Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China
Abstract
:1. Introduction
2. Methods
2.1. Workflow of Establishing IV-ML Landslide Susceptibility Maps
2.2. Information Value Model
2.3. Machine Learning Model
2.3.1. Logistic Regression
2.3.2. Random Forest
2.3.3. Support Vector Machine
2.3.4. Artificial Neural Network
3. Study Area and Conditioning Factors of Landslide
3.1. Overview of the Study Area and Data Sources
3.2. Conditioning Factors
- (1)
- Elevation: Elevation is highly correlated with the moisture content of the rock and soil mass, intensity of human activities, and vegetation coverage. The influence factor of elevation was divided into five levels: 0~150, 150~300, 300~450, 450~600, and >600 m.
- (2)
- Slope: The slope affects the internal stress distribution, the thickness of loose solid material on the slope, the vegetation coverage, and surface water runoff, thus affecting the stability of the slope. The influence factor of slope was divided into seven levels: 0°~5°, 5°~10°, 10°~15°, 15°~20°, 20°~25°, 25°~30°, and >30°.
- (3)
- Slope aspect: The solar radiation intensity of different slope directions is different, affecting the vegetation cover, water evaporation, and weathering degree of the slope, which in turn affect the stability of the slope. The influence factor of slope aspect was divided into nine levels: plane, north, northeast, east, southeast, south, southwest, west, and northwest.
- (4)
- Plan curvature: The influence factor of plan curvature was divided into five levels: less than −0.70, −0.70~−0.20, −0.20~0.19, 0.19~0.68, and greater than 0.68.
- (5)
- Profile curvature: Profile curvature has an important effect on the flow velocity of surface material, which can control the movement velocity and energy of landslide material and rainfall confluence. The influence factor of profile curvature was divided into five levels: less than −1.04, −1.04~−0.31, −0.31~0.19, 0.19~0.92, and greater than 0.92.
- (6)
- Slope length: The influence factor of slope length was divided into five levels: 0–10, 10–30, 30–60, 60–100, and more than 100 m.
- (7)
- RDLS: RDLS is mainly the result of tectonic movement and surface erosion, representing the degree of regional surface erosion and cutting. The flat terrain does not easily form landslides. The influence factor of RDLS was divided into five levels: less than 0.36, 0.36~0.57, 0.57~0.69, 0.69~0.76, and greater than 0.76.
- (8)
- TWI: TWI quantifies the control of terrain over basic hydrological processes. The influence factor of TWI was divided into five levels: less than 5.74, 5.74~7.74, 7.74~10.73, 10.73 to 14.91, and greater than 14.91.
- (9)
- Elevation variation coefficient: The influence factor of elevation variation coefficient was divided into five levels: 0~0.017, 0.017~0.036, 0.036~0.061, 0.061~0.099, and greater than 0.099.
- (10)
- Lithology: Different rock and soil bodies are developed in different lithologies; thus, the shear strength is different, and the instability degree and anti-stability of slope are different. The influence factor of lithology was divided into seven levels: (A) massive hard granite group; (B) massive hard–relatively hard tuff, tuff lava rock group; (C) medium–thick layer hard sandstone rock group; (D) thin layer soft mudstone, shale rock group; (E) medium–thick layer hard quartz and gneiss rock group; (F) medium–thick layer hard carbonate rock group; (G) loose sand and clay soil layer group.
- (11)
- Land use: Different land use types have different effects on the conservation of surface water and soil, resulting in different surface stability and different impacts on the landslide. The influence factor of land use was divided into five levels: construction land, cultivated land, forest land, grassland, and water area.
- (12)
- NDVI: NDVI indicates vegetation growth status and vegetation coverage. Vegetation development reduces surface runoff, and soil and water loss can be reduced and anti-landslide ability can be enhanced through root consolidation. The influence factor of NDVI was divided into five levels: less than 0.36, 0.36~0.57, 0.57~0.69, 0.69~0.76, and greater than 0.76.
- (13)
- Distance from road: The cutting slope of road construction and other engineering activities result in the formation of a free surface of the slope body, which destroys the integrity of the rock and soil body, causing it to lose its original stability. The closer to the cutting slope, the more unstable the slope body. The influence factor of distance from road was divided into four levels: 0~50, 50~150, 150~300, and more than 300 m.
- (14)
- Distance from faults: The area around the fault structure is an area with active geological activities. There are many cracks and broken rock masses nearby, which easily lead to the development of landslides. The closer the fault is, the more frequent the geological activities are, and the more likely a landslide is to occur. The influence factor of distance from faults was divided into four levels: 0~1000, 1000~2000, 2000~3000, and greater than 3000 m.
- (15)
- Distance from river: River erosion is an important factor affecting landslide and is mainly manifested as the weakening of resistance to the slope front and the increase in free surface during erosion to affect slope stability. Theoretically, the area closer to the water body is vulnerable to the influence of water, resulting in frequent landslide disasters. The influence factor of distance from river was divided into four levels: 0~50, 50~150, 150~300, and more than 300 m.
4. Results
4.1. Correlation Analysis of Influence Factors
4.2. Information Value Model and Selection of Non-Landslide Points
4.3. Landslide Susceptibility Evaluation Results
5. Discussion
5.1. Accuracy Evaluation of the Model
5.2. Analysis of Landslide Susceptibility and Influencing Factors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; He, Y.; Xu, Q.; Deng, J.; Li, W.; Wei, Y. Detection and segmentation of loess landslides via satellite images: A two-phase framework. Landslides 2022, 19, 673–686. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide identification using machine learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Panchal, S.; Shrivastava, A.K. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Eng. J. 2022, 13, 101626. [Google Scholar] [CrossRef]
- Gong, W.; Juang, C.H.; Wasowski, J. Geohazards and human settlements: Lessons learned from multiple relocation events in Badong, China—Engineering geologist’s perspective. Eng. Geol. 2021, 285, 106051. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Pathways and challenges of the application of artificial intelligence to geohazards modelling. Gondwana Res. 2021, 100, 290–301. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena 2020, 195, 104777. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena 2020, 191, 104580. [Google Scholar] [CrossRef]
- Zhou, X.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci. Front. 2021, 12, 101211. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Wu, Y.; Pei, Y.; Xie, P. Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China). Environ. Earth Sci. 2016, 75, 599. [Google Scholar] [CrossRef]
- Cao, C.; Xu, P.; Wang, Y.; Chen, J.; Zheng, L.; Niu, C. Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas. Sustainability 2016, 8, 948. [Google Scholar] [CrossRef] [Green Version]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- He, H.; Hu, D.; Sun, Q.; Zhu, L.; Liu, Y. A Landslide Susceptibility Assessment Method Based on GIS Technology and an AHP-Weighted Information Content Method: A Case Study of Southern Anhui, China. ISPRS Int. J. Geo-Inf. 2019, 8, 266. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Dai, X.; Wang, Z.; Li, J.; Qu, G.; Li, W.; She, J.; Wang, Y. Landslide Susceptibility Assessment Model Construction Using Typical Machine Learning for the Three Gorges Reservoir Area in China. Remote Sens. 2022, 14, 2257. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Gayen, A.; Park, S.; Lee, C.-W.; Lee, S. Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms. Sustainability 2018, 10, 3697. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, H.; Han, L.; Chen, L.; Wang, L. Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China. J. Rock Mech. Geotech. Eng. 2022, 14, 1089–1099. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Zhou, F.; Li, Z.; Mehmood, Q. Stability evaluation and potential damage of a giant paleo-landslide deposit at the East Himalayan Tectonic Junction on the Southeastern margin of the Qinghai-Tibet Plateau. Nat. Hazards 2022, 111, 2117–2140. [Google Scholar] [CrossRef]
- Migon, P.; Jancewicz, K.; Rozycka, M.; Duszynski, F.; Kasprzak, M. Large-scale slope remodelling by landslides—Geomorphic diversity and geological controls, Kamienne Mts., Central Europe. Geomorphology 2017, 289, 134–151. [Google Scholar] [CrossRef]
- Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ. Monit. Assess. 2016, 188, 656. [Google Scholar] [CrossRef]
- Chen, W.; Han, H.X.; Huang, B.; Huang, Q.L.; Fu, X.D. A data-driven approach for landslide susceptibility mapping: A case study of Shennongjia Forestry District, China. Geomat. Nat. Hazards Risk 2018, 9, 720–736. [Google Scholar] [CrossRef]
- Liao, H.M.; Yang, X.G.; Xu, F.G.; Xu, H.; Zhou, J.W. A fuzzy comprehensive method for the risk assessment of a landslide-dammed lake. Environ. Earth Sci. 2018, 77, 750. [Google Scholar] [CrossRef]
- Basu, T.; Pal, S. A GIS-based factor clustering and landslide susceptibility analysis using AHP for Gish River Basin, India. Environ. Dev. Sustain. 2020, 22, 4787–4819. [Google Scholar] [CrossRef]
- Kayastha, P.; Dhital, M.R.; De Smedt, F. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Comput. Geosci. 2013, 52, 398–408. [Google Scholar] [CrossRef]
- Tang, R.X.; Yan, E.C.; Wen, T.; Yin, X.M.; Tang, W. Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping. Sustainability 2021, 13, 3803. [Google Scholar] [CrossRef]
- Zhao, B.B.; Ge, Y.F.; Chen, H.Z. Landslide susceptibility assessment for a transmission line in Gansu Province, China by using a hybrid approach of fractal theory, information value, and random forest models. Environ. Earth Sci. 2021, 80, 441. [Google Scholar] [CrossRef]
- Chen, L.F.; Guo, H.X.; Gong, P.S.; Yang, Y.Y.; Zuo, Z.L.; Gu, M.Y. Landslide susceptibility assessment using weights-of-evidence model and cluster analysis along the highways in the Hubei section of the Three Gorges Reservoir Area. Comput. Geosci. 2021, 156, 104899. [Google Scholar] [CrossRef]
- Torizin, J. Elimination of informational redundancy in the weight of evidence method: An application to landslide susceptibility assessment. Stoch. Environ. Res. Risk Assess. 2016, 30, 635–651. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Guo, Y.H.; Li, W.P.; He, J.H.; Wu, Z.Y. Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor. Geomat. Nat. Hazards Risk 2019, 10, 820–835. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, L.J.; Bao, A.M.; Li, J.L.; Yan, X.B. Chinese High Resolution Satellite Data and GIS-Based Assessment of Landslide Susceptibility along Highway G30 in Guozigou Valley Using Logistic Regression and MaxEnt Model. Remote Sens. 2022, 14, 3620. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, R.; Jiang, Y.J.; Liu, H.J.; Wei, Z.L. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China. Eng. Geol. 2019, 259, 105147. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, S.Y.; Ke, Y.T.; Yang, Z.K.; Zhao, H.L. Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China. Geocarto Int. 2019, 34, 348–367. [Google Scholar] [CrossRef]
- Kornejady, A.; Ownegh, M.; Rahmati, O.; Bahremand, A. Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto Int. 2018, 33, 1155–1185. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bull. Eng. Geol. Environ. 2018, 77, 647–664. [Google Scholar] [CrossRef]
- Krkač, M.; Gazibara, S.B.; Arbanas, Z.; Sečanj, M.; Arbanas, S.M. A comparative study of random forests and multiple linear regression in the prediction of landslide velocity. Landslides 2020, 17, 2515–2531. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Tang, J.; Liao, R.P.; Zhang, M.F.; Zhang, Y.; Wang, X.M.; Su, Z.Y. Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction. Stoch. Environ. Res. Risk Assess. 2021, 35, 1273–1291. [Google Scholar] [CrossRef]
- Van Dao, D.; Jaafari, A.; Bayat, M.; Mafi-Gholami, D.; Qi, C.; Moayedi, H.; Van Phong, T.; Ly, H.-B.; Le, T.-T.; Trinh, P.T.; et al. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena 2020, 188, 104451. [Google Scholar] [CrossRef]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Tekin, S.; Çan, T. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method. Environ. Sci. Pollut. Res. 2022, 29, 47174–47188. [Google Scholar] [CrossRef]
- Yi, Y.N.; Zhang, W.C.; Xu, X.W.; Zhang, Z.J.; Wu, X. Evaluation of neural network models for landslide susceptibility assessment. Int. J. Digit. Earth 2022, 15, 934–953. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci. Total Environ. 2018, 644, 1006–1018. [Google Scholar] [CrossRef]
- Wu, Y.L.; Ke, Y.T.; Chen, Z.; Liang, S.Y.; Zhao, H.L.; Hong, H.Y. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena 2020, 187, 104396. [Google Scholar] [CrossRef]
- Guo, Z.Z.; Shi, Y.; Huang, F.M.; Fan, X.M.; Huang, J.S. Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geosci. Front. 2021, 12, 101249. [Google Scholar] [CrossRef]
- Wei, A.H.; Yu, K.N.; Dai, F.G.; Gu, F.J.; Zhang, W.X.; Liu, Y. Application of Tree-Based Ensemble Models to Landslide Susceptibility Mapping: A Comparative Study. Sustainability 2022, 14, 6330. [Google Scholar] [CrossRef]
- Han, H.M.; Shi, B.; Zhang, L. Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change. Eng. Geol. 2021, 280, 105876. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Ali, R.; Al-Ansari, N.; Vishwakarma, D.K.; Kushwaha, K.S.; Panda, K.C.; Sagar, A.; Mirzania, E.; Elbeltagi, A.; et al. An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability 2022, 14, 8209. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Shirzadi, A.; Shahabi, H.; Chen, W.; Clague, J.J.; Geertsema, M.; Jaafari, A.; Avand, M.; Miraki, S.; Asl, D.T.; et al. Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests 2020, 11, 421. [Google Scholar] [CrossRef] [Green Version]
- Qi, T.J.; Zhao, Y.; Meng, X.M.; Shi, W.; Qing, F.; Chen, G.; Zhang, Y.; Yue, D.X.; Guo, F.Y. Distribution Modeling and Factor Correlation Analysis of Landslides in the Large Fault Zone of the Western Qinling Mountains: A Machine Learning Algorithm. Remote Sens. 2021, 13, 4990. [Google Scholar] [CrossRef]
- Sun, D.L.; Wen, H.J.; Wang, D.Z.; Xu, J.H. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology 2020, 362, 107201. [Google Scholar] [CrossRef]
- Nnanwuba, U.E.; Qin, S.; Adeyeye, O.A.; Cosmas, N.C.; Yao, J.; Qiao, S.; Jingbo, S.; Egwuonwu, E.M. Prediction of Spatial Likelihood of Shallow Landslide Using GIS-Based Machine Learning in Awgu, Southeast/Nigeria. Sustainability 2022, 14, 12000. [Google Scholar] [CrossRef]
- Pokharel, B.; Althuwaynee, O.F.; Aydda, A.; Kim, S.-W.; Lim, S.; Park, H.-J. Spatial clustering and modelling for landslide susceptibility mapping in the north of the Kathmandu Valley, Nepal. Landslides 2021, 18, 1403–1419. [Google Scholar] [CrossRef]
- Tang, R.-X.; Kulatilake, P.H.S.W.; Yan, E.-C.; Cai, J.-S. Evaluating landslide susceptibility based on cluster analysis, probabilistic methods, and artificial neural networks. Bull. Eng. Geol. Environ. 2020, 79, 2235–2254. [Google Scholar] [CrossRef]
- Tonini, M.; Pecoraro, G.; Romailler, K.; Calvello, M. Spatio-temporal cluster analysis of recent Italian landslides. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2022, 16, 536–554. [Google Scholar] [CrossRef]
- Dai, H.Y.; Zhang, H.; Dai, H.Y.; Wang, C.; Tang, W.; Zou, L.C.; Tang, Y.X. Landslide Identification and Gradation Method Based on Statistical Analysis and Spatial Cluster Analysis. Remote Sens. 2022, 14, 4504. [Google Scholar] [CrossRef]
- Arabameri, A.; Pal, S.C.; Rezaie, F.; Chakrabortty, R.; Saha, A.; Blaschke, T.; Di Napoli, M.; Ghorbanzadeh, O.; Ngo, P.T.T. Decision tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int. 2022, 37, 4594–4627. [Google Scholar] [CrossRef]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Di Martire, D.; Firpo, M.; Pepe, G.; Raso, E.; Calcaterra, D. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Su, C.X.; Wang, B.J.; Lv, Y.H.; Zhang, M.P.; Peng, D.L.; Bate, B.; Zhang, S. Improved landslide susceptibility mapping using unsupervised and supervised collaborative machine learning models. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2022. [Google Scholar] [CrossRef]
- Wang, C.H.; Lin, Q.G.; Wang, L.B.; Jiang, T.; Su, B.D.; Wang, Y.J.; Mondal, S.K.; Huang, J.L.; Wang, Y. The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: A case study of Anhui Province in China. Nat. Hazards 2022, 112, 1967–1988. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Yan, Q.S. Landslide Susceptibility Prediction Based on High-Trust Non-Landslide Point Selection. Int. J. Geo-Inf. 2022, 11, 398. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Huang, F.; Ye, Z.; Jiang, S.-H.; Huang, J.; Chang, Z.; Chen, J. Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models. Catena 2021, 202, 105250. [Google Scholar] [CrossRef]
- Xi, C.J.; Han, M.; Hu, X.W.; Liu, B.; He, K.; Luo, G.; Cao, X.C. Effectiveness of Newmark-based sampling strategy for coseismic landslide susceptibility mapping using deep learning, support vector machine, and logistic regression. Bull. Eng. Geol. Environ. 2022, 81, 174. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Merghadi, A.; Shirzadi, A.; Nguyen, H.; Hussain, Y.; Avtar, R.; Chen, Y.; Pham, B.T.; Yamagishi, H. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci. Total Environ. 2020, 720, 137320. [Google Scholar] [CrossRef]
- Wang, Y.M.; Feng, L.W.; Li, S.J.; Ren, F.; Du, Q.Y. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena 2020, 188, 104425. [Google Scholar] [CrossRef]
- Ali, S.A.; Parvin, F.; Vojteková, J.; Costache, R.; Linh, N.T.T.; Pham, Q.B.; Vojtek, M.; Gigović, L.; Ahmad, A.; Ghorbani, M.A. GIS-based landslide susceptibility modeling: A comparison between fuzzy multi-criteria and machine learning algorithms. Geosci. Front. 2021, 12, 857–876. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, W. Optimization of Computational Intelligence Models for Landslide Susceptibility Evaluation. Remote Sens. 2020, 12, 2180. [Google Scholar] [CrossRef]
- Lu ‘an Municipal Bureau of Statistics Home Page. Available online: https://tjj.luan.gov.cn (accessed on 13 January 2023).
Landslide-Affecting Factor | Origin Website | Description |
---|---|---|
Elevation | https://www.usgs.gov (1 August 2022) | 30 m digital elevation model ASTERGDEM30M |
Slope; slope aspect; plan curvature; profile curvature; slope length; RDLS; TWI; elevation variation coefficient | https://www.usgs.gov (1 August 2022) | Extracted from digital elevation model (DEM) |
lithology; distance from faults | http://geocloudsso.cgs-govcn (1 August 2022) | Type of lithology; buffer range of faults |
Land use; NDVI; distance from river | http://www.resdc.cn (1 August 2022) | Land use type; normalized difference vegetation index; buffer range of river |
Distance from road | http://www.openstreetmap.ong (1 August 2022) | Buffer range of road |
Landslide-Affecting Factor | Evaluation Factors | Classification | Ni/N | Si/S | I |
---|---|---|---|---|---|
Elevation | Elevation (m) | 0~150 m | 0.1632 | 0.2588 | −0.4614 |
150~300 m | 0.2827 | 0.2083 | 0.3054 | ||
300~450 m | 0.2326 | 0.1816 | 0.2477 | ||
450~600 m | 0.1357 | 0.1398 | −0.0294 | ||
>600 m | 0.1858 | 0.2115 | −0.1297 | ||
Slope | Slope (°) | 0~5° | 0.0662 | 0.1565 | −0.8599 |
5~10° | 0.1971 | 0.1798 | 0.0920 | ||
10~15° | 0.2666 | 0.1775 | 0.4067 | ||
15~20° | 0.1890 | 0.1665 | 0.1267 | ||
20~25° | 0.1438 | 0.1368 | 0.0501 | ||
25~30° | 0.0775 | 0.0943 | −0.1957 | ||
>30° | 0.0598 | 0.0887 | −0.3942 | ||
Slope aspect | Degree (°) | Flat (−1°) | 0.0016 | 0.0118 | −1.9881 |
North (0~22.5°) | 0.0388 | 0.0645 | −0.5082 | ||
Northeast (22.5~67.5°) | 0.1131 | 0.1212 | −0.0694 | ||
East (67.5~112.5°) | 0.1470 | 0.1279 | 0.1393 | ||
Southeast (112.5~157.5°) | 0.1696 | 0.1416 | 0.1803 | ||
South (157.5~202.5°) | 0.1858 | 0.1268 | 0.3818 | ||
Southwest (202.5~247.5°) | 0.1276 | 0.1086 | 0.1617 | ||
West (247.5~292.5°) | 0.1002 | 0.1097 | −0.0913 | ||
Northwest (292.5~337.5°) | 0.0889 | 0.1258 | −0.3478 | ||
North (337.5~360°) | 0.0275 | 0.0621 | −0.8155 | ||
Profile curvature | Curvature values | <−1.04 | 0.0307 | 0.0353 | −0.1389 |
−1.04~−0.31 | 0.1422 | 0.1808 | −0.2407 | ||
−0.31~0.19 | 0.4717 | 0.4480 | 0.0516 | ||
0.19~0.92 | 0.2989 | 0.2877 | 0.0382 | ||
>0.92 | 0.0565 | 0.0482 | 0.1592 | ||
RDLS | Slope (°) | >33° | 0.1616 | 0.2497 | −0.4354 |
33~61° | 0.4265 | 0.2730 | 0.4460 | ||
61~69° | 0.2859 | 0.2558 | 0.1116 | ||
69~124° | 0.1099 | 0.1641 | −0.4015 | ||
>124° | 0.0162 | 0.0574 | −1.2676 | ||
TWI | TWI values | <5.74 | 0.4265 | 0.4547 | −0.0639 |
5.74~7.74 | 0.3974 | 0.3539 | 0.1159 | ||
7.74~10.73 | 0.1163 | 0.1081 | 0.0729 | ||
10.73~14.91 | 0.0468 | 0.0690 | −0.3869 | ||
>14.91 | 0.0129 | 0.0143 | −0.1019 | ||
Lithology | Lithology | A: Massive hard granite group | 0.6753 | 0.5968 | 0.1236 |
B: Massive hard–relatively hard tuff, tuff lava rock group | 0.0065 | 0.0100 | −0.4340 | ||
C: Medium–thick layer hard sandstone rock group | 0.0565 | 0.0928 | −0.4950 | ||
D: Thin layer soft mudstone, shale rock group | 0.0485 | 0.1094 | −0.8140 | ||
E: Medium–thick layer hard quartz and gneiss rock group | 0.2052 | 0.1791 | 0.1360 | ||
F: Medium–thick layer hard carbonate rock group | 0.0065 | 0.0039 | 0.5082 | ||
G: Loose sand and clay soil layer group | 0.0016 | 0.0081 | −1.6168 | ||
Land use | Use type | Cultivated land | 0.2213 | 0.1850 | 0.1794 |
Forest land | 0.6898 | 0.6160 | 0.1132 | ||
Grassland | 0.0727 | 0.1668 | −0.8307 | ||
Water area | 0.0081 | 0.0179 | −0.7979 | ||
Land of construction | 0.0081 | 0.0143 | −0.5698 | ||
NDVI | NDVI values | <0.36 | 0.0226 | 0.0320 | −0.3465 |
0.36~0.57 | 0.0840 | 0.0463 | 0.5962 | ||
0.57~0.69 | 0.2439 | 0.1305 | 0.6252 | ||
0.69~0.76 | 0.4039 | 0.3744 | 0.0757 | ||
>0.76 | 0.2456 | 0.4168 | −0.5290 | ||
Distance from Roads | Distance from road (m) | 0~50 m | 0.1018 | 0.0424 | 0.8755 |
50~150 m | 0.1163 | 0.0690 | 0.5228 | ||
150~300 m | 0.0824 | 0.0821 | 0.0039 | ||
>300 m | 0.6995 | 0.8066 | −0.1424 | ||
Distance from Rivers | Distance from river (m) | 0~50 m | 0.0081 | 0.0085 | −0.0454 |
50~150 m | 0.0194 | 0.0167 | 0.1487 | ||
150~300 m | 0.0323 | 0.0240 | 0.2974 | ||
>300 m | 0.9402 | 0.9508 | −0.0112 | ||
Distance from Faults | Distance from fault (m) | 0~1000 m | 0.2084 | 0.1806 | 0.1431 |
1000~2000 m | 0.1955 | 0.1771 | 0.0989 | ||
2000~3000 m >3000 m | 0.1551 0.4410 | 0.1567 0.4856 | −0.0104 −0.0963 |
Method | Landslide Susceptibility | Area (km2) | Proportion of Area Covered (%) | Number of Landslides | Landslides Covered (%) | Landslide Density |
---|---|---|---|---|---|---|
LR | Low and relatively low | 6172.61 | 41.67% | 110 | 17.77% | 0.0178 |
High and relatively high | 6043.31 | 40.80% | 437 | 70.60% | 0.0723 | |
RF | Low and relatively low | 6282.81 | 42.41% | 69 | 11.15% | 0.0110 |
High and relatively high | 5618.35 | 37.93% | 455 | 73.51% | 0.0810 | |
SVM | Low and relatively low | 6208.70 | 41.91% | 73 | 11.79% | 0.0118 |
High and relatively high | 5661.36 | 38.22% | 446 | 72.05% | 0.0788 | |
ANN | Low and relatively low | 5820.89 | 39.29% | 63 | 10.18% | 0.0108 |
High and relatively high | 6730.32 | 45.43% | 498 | 80.45% | 0.0740 | |
IV-LR | Low and relatively low | 5933.77 | 40.06% | 93 | 15.02% | 0.0157 |
High and relatively high | 5954.19 | 40.19% | 449 | 72.54% | 0.0754 | |
IV-RF | Low and relatively low | 7011.21 | 47.33% | 77 | 12.44% | 0.0110 |
High and relatively high | 5601.11 | 37.81% | 466 | 75.28% | 0.0832 | |
IV-SVM | Low and relatively low | 7371.33 | 49.76% | 91 | 14.70% | 0.0123 |
High and relatively high | 5156.44 | 34.81% | 422 | 68.17% | 0.0818 | |
IV-ANN | Low and relatively low | 6994.13 | 47.21% | 74 | 11.95% | 0.0106 |
High and relatively high | 5621.62 | 37.95% | 475 | 76.74% | 0.0845 |
Models | ACC | AUC | Kappa Coefficient |
---|---|---|---|
LR | 0.811 | 0.869 | 0.620 |
RF | 0.825 | 0.864 | 0.667 |
SVM | 0.813 | 0.862 | 0.626 |
ANN | 0.820 | 0.901 | 0.639 |
IV-LR | 0.870 | 0.916 | 0.740 |
IV-RF | 0.921 | 0.968 | 0.838 |
IV-SVM | 0.888 | 0.942 | 0.775 |
IV-ANN | 0.946 | 0.980 | 0.892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Meng, Z.; Zhu, L.; Hu, D.; He, H. Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China. Sustainability 2023, 15, 1971. https://doi.org/10.3390/su15031971
Liu Y, Meng Z, Zhu L, Hu D, He H. Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China. Sustainability. 2023; 15(3):1971. https://doi.org/10.3390/su15031971
Chicago/Turabian StyleLiu, Yanrong, Zhongqiu Meng, Lei Zhu, Di Hu, and Handong He. 2023. "Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China" Sustainability 15, no. 3: 1971. https://doi.org/10.3390/su15031971
APA StyleLiu, Y., Meng, Z., Zhu, L., Hu, D., & He, H. (2023). Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China. Sustainability, 15(3), 1971. https://doi.org/10.3390/su15031971