel module support (DKMS) framework services, a tool created by the Dell Linux
engineering team to facilitate the management of kernel modules [39]. With this support,
the driver will continue working even after a Linux kernel update as the DKMS compiles
the driver source codes against the new kernel automatically to ensure that it will be
correctly loaded by the kernel when rebooting the OS after the update.

4.2.3. Driver Initialization

When the computer boots, the Linux kernel loads the meter driver, which attempts to
connect to oZm using the data provided by the ozm-connection.conf and ozm-credentials.conf
files. If the login is successful, the driver obtains a session ID, which is stored in memory
for later use, so the driver will not have to log in again next time. Otherwise, if the login
is unsuccessful, the driver remains loaded in memory but will attempt to log in again
when any measurement or parameter configuration is required. Finally, the driver creates
the energy_meter subdirectory within the sysfs and, inside, all the files needed to send
commands and receive information from the device. As mentioned above, the driver
prototype only provides access to the instantaneous power measured by oZm, so only the
virtual file inst_power is created.

4.2.4. Driver Operation

Once the kernel has loaded the driver, the proxy only has to read or write any virtual
file to obtain or modify the meter’s corresponding datum, as shown in Figure 7. So when a
read is executed on any virtual file, the kernel calls the driver to get the requested value
from oZm and return it. On the contrary, when writing to a virtual file, the driver is invoked
by the kernel to send the written value to the device. If any error is generated while the
driver tries to get or set a value, its associated file in the sysfs will keep a negative code,
according to the POSIX standard [40].

4.3. Proxy Layer Prototype

The proxy layer should implement the API detailed in Section 3.2 for a concrete
programming language. As commented above, even several proxy instances could be
developed to support the programmatic access to the meter from different programming
languages. However, as the purpose of this section is to produce a prototype to validate
the standard interface design proposed in this paper, only one proxy has been developed
for the C programming language since the programs used in Section 5 for the experimental
validation of the prototype are written in this language. Moreover, this proxy should be
based on the standard interface provided by the driver for the OS where the programs are
run, Linux in this case. Thus, the proxy functions are implemented to read or write the
corresponding virtual files managed by the driver in the sysfs, as described in Section 4.2.1.

Regarding the start and stop functions, on the one hand, the POSIX threads library has
been used for their implementation since Linux is POSIX compatible. On the other hand,
as the minimum sampling period of oZm is 200 ms, a sampling period of 500 ms has been
set for the measurement thread created by the start function to avoid reading contention.
Listing 1 shows how the proxy prototype should be used to monitor the energetic behavior
of a program.

Finally, since the driver prototype only provides the oZm instantaneous power mea-
sures through the inst_power virtual file in the sysfs, the proxy prototype’s get and set
functions can only access this magnitude by the moment. Nevertheless, as soon as access to
the rest of the magnitudes is supported by the driver, they would be already available for
the proxy simply by reading their corresponding virtual files. Notwithstanding, monitor-
ing just the instantaneous power allows the validation of the proposed standard interface
design, as discussed in the next section.

Sustainability 2023, 15, 1900 11 of 16

Listing 1. Example of use of the oZm proxy to monitor the energy consumption of an application.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <libozm.h> // oZm Proxy
5

6 int main(int argc , char** argv)
7 {
8 char *filename = "oZm_data.csv";
9 char *magnitudes_list [1] = {"inst_power"};

10

11 printf("Starting a measure with oZm:");
12 start(filename , magnitudes_list);
13 // Run the workload;
14 run_workload ();
15 stop();
16 printf("Measurement finished");
17

18 return (0);
19 }

5. Experimental Results

Once the design of the standard interface for smart meters has been exposed and a
prototype based on oZm for Linux systems has been implemented, it is time to validate it. To
this end, two experiments have been performed: the former analyses its essential operation
while the latter uses it to monitor the power consumption of a machine learning application.

Both test programs have been run on a PC under Rocky Linux 8.5 equipped with
an Intel Core i9 12900K CPU, which provides eight high-performance cores able to reach
5.1 GHz when all of them are computing and eight efficiency cores that can run at 3.9 GHz
in turbo mode. All the cores operate at 3.2 GHz as a baseline, ramping up to turbo mode
as soon as they start to compute. Moreover, since the high-performance cores can execute
up to 2 threads per core, a total of 24 threads can be executed in parallel by the CPU. The
computer also is equipped with an Nvidia 330 GeForce RTX 3080 Ti GPU with 80 Compute
Units (CU) running at 1.665 MHz and 12 GB of GDDR6X memory.

5.1. Validation of the Proposed Interface Design

This experiment has been designed to validate whether the proposed interface design
operates appropriately. The hypothesis to be tested is that as the sum of the CPU cores’
frequencies increases, so does the power consumed by the PC. A well-known and also
computationally highly demanding program has been chosen for this task: the Linpack
benchmark [41]. The proposed methodology consists of stressing an increasing number of
threads with Linpack to analyze how the OS handles the CPU cores and their frequencies
and the correlation of the sum of all the CPU cores’ frequencies with the active power
consumed by the computer.

This experiment provides a couple of results, with the first being how the OS manages
CPU cores. Analyzing Figure 9, it can be observed how the sum of frequencies increases
much more steeply from running Linpack with 1 to 16 threads than from executing it
with 17 to 24 threads. Since the CPU supplies eight high-performance cores able to run
two threads simultaneously at a higher frequency and another eight efficiency cores, it
can be deduced that the first 16 threads are executed on the high-performance cores,
and the last 8 threads are kept on the efficiency cores. Likewise, Figure 10 plots some
statistics (minimum, first quartile, median, third quartile, maximum, and outlier values)
summarizing the behavior of the instantaneous power measured while executing the
Linpack benchmarck on the computer with different numbers of threads, uncovering that
the OS switches the measurement thread to an efficiency core when more than 16 threads
are executing Linpack, reducing the overall consumed power. On the other hand, it can be
observed how the sum of CPU cores’ frequencies and the PC’s consumed power follow the
same trend, as expected, which validates the energy metering system functioning.

Sustainability 2023, 15, 1900 12 of 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of threads executing Linpack

0

20

40

60

80

100

Su
m

 o
f t

he
 C

PU

co
re

s’
fre

qu
en

cie
s (

GH
z)

Figure 9. Sum of the CPU cores’ frequencies as the number of threads executing Linpack increases.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of threads executing Linpack

100

150

200

250

300

350

400

In
st

an
ta

ne
ou

s p
ow

er
 (w

)

Figure 10. PC’s energy consumption as the number of threads executing Linpack increases.

5.2. Heavy Workload Measurement

Once its correct operation has been verified, the standard interface design proposed in
this work has also been used to measure the energy consumption of quite a demanding
program: a machine learning application. This application allows running its computational
load on both the CPU and GPU. Therefore, it is possible to observe the difference in power
consumption between both hardware configurations to keep on testing the feasibility and
performance of the system.

The test program is the parallel multi-objective evolutionary algorithm proposed
in [25], designed to solve feature selection problems for high-dimensional datasets, such as
the classification of electroencephalograms. When it runs only on the CPU, it uses all the
available threads (24). Alternatively, when executed on the GPU, all the computing units
(80) are used, so each computing unit is leveraged at its maximum performance. Figure 11
shows the results obtained, where the instantaneous power consumed by the execution of
the program on both the CPU and the GPU are plotted. The mean value over a window
of 10 measurements is also displayed to ease the comparison of both alternatives. On the
one hand, it can be appreciated how the power consumption suffers almost constant ups
and downs for the CPU execution. This behavior is due to the fact that the program is
not entirely parallel and each time it changes its execution from parallel to sequential and

Sustainability 2023, 15, 1900 13 of 16

vice versa, an abrupt change in power consumption is produced. Maximum peaks of up
to 307 watts and average power of 243 watts are observed, with a total execution time of
7923 s. On the other hand, power consumption jumps also occur for the GPU execution but
are much less pronounced. In this case, maximum peaks of up to 353 watts and average
power of 333 watts are observed, with a total runtime of 951 s.

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0

100

200

300

400

500
Po

we
r (

w)
Real CPU Consumption
Mean CPU Consumption
Real GPU Consumption
Mean GPU Consumption
Mean idle Consumption

Figure 11. Power consumption of the parallel multi-objective evolutionary algorithm for the CPU
and GPU executions.

At first glance, it could be said that the program’s execution on the GPU is much less
expensive in terms of energy than its execution on the CPU, but it would not be possible to
know how much energy has been saved. However, thanks to the prototype of the standard
interface for oZm implemented in this work, the instantaneous power consumption of both
executions has been collected, integrated, and analyzed to obtain the total energy consumed
for each one of its executions. In this case, after calculating the numerical integration of the
active power consumed by the program for both the CPU and GPU execution, a total of
535.30 Wh were spent for the CPU run, while only 88.23 Wh were for the GPU execution.
Thus, it can be concluded that the GPU execution is 8.33 times faster and spends 6.07 times
less energy than the CPU execution.

6. Conclusions and Future Work

Throughout this article, a standard interface for any currently available smart meter,
programmatically accessible from any software application, has been designed, imple-
mented, and validated. Although an oZm has been used to test the implementation of
the proposed interface design, it should be pointed out that it allows use of any metering
device, since the driver layer isolates it from the proxy layer and, thus, from any pro-
grammatic access to the meter. The proposed interface design is also modular since it
allows the replacement of any of its components with a new implementation of the same
layer, letting substitute the device and its driver or add a proxy for another programming
language transparently.

Since the driver layer provides an OS-level standard interface to the meter, the pro-
posed interface design is highly scalable too. For instance, the implemented prototype
offers a sysfs-based interface. Thus, access to any configuration parameter of electric magni-
tude can be performed by simply reading or writing to a virtual file. The actualization of
the meter or even the change for another different device would imply only a modification
on the driver, which could eventually add more virtual files to support new magnitudes.
On the other hand, although only a proxy for the C language has been developed in the pro-
totype of the proposed interface, as the proxy basically offers an API to access the driver’s

Sustainability 2023, 15, 1900 14 of 16

OS-level standard interface from a concrete programming language, several proxies could
be developed and even co-exist in the same computer to provide programmatic access to
the meter for different languages, e.g., MATLAB, Python, Java, etc.

Furthermore, the continuous monitoring of a program execution provided by the proxy
makes possible the analysis of different electric magnitudes, the calculation of statistics,
and even the detection of the program parts that are not leveraging all the potential of
the computer.

As a future work, a third layer designed to integrate the measures taken from the
different nodes of a computing cluster would make it possible to analyze and optimize
the energetic behavior of distributed applications. The proposed smart meter standard
interface design with programmatical access also makes viable the development of a
scheduler, such as that proposed in [16], to dynamically manage the computing resources
used by a program, which would help meet a specific energy budget during its execution.

Author Contributions: Conceptualization, J.G. and A.O.; methodology, J.G. and B.P.; software,
A.M.C.-D. and A.O.; validation, A.M.C.-D., A.O., X.X. and B.P.; writing—original draft preparation,
A.M.C.-D. and A.O.; writing—review and editing, J.G. and B.P.; supervision, J.G. and B.P.; project
administration, J.G.; funding acquisition, J.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by both the Spanish Ministry of Science, Innovation and Univer-
sities, and the ERDF fund, grant number PGC2018-098813-B-C31.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data discussed in this study are available on request from the corre-
sponding author.

Acknowledgments: Special thanks to Francisco G. Montoya and Eduardo Viciana for support with
the low-level details of oZm and Juan José Escobar for allowing us to use his feature selection
application for the second experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Andrae, A.S.G.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157.

[CrossRef]
2. Sipma, J.; Broc, J.S.; Skema, R. Comparing Estimated versus Measured Energy Savings. Topical Case Study of the Epatee Project; European

Union’s Horizon 2020 Programme; 2019. Available online: https://epatee.eu/sites/default/files/files/epatee_topical_case_
study_comparing_estimated_vs_measured_energy_savings.pdf (accessed on 28 November 2022).

3. Umar, T. Making future floating cities sustainable: A way forward. Proc. Inst. Civ. Eng. Urban Des. Plan. 2020, 173, 214–237.
[CrossRef]

4. Umar, T. Key factors influencing the implementation of three-dimensional printing in construction. Proc. Inst. Civ. Eng. Manag.
Procure. Law 2021, 174, 104–117. [CrossRef]

5. Prieto, B.; Escobar, J.J.; Gómez-López, J.C.; Díaz, A.F.; Lampert, T. Energy Efficiency of Personal Computers: A Comparative
Analysis. Sustainability 2022, 14, 12829. [CrossRef]

6. Tamkittikhun, N.; Tantidham, T.; Intakot, P. AC power meter design based on Arduino: Multichannel single-phase approach.
In Proceedings of the 2015 International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 23–26
November 2015; pp. 1–5. [CrossRef]

7. Automated Smart Metering; Visalatchi, S.; Sandeep, K.K. Smart energy metering and power theft control using arduino & GSM.
In Proceedings of the 2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2017;
pp. 858–961. [CrossRef]

8. Kumar, A.; Thakur, S.; Bhattacharjee, P. Real Time Monitoring of AMR Enabled Energy Meter for AMI in Smart City-An IoT
Application. In Proceedings of the 2018 IEEE International Symposium on Smart Electronic Systems (iSES), Hyderabad, India,
17–19 December 2018; pp. 219–222. [CrossRef]

9. Prathik, M.; Anitha, K.; Anitha, V. Smart Energy Meter Surveillance Using IoT. In Proceedings of the 2018 International Conference
on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India, 22–23 February 2018; pp. 186–189. [CrossRef]

10. Abate, F.; Carratù, M.; Liguori, C.; Paciello, V. A low cost smart power meter for IoT. Measurement 2019, 136, 59–66. [CrossRef]

http://doi.org/10.3390/challe6010117
https://epatee.eu/sites/default/files/files/epatee_topical_case_study_comparing_estimated_vs_measured_energy_savings.pdf
https://epatee.eu/sites/default/files/files/epatee_topical_case_study_comparing_estimated_vs_measured_energy_savings.pdf
http://dx.doi.org/10.1680/jurdp.19.00015
http://dx.doi.org/10.1680/jmapl.19.00029
http://dx.doi.org/10.3390/su141912829
http://dx.doi.org/10.1109/ICSEC.2015.7401422
http://dx.doi.org/10.1109/I2CT.2017.8226251.
http://dx.doi.org/10.1109/iSES.2018.00055
http://dx.doi.org/10.1109/ICPECTS.2018.8521650
http://dx.doi.org/10.1016/j.measurement.2018.12.069

Sustainability 2023, 15, 1900 15 of 16

11. Faisal, M.; Karim, T.F.; Pavel, A.R.; Hossen, M.S.; Lipu, M.H. Development of Smart Energy Meter for Energy Cost Analysis of
Conventional Grid and Solar Energy. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal
Processing Techniques (ICREST), Dhaka, Bangladesh, 10–12 January 2019; pp. 91–95. [CrossRef]

12. Kumar, L.A.; Indragandhi, V.; Selvamathi, R.; Vijayakumar, V.; Ravi, L.; Subramaniyaswamy, V. Design, power quality analysis,
and implementation of smart energy meter using internet of things. Comput. Electr. Eng. 2021, 93, 107203. [CrossRef]

13. Rashid, M.; Ardito, L.; Torchiano, M. Energy Consumption Analysis of Algorithms Implementations. In Proceedings of the
2015 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), Beijing, China, 22–23
October 2015; pp. 1–4. [CrossRef]

14. Bunse, C.; Höpfner, H.; Mansour, E.; Roychoudhury, S. Exploring the Energy Consumption of Data Sorting Algorithms in
Embedded and Mobile Environments. In Proceedings of the 2009 Tenth International Conference on Mobile Data Management:
Systems, Services and Middleware, Taipei, Taiwan, 18–20 May 2009; pp. 600–607. [CrossRef]

15. Potlapally, N.R.; Ravi, S.; Raghunathan, A.; Jha, N.K. Analyzing the Energy Consumption of Security Protocols. In Proceedings
of the 2003 International Symposium on Low Power Electronics and Design, Seoul, Republic of Korea, 25–27 August 2003;
Verbauwhede, I., Roh, H., Eds.; ACM: New York, NY, USA, 2003; pp. 30–35. [CrossRef]

16. Escobar, J.J.; Ortega, J.; Díaz, A.F.; González, J.; Damas, M. Energy-aware Load Balancing of Parallel Evolutionary Algorithms
with Heavy Fitness Functions in Heterogeneous CPU-GPU Architectures. Concurr. Comput. Pract. Exp. 2019, 31, e4688. [CrossRef]

17. García-Martín, E.; Rodrigues, C.F.; Riley, G.; Grahn, H. Estimation of energy consumption in machine learning. J. Parallel Distrib.
Comput. 2019, 134, 75–88. [CrossRef]

18. Dayarathna, M.; Wen, Y.; Fan, R. Data Center Energy Consumption Modeling: A Survey. IEEE Commun. Surv. Tutor. 2016,
18, 732–794. [CrossRef]

19. Rong, H.; Zhang, H.; Xiao, S.; Li, C.; Hu, C. Optimizing energy consumption for data centers. Renew. Sustain. Energy Rev. 2016,
58, 674–691. [CrossRef]

20. Bridges, R.A.; Neena, I.; Mintz, T.M. Understanding GPU Power: A Survey of Profiling, Modeling, and Simulation Methods.
ACM Comput. Surv. 2017, 149, 41. [CrossRef]

21. Bertran, R.; Gonzalez, M.; Martorell, X.; Navarro, N.; Ayguade, E. Decomposable and responsive power models for multicore
processors using performance counters. In Proceedings of the 24th ACM International Conference on Supercomputing ; Boku, T.,
Nakashima, H.; Mendelson, A., Eds.; ACM: New York, NY, USA, 2010; pp. 147–158. [CrossRef]

22. Ahmad, R.W.; Gani, A.; Hamid, S.H.A.; Xi, F.; Shiraz, M. A Review on mobile application energy profiling: Taxonomy,
state-of-the-art, and open research issues. J. Netw. Comput. Appl. 2015, 58, 42–59. [CrossRef]

23. Hoque, M.A.; Siekkinen, M.; Khan, K.N.; Xiao, Y.; Tarkoma, S. Modeling, Profiling, and Debugging the Energy Consumption of
Mobile Devices. ACM Comput. Surv. 2016, 48, 39. [CrossRef]

24. O’brien, K.; Pietri, I.; Reddy, R.; Lastovetsky, A.; Sakellariou, R. A Survey of Power and Energy Predictive Models in HPC Systems
and Applications. ACM Comput. Surv. 2018, 50, 37. [CrossRef]

25. Escobar, J.J.; Ortega, J.; Díaz, A.F.; González, J.; Damas, M. Time-energy analysis of multilevel parallelism in heterogeneous
clusters: The case of EEG classification in BCI tasks. J. Supercomput. 2019, 75, 3397–3425. [CrossRef]

26. Noureddine, A.; Rouvoy, R.; Seinturier, L. A Review of Energy Measurement Approaches. ACM Sigops Oper. Syst. Rev. 2013,
47, 42–49. [CrossRef]

27. Fahad, M.; Shahid, A.; Manumachu, R.R.; Lastovetsky, A. A Comparative Study of Methods for Measurement of Energy of
Computing. Energies 2019, 12, 2204. [CrossRef]

28. Khan, K.N.; Hirki, M.; Niemi, T.; Nurminen, J.K.; Ou, Z. RAPL in Action: Experiences in Using RAPL for Power Measurements.
ACM Trans. Model. Perform. Eval. Comput. Syst. 2018, 3, 9. [CrossRef]

29. Gómez-López, J.C.; Escobar, J.J.; Díaz, A.F.; Damas, M.; Gil-Montoya, F.; González, J. Boosting the Convergence of a GA-based
Wrapper for Feature Selection Problems on High-dimensional Data. In Proceedings of the GECCO ’22: Proceedings of the Genetic
and Evolutionary Computation Conference Companion ; Fieldsend, J.E., Ed.; ACM: New York, NY, USA, 2022; pp. 431–434.
[CrossRef]

30. Top500. Energy Efficient High Performance Computing Power Measurement Methodology. Available online: https://www.top5
00.org/static/media/uploads/methodology-2.0rc1.pdf (accessed on 26 August 2022).

31. Top500. Green500. Available online: https://www.top500.org/lists/green500/ (accessed on 26 August 2022).
32. Viciana, E.; Alcayde, A.; Montoya, F.G.; Baños, R.; Arrabal-Campos, F.M.; Zapata-Sierra, A.; Manzano-Agugliaro, F. OpenZmeter:

An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer. Sustainability 2018, 10, 4038. [CrossRef]
33. Viciana, E.; Alcayde, A.; Montoya, F.G.; Baños, R.; Arrabal-Campos, F.M.; Manzano-Agugliaro, F. An Open Hardware Design for

Internet of Things Power Quality and Energy Saving Solutions. Sensors 2019, 19, 627. [CrossRef] [PubMed]
34. Mochel, P. The Linux Kernel Driver Model. The Linux Kernel Documentation. Available online: https://docs.kernel.org/driver-

api/driver-model/overview.html (accessed on 25 November 2022).
35. Corbet, J.; Rubini, A.; Kroah-Hartman, G. Linux Device Drivers, 3rd ed.; O’Reilly Media: Sebastopol, CA, USA 1998.
36. Mochel, P. The sysfs Filesystem. In Linux Symposium; The Linux Foundation: San Francisco, CA, USA, 2005; Volume 1,

pp. 313–326. Available online: https://www.kernel.org/doc/ols/2005/ols2005v1-pages-321-334.pdf (accessed on 3 May 2022).

http://dx.doi.org/10.1109/ICREST.2019.8644356
http://dx.doi.org/10.1016/j.compeleceng.2021.107203
http://dx.doi.org/10.1109/ESEM.2015.7321198
http://dx.doi.org/10.1109/MDM.2009.103
http://dx.doi.org/10.1145/871506.871518
http://dx.doi.org/10.1002/cpe.4688
http://dx.doi.org/10.1016/j.jpdc.2019.07.007
http://dx.doi.org/10.1109/COMST.2015.2481183
http://dx.doi.org/10.1016/j.rser.2015.12.283
http://dx.doi.org/10.1145/2962131
http://dx.doi.org/10.1145/1810085.1810108
http://dx.doi.org/10.1016/j.jnca.2015.09.002
http://dx.doi.org/10.1145/2840723
http://dx.doi.org/10.1145/3078811
http://dx.doi.org/10.1007/s11227-019-02908-4
http://dx.doi.org/10.1145/2553070.2553077
http://dx.doi.org/10.3390/en12112204
http://dx.doi.org/10.1145/3177754
http://dx.doi.org/10.1145/3520304.3528800
https://www.top500.org/static/media/uploads/methodology-2.0rc1.pdf
https://www.top500.org/static/media/uploads/methodology-2.0rc1.pdf
https://www.top500.org/lists/green500/
http://dx.doi.org/10.3390/su10114038
http://dx.doi.org/10.3390/s19030627
http://www.ncbi.nlm.nih.gov/pubmed/30717225
https://docs.kernel.org/driver-api/driver-model/overview.html
https://docs.kernel.org/driver-api/driver-model/overview.html
https://www.kernel.org/doc/ols/2005/ols2005v1-pages-321-334.pdf

Sustainability 2023, 15, 1900 16 of 16

37. Maliye, S.; Krishnaswamy, S.; Gajula, H. Quick access of sysfs entries through custom system call. In Proceedings of the 2016
International Conference on Microelectronics, Computing and Communications (MicroCom), Durgapur, India, 23–25 January
2016; pp. 1–4. [CrossRef]

38. Wang, B.; Wang, B.; Xiong, Q. The comparison of communication methods between user and Kernel space in embedded Linux. In
Proceedings of the International Conference on Computational Problem-Solving, Li Jiang, China, 3–5 December 2010; pp. 234–237.
Available online: https://ieeexplore.ieee.org/document/5696027 (accessed on 22 November 2022).

39. Domsch, M.; Lerhaupt, G. Dynamic Kernel Module Support: From Theory to Practice. In Linux Symposium; The Linux Foundation:
San Francisco, CA, USA, 2004; Volume 1, pp. 187–202. Available online: https://www.kernel.org/doc/ols/2004/ols2004v1
-pages-187-202.pdf (accessed on 18 November 2022).

40. The Linux Man-Pages Project. ERRNO(3)—Linux Programmer’s Manual. Available online: https://man7.org/linux/man-
pages/man3/errno.3.html (accessed on 25 May 2022).

41. Top500. The Linpack Benchmark. Available online: https://www.top500.org/project/linpack/ (accessed on 25 November 2022)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MicroCom.2016.7522511
https://ieeexplore.ieee.org/document/5696027
https://www.kernel.org/doc/ols/2004/ols2004v1-pages-187-202.pdf
https://www.kernel.org/doc/ols/2004/ols2004v1-pages-187-202.pdf
https://man7.org/linux/man-pages/man3/errno.3.html
https://man7.org/linux/man-pages/man3/errno.3.html
https://www.top500.org/project/linpack/

	Motivation
	State-of-the-Art
	Design of a Standard and Programmatically Accessible Interface for Smart Meters
	Driver Layer
	Proxy Layer

	Prototype Implementation of the Standard and Programmatically Accessible Interface for Smart Meters
	Openzmeter Overview
	Driver Layer Prototype
	Sysfs as OS-level Interface for the Meter
	Driver Installation
	Driver Initialization
	Driver Operation

	Proxy Layer Prototype

	Experimental Results
	Validation of the Proposed Interface Design
	Heavy Workload Measurement

	Conclusions and Future Work
	References

