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Abstract: The evaluation of landslide susceptibility is of great significance in the prevention and
management of geological hazards. The accuracy of the landslide susceptibility prediction model
based on machine learning is significantly higher than that of traditional expert knowledge and the
conventional mathematical statistics model. The correct and reasonable selection of non-landslide
samples in the machine learning model greatly improves the prediction accuracy and reliability of the
regional landslide susceptibility model. Focusing on the problem of selecting non-landslide samples
in the machine learning model for landslide susceptibility evaluation, this paper proposes a landslide
susceptibility evaluation method based on the combination of an information model and machine
learning in traditional mathematical statistics. First, the influence factors for landslide susceptibility
evaluation are screened by the correlation analysis method. Second, the information value model is
used to delimit areas with low and relatively low landslide susceptibility, and non-landslide points
are randomly selected. Third, a landslide susceptibility evaluation method combined with IV-ML,
such as logistic regression (IV-LR), random forest (IV-RF), support vector machine (IV-SVM), and
artificial neural network (IV-ANN), is established. Finally, the landslide susceptibility factors in the
Dabie Mountain area of Anhui Province are analyzed, and the accuracy of the landslide susceptibility
evaluation results using the IV-LR, IV-RF, IV-SVM, and IV-ANN and LR, RF, SVM, and ANN methods
are compared. The accuracy is evaluated by examining the ACC, AUC, and kappa values of the
model. The results indicate that the evaluation effect of the IV-ML models (IV-LR, IV-RF, IV-SVM,
IV-ANN) on landslide susceptibility is significantly higher than that of the ML models (LR, RF,
SVM, ANN).

Keywords: machine learning models; landslide susceptibility prediction; information value models;
non-landslide unit (sample)

1. Introduction

Landslide is the phenomenon whereby a portion of mountain rock, soil mass, and de-
posits slides down along a fractured surface [1–3]. Landslide disaster has the characteristics
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of wide distribution, high frequency, and serious losses [4,5]. Every year, it causes casual-
ties and property losses in the mountainous area of China. There were 136,092 geological
disasters in China between 2010 and 2021. Among them, 95,229 were landslide disasters,
accounting for 69.97% of all geological disasters, seriously threatening human life and prop-
erty. Therefore, it is of great significance to conduct research on landslide control. Landslide
susceptibility can be used to predict “where landslides occur” and “the probability of their
occurrence” [6,7]. Landslide susceptibility prediction plays an important role in evaluating
landslide risk and accurately locating potential landslides, which are the bases for disaster
prevention and mitigation [8,9].

The evaluation models of landslide susceptibility mainly include the heuristic model
based on expert experience [3,8], the mathematical statistics model based on variable analy-
sis [10–13], and the machine learning model based on learning training samples [14–16].
(1) The expert knowledge empirical model qualitatively analyzes landslide susceptibility
based on prior knowledge and includes the geological and geomorphic analysis method [17,18],
factor index analysis method [19], fuzzy comprehensive evaluation method [20,21], and
analytic hierarchy process [8,22,23]. All these methods are subjective and must be scored
with the help of expert knowledge, and different experts often give different evaluation
results. (2) The mathematical statistics model assumes that there is no correlation among the
influence factors, so a bivariate or multivariate algorithm is used to evaluate the landslide
susceptibility. It mainly includes the information quantity method [24,25], evidence weight
method [26–28], logistic regression method [24,29,30], deterministic factor method [31,32],
entropy index method [33], and multiple linear regression method [34]. This method
avoids the subjectivity of evaluation index weight. However, the complexity of landslide
causes is ignored and the correlation among many factors is not well described. (3) The
machine learning model estimates the relationship between landslide distribution and
influence factors by learning training samples to obtain the landslide susceptibility eval-
uation results with high accuracy. Specific models include the neural network [35–39],
decision tree [40–43], support vector machine [7,44–46], random forest [47–50], cluster anal-
ysis [51–54], and so on. However, the disadvantage is the error removal from training
samples; that is, the effective selection of non-landslide samples is not realized.

The accuracy of the landslide susceptibility prediction model based on machine learn-
ing is significantly higher than that of traditional expert knowledge and the conventional
mathematical statistics model [55–57]. The ability of the machine learning model to predict
landslide susceptibility can be understood as a training and classification process with pos-
itive and non-landslide samples using “historical landslide” samples and “non-landslide”
samples as the basis of landslide influence factors. The existence of non-landslide samples
helps to overcome the overfitting phenomenon of the model and is a necessary data condi-
tion for landslide susceptibility prediction. It is important to select non-landslide samples
correctly and reasonably to improve the prediction accuracy and reliability of the regional
landslide susceptibility model [58–60]. When using the machine learning model to evaluate
landslide susceptibility, non-landslide points are mostly selected through the following
methods: (a) random points outside the landslide range are directly used as non-landslide
sample points [41,61,62]; (b) the historical landslide boundary is used as the buffer zone,
and non-landslide samples are randomly selected in the study area a certain distance away
from the buffer zone [63]; (c) non-landslide samples are selected from low-slope areas such
as river courses and gullies in the study area [59]; (d) the target space outgoing sampling
method [6], etc. It is difficult to ensure that these random non-landslide samples come from
real and effective non-landslide areas. In addition, the selection method for non-landslide
samples under certain conditions will exaggerate the contribution of such conditions as
landslide influencing factors.

To solve the problem of non-landslide sample selection in the landslide susceptibility
evaluation machine learning model, a landslide susceptibility evaluation method based
on the information value (IV) model and machine learning (ML) method is proposed in
this paper. First, the influence factors of a landslide were drawn up and the correlation was
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analyzed with a Pearson matrix. The information value model was used to preliminarily
calculate the landslide susceptibility of the region, delimit the low-susceptibility area, and
randomly select negative samples. At the same time, a few non-landslide points were
selected in the moderate-susceptibility and high-susceptibility areas to make the results
much closer to nature. Second, the IV-ML landslide susceptibility evaluation model was
constructed by combining the information value model and machine learning model.
Finally, the landslide susceptibility evaluation results of the IV-LR, IV-RF, IV-SVM, and
IV-ANN and LR, RF, SVM, and ANN models were compared to test the improvement effect
of the model.

2. Methods
2.1. Workflow of Establishing IV-ML Landslide Susceptibility Maps

Some commonly used machine learning models in landslide susceptibility (LS) evalu-
ation, such as random forest, support vector machine, logistic regression, artificial neural
network, etc., show adequate evaluation accuracy. The results of the machine learning
model are closely related to the data quality of landslide and non-landslide points when
evaluating landslide susceptibility.

Therefore, this paper proposes a landslide susceptibility evaluation method combining
the information value model with the machine learning model. The purpose is to provide
more accurate non-landslide data prediction samples for the machine learning model
through preprocessing with the information value model, improving the accuracy and
effectiveness of the landslide susceptibility evaluation results. The work flow of this study
was as follows.

Step 1. Collect the historical landslide point data of the study area, formulate 15 landslide
influencing factors (elevation, slope, slope aspect, plan curvature, profile curvature, slope
length, relief degree of land surface (RDLS), topographic wetness index (TWI), elevation
variation coefficient, lithology, land use, normalized difference vegetation index (NDVI),
distance from road, distance from river, and distance from faults) according to the geological
and geomorphic environmental characteristics and landslide occurrence mechanism of
the specific study area, conduct factor screening through a Pearson matrix analysis of
correlation, and grade the above influencing factors.

Step 2. Calculate the Ni/N and Si/S data values in 64 grades of 12 impact factors in
the study area and obtain the information value of each level of each impact factor.

Step 3. Use the information value model to evaluate the disaster susceptibility of
the study area, obtain the disaster susceptibility zoning map, and select non-landslide
units in the low-susceptibility area. In addition, a few non-landslide points are selected in
the moderate-susceptibility and high-susceptibility areas to bring the results much closer
to nature.

Step 4. Construct a machine learning training sample set with historical landslide
point data and the abovementioned non-landslide units in the study area and establish the
(IV-LR, IV-RF, IV-SVM, IV-ANN) model.

Step 5. Evaluate the accuracy of the above model and all independent ML models
using performance evaluation methods such as area under the curve, accuracy, and Cohen’s
kappa coefficient.

The data in this study were processed with IBM SPSS Modeler, and the flowchart can
be replicated. The specific process is shown in Figure 1.

2.2. Information Value Model

According to the information value model, the occurrence of a landslide is related to
the quantity and quality of data collected in the process of prediction. A landslide is affected
by many factors. For a landslide, the information value model considers the quantity and
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quality of all information related to the landslide in a certain area. It is expressed by the
amount of information, as shown in Equation (1):

IAj→B = ln
PAj→B

PB
(j = 1, 2, 3 · · · n) (1)

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 24 
 

 
Figure 1. Flowchart of the procedures followed in this study. 

2.2. Information Value Model 
According to the information value model, the occurrence of a landslide is related to 

the quantity and quality of data collected in the process of prediction. A landslide is af-
fected by many factors. For a landslide, the information value model considers the quan-
tity and quality of all information related to the landslide in a certain area. It is expressed 
by the amount of information, as shown in Equation (1): 𝐼ೕ→ = ln 𝑃ೕ→𝑃 (𝑗 = 1,2,3 ⋯ 𝑛) (1) 

In Equation (1), 𝑃𝐴𝑗→𝐵  represents the probability that 𝐴  realizes event 𝐵  in the 
state 𝑗. In the actual calculation process, for the convenience of calculation, the overall 
probability is converted to sample frequency for estimation, and the above equation is 
converted into Equation (2). 𝐼ೕ→ = ln 𝑁 𝑁⁄𝑆 𝑆⁄ (𝑗 = 1,2,3 ⋯ 𝑛) (2) 

Figure 1. Flowchart of the procedures followed in this study.

In Equation (1), PAj→B represents the probability that A realizes event B in the state j.
In the actual calculation process, for the convenience of calculation, the overall probability
is converted to sample frequency for estimation, and the above equation is converted into
Equation (2).

IAj→B = ln
Nj/N
Sj/S

(j = 1, 2, 3 · · · n) (2)

In Equation (2), IAj→B represents the amount of information that A shows for the
occurrence of landslide B in state j; Nj is the number of units marked with landslide Aj;
N is the total number of known landslide distribution units in the study area; Sj is the
number of units marked Aj; S is the total number of units in the research area. The total
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amount of information generated by the landslide under the condition of a combination of
state factors can be determined by Equation (3), and the value of I directly indicates the
possibility of a landslide generated by this unit.

I =
n

∑
i=1

ln
Ni/N
Si/S

(3)

2.3. Machine Learning Model
2.3.1. Logistic Regression

The logistic regression model (LR) can solve the problem of dichotomous variables in
landslide susceptibility evaluation by finding an optimal fitting function to quantitatively
describe the relationship between the factors affecting landslide occurrence. There are two
types of variables in the logistic regression model: Xi is the independent variable and Y
is the dependent variable. Xi is the influence factor of the landslide. Y is a dichotomous
variable, represented by 0 (representing a non-landslide event) and 1 (representing a
landslide event).

In the logistic regression model, P is the probability of occurrence, and P ranges from
0 to 1. Take the natural logarithm of the ratio of the probability of landslide occurrence P
to the probability of non-occurrence 1− P, ln(P) = (P/1− P). By logical transformation,
LogitP = Z; then

P =
exp(z)

1 + exp(z)
(4)

Z = α + β1x1 + β2x2 + · · ·+ βnxn (5)

P =
exp(α + β1x1 + · · ·+ βnxn)

1 + exp(α + β1x1 + · · ·+ βnxn)
=

1
1 + −(α+β1x1+···+βnxn)

(6)

where P is the probability of landslide occurrence in the study area; e is the natural con-
stant used in the logistic regression equation; α is the intercept of the logistic regression
equation (a constant term of logistic regression equation); βi(i = 1, 2, 3, . . . , n) is the logistic
regression coefficient of the corresponding evaluation factor xi(i = 1, 2, 3, . . . , n) in the
logistic regression model. In this study, I is the information value calculated based on
each evaluation factor subset. Therefore, the ith factor (i = 1, 2, 3, . . . , n) and the jth subset
(j = 1, 2, 3, . . . , n) are sorted into the following formula in practical application:

P =
1

1 + e−(α+β11x11+···+βnkxnk)
(7)

In the above equation, P is the calculated probability of landslide occurrence. βij
is the regression coefficient of variable xij(i = 1, 2, . . . , n) for each evaluation factor.
(j = 1, 2, . . . , n) is the subset of each evaluation factor; that is, ij is the jth subset of the ith
evaluation factor based on the information quantity value attribute.

2.3.2. Random Forest

Random forest (RF) is a combinatorial classification model that consists of multi-
ple decision trees {t(X, Θi), i = 1, . . .}; parameter set {Θi} is an independent, uniformly
distributed random vector. In the case of a given independent variable X, the optimal
classification results are voted by each decision tree model.

The random forest model can measure the importance of landslide impact factors,
calculate the relative weight value of landslide impact factors based on the Gini index, and
finally conduct a landslide susceptibility evaluation. In the model, the optimal segmentation
is measured by the impurity of the random forest classification tree, and the impurity is
calculated by the Gini index method. By calculating the reduction value DGi of the Gini
index when the influence factor i is divided into nodes, the importance of landslide impact
factor i is the sum of the DGi of all nodes in the forest and the average of all trees. The
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importance of landslide factors is measured by the percentage of the average Gini reduction
value of landslide factors in the sum of the average Gini reduction value of all factors. This
is shown in Formula (8):

Pi =
∑b

t=1 ∑c
n=1 DGitn

∑a
i=1 ∑b

t=1 ∑c
n=1 DGitn

(8)

where a, b, and c are the total number of landslide influencing factors, the number of
classification trees, and the number of single tree nodes, respectively. DGitn is the Gini
index reduction value of the ith evaluation factor at the nth node of the tth tree. Pi is the
importance degree of the ith evaluation factor in all evaluation factors.

2.3.3. Support Vector Machine

Support vector machine (SVM) is a supervised learning method based on statistical
learning theory. It is more effective and reasonable than other machine learning methods in
solving small-sample, high-dimensional, and nonlinear problems. SVM can solve nonlinear
and high-dimensional pattern recognition problems with fewer samples and has been
widely used in landslide susceptibility evaluation. The application process of the support
vector machine model for landslide susceptibility evaluation is as follows.

Given some linearly separable landslide or non-landslide data points xi(i = 1, 2, . . . , n),
which belong to two different classes yi = ±1, the goal of the support vector machine is
finding a hyperplane that separates the above two types of data based on the maximum
interval in the n-dimensional data space, as shown in Equation (9).

1
2
‖h‖2 (9)

The formula must meet the following conditions:

yi((h·xi) + a) ≥ 1 (10)

where ‖h‖ is the norm of the hyperplane; a is a scalar basis; (·) is a scalar-based operation.
Based on the Lagrange multiplier, the cost function can be expressed as

L =
1
2
‖h‖2 −

n

∑
i=1

λi(yi((h·xi) + a)− 1) (11)

where λi is the Lagrange multiplier, which can be solved by Lagrange duality.
In the case of inseparability, relaxation variable ξi can be introduced as its restrictive

condition, as shown in Formula (12).

yi((h·xi) + a) ≥ 1− ξi (12)

At this time, Equation (11) becomes

L =
1
2

h2 − 1
vn

n

∑
i=1

ξi (13)

where v(0, 1] is introduced to consider the case of misclassification.

2.3.4. Artificial Neural Network

The artificial neural network (ANN) model is a nonlinear statistical model that is
usually applied to regression or classification problems. The BP neural network algorithm
is the most common and representative in the ANN, which belongs to the supervised
learning method and adopts a gradient descent algorithm to minimize the error function
value. Its purpose is to reduce the gap between the target output value of the output unit
and the inferred output value. Its full name is the artificial neural network based on the
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error backpropagation algorithm. The structure of the BP neural network is divided into
three layers: input layer, hidden layer, and output layer. The input layer is the number
of neurons, i.e., the number of input variables; the number of hidden layers depends on
the complexity of the problem. The number of neurons in the output layer is the number
of output variables. Common activation neuronal functions include logistic function,
hyperbolic function, or S-shaped function.

In the evaluation of landslide susceptibility, (1) the classification data of each influenc-
ing factor are taken as the input data of the BP neural network algorithm; (2) the number
of hidden layers, the number of hidden layer nodes, the maximum learning and training
times, the minimum precision, and the minimum error values of the neural network system
are set according to the quantified value of the landslide influence factor; (3) the landslide
point data in the study area are divided into learning data and experimental data, and the
data are imported into the BP neural network for learning and training. When the error of
the output value meets the requirements, the output layer outputs the model to analyze
and evaluate the regional landslide susceptibility results.

3. Study Area and Conditioning Factors of Landslide
3.1. Overview of the Study Area and Data Sources

The study area was located in the west of Anhui Province (30◦22′~31◦81′N, 115◦36′~117◦24′

E), covering an area of 14,813.58 km2, with the highest altitude of 1756 m and the lowest
altitude of 8 m. The Dabie Mountains in the area extend from northwest to southeast, show-
ing a curved mountain system that protrudes to the south. The terrain in the study area
is highly undulating, including high-undulating mountains, low-undulating mountains,
high hills, middle and low hills, plains, etc. The area has obvious features of mountain,
hill, and plain geomorphic units. The middle and low mountains in the area are mainly
composed of late Archean deep metamorphic rock series, early Proterozoic and Foziling
group shallow metamorphic rock series, intrusive rocks, and volcanic rocks. The hills are
mainly distributed along the piedmont and composed of Cretaceous intrusive rocks, Juras-
sic volcanic rocks, and Cretaceous clastic rocks. The shallow hump plain is mainly spread
in front of the mountains, and there are also small areas spread among the mountains. It is
composed of Quaternary alluvium. The plain is mainly distributed along the two sides of
the Changjiang River and Pi River system and is composed of Quaternary alluvial deposits.
The main rivers in the study area are the Pi River, Shi River, Hangbu River, and Fengle
River, etc. The water level in the basin changes rapidly, the runoff is large, and the flood
season is long, which provides conditions for the development of landslides.

The landslide data came from the List of Small Geological Hazards in Anhui Province
released by the Anhui Public Welfare Geological Survey Management Center (Anhui
Geological Survey and Environmental Monitoring Center). There were 619 landslide points
in the study area, as shown in Figure 2, and the field pictures of three landslides are shown
in Figure 3. Data sources and descriptions of landslide impact factors are shown in Table 1.

Table 1. Research data introduction.

Landslide-Affecting Factor Origin Website Description

Elevation https://www.usgs.gov (1 August 2022) 30 m digital elevation model
ASTERGDEM30M

Slope; slope aspect;
plan curvature;

profile curvature;
slope length; RDLS; TWI;

elevation variation coefficient

https://www.usgs.gov (1 August 2022) Extracted from digital elevation model (DEM)

lithology;
distance from faults http://geocloudsso.cgs-govcn (1 August 2022) Type of lithology;

buffer range of faults
Land use; NDVI;

distance from river http://www.resdc.cn (1 August 2022) Land use type; normalized difference
vegetation index; buffer range of river

Distance from road http://www.openstreetmap.ong
(1 August 2022) Buffer range of road

https://www.usgs.gov
https://www.usgs.gov
http://geocloudsso.cgs-govcn
http://www.resdc.cn
http://www.openstreetmap.ong
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3.2. Conditioning Factors

The formation mechanism of landslide is complicated and its susceptibility is influ-
enced by both natural factors and human activities. Considering the geological environment
characteristics and landslide mechanism of the study area, we considered 15 influencing
factors, namely elevation, slope, slope aspect, plan curvature, profile curvature, slope
length, RDLS, TWI, elevation variation coefficient, lithology, land use, NDVI, distance from
road, distance from river, and distance from faults, as shown in Figure 4.

The 15 influencing factors were graded as follows:

(1) Elevation: Elevation is highly correlated with the moisture content of the rock and soil
mass, intensity of human activities, and vegetation coverage. The influence factor of
elevation was divided into five levels: 0~150, 150~300, 300~450, 450~600, and >600 m.

(2) Slope: The slope affects the internal stress distribution, the thickness of loose solid
material on the slope, the vegetation coverage, and surface water runoff, thus affecting
the stability of the slope. The influence factor of slope was divided into seven levels:
0◦~5◦, 5◦~10◦, 10◦~15◦, 15◦~20◦, 20◦~25◦, 25◦~30◦, and >30◦.
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(3) Slope aspect: The solar radiation intensity of different slope directions is different,
affecting the vegetation cover, water evaporation, and weathering degree of the slope,
which in turn affect the stability of the slope. The influence factor of slope aspect was
divided into nine levels: plane, north, northeast, east, southeast, south, southwest,
west, and northwest.

(4) Plan curvature: The influence factor of plan curvature was divided into five levels:
less than −0.70, −0.70~−0.20, −0.20~0.19, 0.19~0.68, and greater than 0.68.

(5) Profile curvature: Profile curvature has an important effect on the flow velocity of
surface material, which can control the movement velocity and energy of landslide
material and rainfall confluence. The influence factor of profile curvature was divided
into five levels: less than −1.04, −1.04~−0.31, −0.31~0.19, 0.19~0.92, and greater
than 0.92.

(6) Slope length: The influence factor of slope length was divided into five levels: 0–10,
10–30, 30–60, 60–100, and more than 100 m.

(7) RDLS: RDLS is mainly the result of tectonic movement and surface erosion, represent-
ing the degree of regional surface erosion and cutting. The flat terrain does not easily
form landslides. The influence factor of RDLS was divided into five levels: less than
0.36, 0.36~0.57, 0.57~0.69, 0.69~0.76, and greater than 0.76.

(8) TWI: TWI quantifies the control of terrain over basic hydrological processes. The in-
fluence factor of TWI was divided into five levels: less than 5.74, 5.74~7.74, 7.74~10.73,
10.73 to 14.91, and greater than 14.91.
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(9) Elevation variation coefficient: The influence factor of elevation variation coefficient
was divided into five levels: 0~0.017, 0.017~0.036, 0.036~0.061, 0.061~0.099, and
greater than 0.099.

(10) Lithology: Different rock and soil bodies are developed in different lithologies;
thus, the shear strength is different, and the instability degree and anti-stability
of slope are different. The influence factor of lithology was divided into seven lev-
els: (A) massive hard granite group; (B) massive hard–relatively hard tuff, tuff lava
rock group; (C) medium–thick layer hard sandstone rock group; (D) thin layer soft
mudstone, shale rock group; (E) medium–thick layer hard quartz and gneiss rock
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group; (F) medium–thick layer hard carbonate rock group; (G) loose sand and clay
soil layer group.

(11) Land use: Different land use types have different effects on the conservation of surface
water and soil, resulting in different surface stability and different impacts on the
landslide. The influence factor of land use was divided into five levels: construction
land, cultivated land, forest land, grassland, and water area.

(12) NDVI: NDVI indicates vegetation growth status and vegetation coverage. Vegetation
development reduces surface runoff, and soil and water loss can be reduced and anti-
landslide ability can be enhanced through root consolidation. The influence factor of
NDVI was divided into five levels: less than 0.36, 0.36~0.57, 0.57~0.69, 0.69~0.76, and
greater than 0.76.

(13) Distance from road: The cutting slope of road construction and other engineering
activities result in the formation of a free surface of the slope body, which destroys the
integrity of the rock and soil body, causing it to lose its original stability. The closer to
the cutting slope, the more unstable the slope body. The influence factor of distance
from road was divided into four levels: 0~50, 50~150, 150~300, and more than 300 m.

(14) Distance from faults: The area around the fault structure is an area with active geolog-
ical activities. There are many cracks and broken rock masses nearby, which easily
lead to the development of landslides. The closer the fault is, the more frequent the ge-
ological activities are, and the more likely a landslide is to occur. The influence factor
of distance from faults was divided into four levels: 0~1000, 1000~2000, 2000~3000,
and greater than 3000 m.

(15) Distance from river: River erosion is an important factor affecting landslide and is
mainly manifested as the weakening of resistance to the slope front and the increase
in free surface during erosion to affect slope stability. Theoretically, the area closer to
the water body is vulnerable to the influence of water, resulting in frequent landslide
disasters. The influence factor of distance from river was divided into four levels:
0~50, 50~150, 150~300, and more than 300 m.

4. Results
4.1. Correlation Analysis of Influence Factors

There are various factors affecting landslides, and there may be some correlation
between factors. The advantage of the information value model is that it can calculate
the internal classification index of each impact factor, but the correlation between impact
factors is not described effectively. In the machine learning model, the selected evaluation
factors should be independent of each other. If the correlation between the influence factors
is high, the running speed of the training model will be reduced and the model will be
complicated, thus affecting the accuracy of the prediction results.

In this paper, the Pearson correlation coefficient [64,65] was used to carry out correla-
tion analysis of the selected impact factors, which evaluated the multiple linear relationships
of the 15 impact factors of the information value model. The impact factors with high corre-
lation were eliminated, and the impact factors suitable for the machine learning model to
calculate the landslide susceptibility assessment were determined. The Pearson correlation
method was used to calculate the correlation coefficient between two variables, so as to
reflect the degree and direction of correlation between variables.

The Pearson correlation coefficient was defined as the quotient of covariance and
standard deviation between two variables. The definition formula is as follows:

r =
σxy√
σ2

x σ2
y

(14)

In Formula (14), r is the correlation coefficient; σx is the standard deviation of the
variable X; σy is the standard deviation of the variable Y; σxy is the covariance of X and
Y; r is between −1 and 1, which is |r|≤ 1 . The closer |r| is to 1, the higher the correlation
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between the two variables X and Y. When |r|≥ 0.8 , variables are highly correlated. When
0.5 ≤|r|< 0.8 , there is a moderate correlation between variables. When 0.3 ≤|r|< 0.5 , the
correlation between variables is low. When |r|< 0.3 , it means that the correlation between
the two variables is very weak and basically irrelevant.

As shown in Figure 5, among the 15 influence factors selected in this paper, the Pearson
correlation coefficients between elevation variation coefficient and elevation, slope length
and slope, and plane curvature and profile curvature were all greater than 0.5 or less
than −0.5, showing great correlation. Therefore, the three influencing factors of elevation
variation coefficient, slope length, and plane curvature were eliminated. The remaining
12 influencing factors were used to evaluate the vulnerability of landslide disaster.
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4.2. Information Value Model and Selection of Non-Landslide Points

Certain sample data of landslide and non-landslide points should be selected when
using the machine learning model to predict landslides. There were 619 landslide disaster
points in the study area, i.e., 619 positive samples, as shown in Figure 6a. In order to
improve the accuracy of non-landslide points, the information quantity values of the
12 influencing factors determined by factor correlation analysis were calculated using the
information quantity model, and the landslide susceptibility partition map was obtained
by the natural breakpoint method. A total of 743 non-landslide points (positive/negative
ratio 1:1.2) were selected from low LS and relatively low LS areas, and a few non-landslide
points were selected in the moderate-susceptibility and high-susceptibility areas to make
the results much closer to nature. The distribution of the selected non-landslide points is
shown in Figure 6b. Information values are shown in Table 2.
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Table 2. Calculation results of the information quantity values.

Landslide-
Affecting

Factor

Evaluation
Factors Classification Ni/N Si/S I

Elevation
Elevation

(m)

0~150 m 0.1632 0.2588 −0.4614
150~300 m 0.2827 0.2083 0.3054
300~450 m 0.2326 0.1816 0.2477
450~600 m 0.1357 0.1398 −0.0294

>600 m 0.1858 0.2115 −0.1297

Slope Slope
(◦)

0~5◦ 0.0662 0.1565 −0.8599
5~10◦ 0.1971 0.1798 0.0920
10~15◦ 0.2666 0.1775 0.4067
15~20◦ 0.1890 0.1665 0.1267
20~25◦ 0.1438 0.1368 0.0501
25~30◦ 0.0775 0.0943 −0.1957

>30◦ 0.0598 0.0887 −0.3942

Slope aspect Degree
(◦)

Flat (−1◦) 0.0016 0.0118 −1.9881
North (0~22.5◦) 0.0388 0.0645 −0.5082

Northeast
(22.5~67.5◦) 0.1131 0.1212 −0.0694

East (67.5~112.5◦) 0.1470 0.1279 0.1393
Southeast

(112.5~157.5◦) 0.1696 0.1416 0.1803

South
(157.5~202.5◦) 0.1858 0.1268 0.3818

Southwest
(202.5~247.5◦) 0.1276 0.1086 0.1617

West
(247.5~292.5◦) 0.1002 0.1097 −0.0913

Northwest
(292.5~337.5◦) 0.0889 0.1258 −0.3478

North (337.5~360◦) 0.0275 0.0621 −0.8155
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Table 2. Cont.

Landslide-
Affecting

Factor

Evaluation
Factors Classification Ni/N Si/S I

Profile
curvature

Curvature
values

<−1.04 0.0307 0.0353 −0.1389
−1.04~−0.31 0.1422 0.1808 −0.2407
−0.31~0.19 0.4717 0.4480 0.0516
0.19~0.92 0.2989 0.2877 0.0382

>0.92 0.0565 0.0482 0.1592

RDLS
Slope

(◦)

>33◦ 0.1616 0.2497 −0.4354
33~61◦ 0.4265 0.2730 0.4460
61~69◦ 0.2859 0.2558 0.1116

69~124◦ 0.1099 0.1641 −0.4015
>124◦ 0.0162 0.0574 −1.2676

TWI
TWI

values

<5.74 0.4265 0.4547 −0.0639
5.74~7.74 0.3974 0.3539 0.1159

7.74~10.73 0.1163 0.1081 0.0729
10.73~14.91 0.0468 0.0690 −0.3869

>14.91 0.0129 0.0143 −0.1019

Lithology Lithology

A: Massive hard
granite group 0.6753 0.5968 0.1236

B: Massive
hard–relatively

hard tuff, tuff lava
rock group

0.0065 0.0100 −0.4340

C: Medium–thick
layer hard

sandstone rock
group

0.0565 0.0928 −0.4950

D: Thin layer soft
mudstone, shale

rock group
0.0485 0.1094 −0.8140

E: Medium–thick
layer hard quartz
and gneiss rock

group

0.2052 0.1791 0.1360

F: Medium–thick
layer hard

carbonate rock
group

0.0065 0.0039 0.5082

G: Loose sand and
clay soil layer

group
0.0016 0.0081 −1.6168

Land use Use type

Cultivated land 0.2213 0.1850 0.1794
Forest land 0.6898 0.6160 0.1132
Grassland 0.0727 0.1668 −0.8307
Water area 0.0081 0.0179 −0.7979

Land of
construction 0.0081 0.0143 −0.5698

NDVI NDVI
values

<0.36 0.0226 0.0320 −0.3465
0.36~0.57 0.0840 0.0463 0.5962
0.57~0.69 0.2439 0.1305 0.6252
0.69~0.76 0.4039 0.3744 0.0757

>0.76 0.2456 0.4168 −0.5290

Distance from
Roads

Distance
from
road
(m)

0~50 m 0.1018 0.0424 0.8755
50~150 m 0.1163 0.0690 0.5228
150~300 m 0.0824 0.0821 0.0039

>300 m 0.6995 0.8066 −0.1424
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Table 2. Cont.

Landslide-
Affecting

Factor

Evaluation
Factors Classification Ni/N Si/S I

Distance from
Rivers

Distance
from
river
(m)

0~50 m 0.0081 0.0085 −0.0454
50~150 m 0.0194 0.0167 0.1487
150~300 m 0.0323 0.0240 0.2974

>300 m 0.9402 0.9508 −0.0112

Distance from
Faults

Distance
from
fault
(m)

0~1000 m 0.2084 0.1806 0.1431
1000~2000 m 0.1955 0.1771 0.0989
2000~3000 m

>3000 m
0.1551
0.4410

0.1567
0.4856

−0.0104
−0.0963

4.3. Landslide Susceptibility Evaluation Results

With 12 influencing factors as input variables of the machine learning model, landslide
units and non-landslide units as output variables, 70% of the sample data were randomly
selected as training samples and 30% as test samples. In this paper, the four machine
learning models of IV-LR, IV-RF, IV-SVM, and IV-ANN were constructed. The landslide
susceptibility index calculated with the four ML models and IV-ML models was graded
by the natural breakpoint method, and the results are shown in Figure 7. In general, the
landslide susceptibility zones obtained by these four models had high similarity. The areas
with high and relatively high landslide susceptibility were mainly distributed in the south
and southeast of the study area, which have large relief degrees, complex geological tectonic
environments, abundant fault development, and frequent human engineering activities.
The areas with low and relatively low landslide susceptibility were mainly distributed in
the northeast and the border of the study area, where the slope is slow, the fault distribution
is sparse, and the landslide disasters are less frequent.
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As seen in Table 3, the areas predicted by IV-LR, IV-RF, IV-SVM, and IV-ANN were
5954.19, 5601.11, 5156.44, and 5621.62 km2, respectively. In only 40.19%, 37.81%, 34.81%,
and 37.95% of the total area, the distribution of landslide disasters reached 449, 466, 422, and
475, accounting for 72.54%, 75.28%, 68.17%, and 76.74% of the total number of landslides,
respectively. Landslide density reached 0.0754, 0.0832, 0.0818, and 0.0845 /km2. Compared
with the single ML model, the IV-ML model predicted that the area of high and relatively
high landslide susceptibility was small, the disaster density within the area was large,
and the performance was better. In the IV-ANN model, the area of low and the relatively
low landslide susceptibility was 6994.13 km2, accounting for 47.21% of the total area; only
74 landslide disasters were distributed, accounting for 11.95%, and the landslide density
was only 0.0106 km2, indicating that the IV-ML model had the best performance.

Table 3. Comparison of the landslide susceptibility results using the ML and IV-ML methods.

Method Landslide
Susceptibility

Area
(km2)

Proportion of Area
Covered (%)

Number of
Landslides

Landslides
Covered (%)

Landslide
Density

LR
Low and

relatively low 6172.61 41.67% 110 17.77% 0.0178

High and
relatively high 6043.31 40.80% 437 70.60% 0.0723

RF
Low and

relatively low 6282.81 42.41% 69 11.15% 0.0110

High and
relatively high 5618.35 37.93% 455 73.51% 0.0810
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Table 3. Cont.

Method Landslide
Susceptibility

Area
(km2)

Proportion of Area
Covered (%)

Number of
Landslides

Landslides
Covered (%)

Landslide
Density

SVM
Low and

relatively low 6208.70 41.91% 73 11.79% 0.0118

High and
relatively high 5661.36 38.22% 446 72.05% 0.0788

ANN
Low and

relatively low 5820.89 39.29% 63 10.18% 0.0108

High and
relatively high 6730.32 45.43% 498 80.45% 0.0740

IV-LR
Low and

relatively low 5933.77 40.06% 93 15.02% 0.0157

High and
relatively high 5954.19 40.19% 449 72.54% 0.0754

IV-RF
Low and

relatively low 7011.21 47.33% 77 12.44% 0.0110

High and
relatively high 5601.11 37.81% 466 75.28% 0.0832

IV-SVM
Low and

relatively low 7371.33 49.76% 91 14.70% 0.0123

High and
relatively high 5156.44 34.81% 422 68.17% 0.0818

IV-ANN
Low and

relatively low 6994.13 47.21% 74 11.95% 0.0106

High and
relatively high 5621.62 37.95% 475 76.74% 0.0845

5. Discussion
5.1. Accuracy Evaluation of the Model

The accuracy of the landslide susceptibility evaluation results is directly related to
the reliability of the evaluation model. By checking the results of the evaluation models,
their prediction performance can be accurately compared, so as to select the best landslide
susceptibility evaluation model. Based on the confusion matrix, this paper used three
indexes to evaluate the performance of different models, namely accuracy (ACC) [6,66],
Cohen’s kappa coefficient (kappa coefficient) [66], and area under the receiver operating
characteristic curve (ROC) [8,30,67].

The confusion matrix is a summary of the prediction results of classification problems.
We used the count to aggregate the number of correct and incorrect predictions and break
them down by category. In the model performance evaluation of landslide susceptibility
prediction, true positive (TP) and false positive (FP) samples were correctly and incorrectly
classified, respectively. False negative (FN) and true negative (TN) were the numbers of
non-landslide samples correctly and incorrectly classified, respectively.

ACC refers to the ratio of the number of samples correctly classified by the model to
the total number of samples. The formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

The kappa coefficient is an index used to test consistency and can also be used to
measure the effect of classification. When the kappa coefficient is larger than 0.6, the model
has high reliability, and when it is larger than 0.8, the model has reached optimal reliability.
The calculation formula is as follows:

KC =
OA− Pe

1− Pe
(16)
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Pe =
(TP + FN)(TP + FP) + (TN + FN)(TN + FP)

(TP + TN + FP + FN)2 (17)

ROC takes the landslide susceptibility index as its threshold, and X-axis coordinates
represent the true negative rate (TNR), that is, the probability of non-disaster points being
incorrectly predicted; Y-axis coordinates represent the true positive rate (TPR), that is, the
probability that the disaster point is correctly predicted.

TNR =
TN

(TN + FN)
(18)

TPR =
TP

(TP + FN)
(19)

The closer the ROC curve is to the upper left corner, the higher the prediction accuracy
of the model. The area under the curve (AUC) value is usually used to represent the
accuracy of the prediction results. The value of the AUC represents the area under the
curve and is enclosed by the coordinate axis. Usually, the value range is [0.5, 1]. The closer
the value is to 1, the more accurate the model prediction results will be.

As seen in Table 4, the ACC values of the IV-LR, IV-RF, IV-SVM, IV-ANN, LR, RF, SVM,
and ANN models were 0.870, 0.921, 0.888, 0.946, 0.811, 0.825, 0.813, and 0.820, respectively.
Among them, the IV-ANN model had the largest ACC value, followed by the IV-RF, IV-
SVM, IV-LR, RF, ANN, SVM, and LR models. The accuracy of the IV-ML model was in the
range [0.870, 0.946], which was significantly higher than that of machine learning alone
[0.811, 0.820].

Table 4. Evaluation matrix (AUC, ACC, and kappa coefficient) for the performance of ML models
and IV-ML models.

Models ACC AUC Kappa Coefficient

LR 0.811 0.869 0.620
RF 0.825 0.864 0.667

SVM 0.813 0.862 0.626
ANN 0.820 0.901 0.639
IV-LR 0.870 0.916 0.740
IV-RF 0.921 0.968 0.838

IV-SVM 0.888 0.942 0.775
IV-ANN 0.946 0.980 0.892

The ROC curve and AUC values can be seen from Figure 8 and Table 4. The AUC
values of the IV-LR, IV-RF, IV-SVM, IV-ANN, LR, RF, SVM, and ANN models were 0.916,
0.968, 0.942, 0.980, 0.869, 0.864, 0.862, and 0.901, respectively. The AUC value of the IV-
ANN model was the largest, followed by the IV-RF, IV-SVM, IV-LR, ANN, LR, RF, and
SVM models. The AUC value of IV-ML model was in the range [0.980, 0.916], which was
significantly higher than that of machine learning alone [0.862, 0.901].

As can be seen from Table 4, the kappa coefficients of IV-LR, IV-RF, IV-SVM, IV-ANN,
LR, RF, SVM, and ANN models were 0.740, 0.838, 0.775, 0.892, 0.620, 0.667, 0.626, and 0.639,
respectively. The IV-ANN model had the largest kappa coefficient and the best performance,
followed by the IV-RF, IV-SVM, IV-LR, RF, ANN, SVM, LR, and IV-ML models with kappa
coefficients in the range [0.740, 0.892], significantly higher than machine learning alone
[0.620, 0.667].

Through the ACC, kappa coefficient, and ROC curve analysis, it was found that four
IV-ML models and four independent ML models were effective and reasonable when
analyzing the landslide susceptibility in the Dabie Mountain area of Anhui Province. By
comparison, the ACC value, kappa coefficient, and AUC value of the four IV-ML models
were higher than those of the four independent ML models, so the IV-ML models were
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significantly superior to the ML models, and the IV-ANN model applied to the Dabie
Mountain area of Anhui was the best, followed by IV-RF, IV-RF, and IV-LR.
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5.2. Analysis of Landslide Susceptibility and Influencing Factors

The evaluation results of several IV-ML landslide susceptibility prediction models
proposed in this paper were similar. The high LS area in the study area was mainly
distributed in the area with an elevation fluctuation of 33–61, vegetation coverage less
than 0.57, and slope greater than 20◦. The relatively high LS area was mainly distributed
around the high LS area in the contact zone of hard granite, quartzite, and gneiss with the
topographic wetness index of 5.74–7.74. The moderate LS area was obvious on both sides
of the road, and the land use type was woodland area. The low and relatively low LS areas
were less affected by human activities and rich in vegetation.

The importance of the influencing factors reflected the degrees of influence of the
different factors on regional landslide susceptibility. Some index factors had more important
effects on landslide development, while others had less impact. The calculation and analysis
of the importance of each index factor can provide guidance for landslide management.
The values of the 12 filtered impact factors were taken as the input data of the model, and
the importance ranking of factors based on the IV-LR, IV-RF, IV-SVM, and IV-ANN models
was obtained through the propensity score method calculation, as shown in Figure 9.

It was concluded that RDLS, NDVI, slope, and TWI were the most important index
factors and the main controlling factors affecting slope disaster distribution in the Dabie
Mountain area of Anhui Province. The results indicated that landslides in the Dabie
Mountain area of Anhui Province mainly occurred in areas with an RDLS value of 33–61,
indicating that the fluctuations in altitude values and cutting depth in mountainous areas
had important effects on landslide development. Landslides mainly occurred in areas with
an NDVI value less than 0.57. In 2021, the industrial added value above the designated
size in the study area increased by 15.5% [68]. With the rapid development of human
activities such as transportation and construction, slope cutting and foundation expansion
are common in the construction process, which causes vegetation destruction and rock
and soil instability along the road and exacerbates surface weathering and soil erosion.
Landslides tend to occur in extreme weather such as heavy rainfall. Landslides in the Dabie
Mountain area of Anhui Province mainly occurred in slope values greater than 20◦, which
indicated that slope affected the internal stress distribution, the thickness of loose solid
material, vegetation coverage, and surface water runoff, and thus affected slope stability.
Landslides in the Dabie Mountain area of Anhui Province mainly occurred in areas with
TWI values of 5.74–7.74. The quantified hydrological process of TWI revealed that the slope
was unstable under the action of rainfall flow and prone to landslides.
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6. Conclusions

After the correlation analysis, 12 landslide influencing factors, namely elevation, slope,
slope aspect, profile curvature, RDLS, TWI, lithology, land use, NDVI, distance from road,
distance from river, and distance from faults, were selected for landslide susceptibility
analysis. The information value model was used to delimit the low LS area, and the non-
landslide points were randomly selected in the delimited area. The landslide susceptibility
evaluation models combined with IV-LR, IV-RF, IV-SVM, and IV-ANN were constructed.
Comparison and consideration of the separate LR, RF, SVM and ANN models were also
carried out.

This study took the Dabie Mountain area of Anhui Province as an experimental area
to evaluate the landslide susceptibility. The results indicated that (1) the evaluation results
of several IV-ML landslide susceptibility prediction models proposed in this paper were
similar. The high LS area was mainly distributed in the area with an elevation fluctuation of
33–61, vegetation coverage of less than 0.57, and slope greater than 20◦. The relatively high
LS area was mainly distributed around the high LS area in the contact zone of hard granite,
quartzite, and gneiss with the topographic wetness index of 5.74–7.74. The moderate LS area
mostly occurred in the woodland-type regions and within 300 m from roads. The low and
relatively low LS areas were distributed in the regions with an NDVI greater than 0.69 and
were less affected by human activities and rich in vegetation. (2) The accuracy evaluation
results demonstrated that the IV-ML model (IV-LR, IV-RF, IV-SVM, IV-ANN) proposed in
this paper performed significantly better than the independent machine learning models
(LR, RF, SVM, ANN). The IV-ML model compensated for the non-landslide point selection
problem existing in the independent ML model to create a more accurate pre-evaluation of
landslide susceptibility.
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