Sustainable Digital Marketing: Factors of Adoption of M-Technologies by Older Adults in the Chinese Market
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Stances Technology Adoption
2.2. Theoretical Framework of the Study
2.3. Benefits of M-Technology
2.4. Perceived Value (PV)
2.5. Performance Expectancy (PRE)
2.6. Effort Expectancy (EE)
2.7. Attitude (ATD)
2.8. Subjective Norm (SN)
2.9. Self-Efficacy (SE)
2.10. Moderating Role of Technology Anxiety (TA)
3. Methodology
3.1. Research Instrument Design
3.2. Data Collection
3.3. Common Method Based
3.4. Analysis and Results
3.5. Measurement Model Analysis
3.6. Structural Model Analysis
3.7. Hierarchical Multiple Regression Analysis
4. Discussion
5. Conclusions
5.1. Implications
5.1.1. Theoretical Implications
5.1.2. Practical Implication
5.2. Future Implications
5.3. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Yang, Y.-M.; Sanchez, S.; Cui, D.-C.; Dang, R.-J.; Wang, X.-Y.; Lin, Q.-X.; Wang, Y.; Wang, C.; Chen, D.-F. Deubiquitinase mysm1 is essential for normal bone formation and mesenchymal stem cell differentiation. Sci. Rep. 2016, 6, 22211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Glinskaya, E.; Chen, H.; Gong, S.; Qiu, Y.; Xu, J.; Yip, W. Long-term care system for older adults in China: Policy landscape, challenges, and future prospects. Lancet 2020, 396, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Chan, A.H.; Teh, P.-L. Insights into older adults’ technology acceptance through meta-analysis. Int. J. Hum. Comput. Interact. 2021, 37, 1049–1062. [Google Scholar] [CrossRef]
- Chen, K.; Chan, A.H.; Tsang, S.N. Usage of mobile phones amongst elderly people in hong kong. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 13–15 March 2013. [Google Scholar]
- Fang, E.F.; Xie, C.; Schenkel, J.A.; Wu, C.; Long, Q.; Cui, H.; Aman, Y.; Frank, J.; Liao, J.; Zou, H. A research agenda for ageing in China in the 21st century: Focusing on basic and translational research, long-term care, policy and social networks. Ageing Res. Rev. 2020, 64, 101174. [Google Scholar] [CrossRef]
- Yang, W.; Wu, B.; Tan, S.Y.; Li, B.; Lou, V.W.; Chen, Z.; Chen, X.; Fletcher, J.R.; Carrino, L.; Hu, B.; et al. Understanding health and social challenges for aging and long-term care in China. Res. Aging 2021, 43, 127–135. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, W.; Leng, C. ICT adoption, individual income and psychological health of rural farmers in China. Appl. Res. Qual. Life 2020, 17, 71–91. [Google Scholar] [CrossRef]
- Jing, R.; Jin, G.; Guo, Y.; Zhang, Y.; Li, L. The association between constant and new internet use and depressive symptoms among older adults in China: The role of structural social capital. Comput. Hum. Behav. 2023, 138, 107480. [Google Scholar] [CrossRef]
- Yaylagul, N.K.; Kirisik, H.; Bernardo, J.; Dantas, C.; van Staalduinen, W.; Illario, M.; De Luca, V.; Apóstolo, J.; Silva, R. Trends in telecare use among community-dwelling older adults: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 16672. [Google Scholar] [CrossRef]
- Heinz, M. Exploring Predictors of Technology Adoption among Older Adults; Human Development and Family Studies, Iowa State University: Ames, IA, USA, 2013. [Google Scholar]
- Gao, Q.; Ebert, D.; Chen, X.; Ding, Y. Design of a mobile social community platform for older chinese people in urban areas. Hum. Factors Ergon. Manuf. Serv. Ind. 2015, 25, 66–89. [Google Scholar] [CrossRef]
- Shen, H. China and global internet governance: Toward an alternative analytical framework. Chin. J. Commun. 2016, 9, 304–324. [Google Scholar] [CrossRef]
- Shao, J.; Li, X.; Morrison, A.M.; Wu, B. Social media micro-film marketing by chinese destinations: The case of shaoxing. Tour. Manag. 2016, 54, 439–451. [Google Scholar] [CrossRef]
- Pan, S.; Jordan-Marsh, M. Internet use intention and adoption among chinese older adults: From the expanded technology acceptance model perspective. Comput. Hum. Behav. 2010, 26, 1111–1119. [Google Scholar] [CrossRef]
- Anderson, M.; Perrin, A. Technology Use Among Seniors; Pew Research Center for Internet & Technology: Washington, DC, USA, 2017. [Google Scholar]
- Czaja, S.J.; Charness, N.; Fisk, A.D.; Hertzog, C.; Nair, S.N.; Rogers, W.A.; Sharit, J. Factors predicting the use of technology: Findings from the center for research and education on aging and technology enhancement create. Psychol. Aging 2006, 21, 333. [Google Scholar] [CrossRef] [Green Version]
- Mitzner, T.L.; Boron, J.B.; Fausset, C.B.; Adams, A.E.; Charness, N.; Czaja, S.J.; Dijkstra, K.; Fisk, A.D.; Rogers, W.A.; Sharit, J. Older adults talk technology: Technology usage and attitudes. Comput. Hum. Behav. 2010, 26, 1710–1721. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I.; Madden, T.J. Prediction of goal-directed behavior: Attitudes, intentions, and perceived behavioral control. J. Exp. Soc. Psychol. 1986, 22, 453–474. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.; Ajzen, I. Misconceptions about the fishbein model: Reflections on a study by songer-nocks. J. Exp. Soc. Psychol. 1976, 12, 579–584. [Google Scholar] [CrossRef]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univers. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- Petrovčič, A.; Petrič, G.; Manfreda, K.L. The effect of email invitation elements on response rate in a web survey within an online community. Comput. Hum. Behav. 2016, 56, 320–329. [Google Scholar] [CrossRef]
- Hardill, I.; MacDonald, S. Skilled international migration: The experience of nurses in the uk. Reg. Stud. 2000, 34, 681–692. [Google Scholar] [CrossRef]
- Guner, H.; Acarturk, C. The use and acceptance of ict by senior citizens: A comparison of technology acceptance model tam) for elderly and young adults. Univers. Access Inf. Soc. 2020, 19, 311–330. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.O.; Markkula, J.; Oivo, M. Factors affecting e-government adoption in Pakistan: A citizen’s perspective. Transform. Gov. People Process. Policy 2013, 7, 225–239. [Google Scholar]
- Hogeboom, D.L.; McDermott, R.J.; Perrin, K.; Osman, H.; Bell-Ellison, B.A. Internet use and social networking among middle aged and older adults. Educ. Gerontol. 2010, 36, 93–111. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Chan, F.K.; Hu, P.J. Managing citizens’ uncertainty in e-government services: The mediating and moderating roles of transparency and trust. Inf. Syst. Res. 2016, 27, 87–111. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Rau, P.-L.P.; Salvendy, G. Older adults’ acceptance of information technology. Educ. Gerontol. 2011, 37, 1081–1099. [Google Scholar] [CrossRef]
- Benbasat, I.; Barki, H. Quo vadis tam? J. Assoc. Inf. Syst. 2007, 8, 7. [Google Scholar] [CrossRef]
- Moon, M.J. The evolution of e-government among municipalities: Rhetoric or reality? Public Adm. Rev. 2002, 62, 424–433. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Sarwar, B.; Aziz, S.; Chandia, K.E.; Khan, M.K. An analysis of influence of business simulation games on business school students’ attitude and intention toward entrepreneurial activities. J. Educ. Comput. Res. 2019, 57, 106–130. [Google Scholar] [CrossRef]
- Chen, C.-F.; Chao, W.-H. Habitual or reasoned? Using the theory of planned behavior, technology acceptance model, and habit to examine switching intentions toward public transit. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 128–137. [Google Scholar] [CrossRef]
- Nishihara, R.; Wu, K.; Lochhead, P.; Morikawa, T.; Liao, X.; Qian, Z.R.; Inamura, K.; Kim, S.A.; Kuchiba, A.; Yamauchi, M. Long-term colorectal-cancer incidence and mortality after lower endoscopy. N. Engl. J. Med. 2013, 369, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.K.; Yeung, D.Y.; Ho, H.C.; Tse, K.-P.; Lam, C.-Y. Chinese older adults’ internet use for health information. J. Appl. Gerontol. 2014, 33, 316–335. [Google Scholar] [CrossRef]
- Zhou, J.; Rau, P.-L.P.; Salvendy, G. Older adults’ use of smart phones: An investigation of the factors influencing the acceptance of new functions. Behav. Inf. Technol. 2014, 33, 552–560. [Google Scholar] [CrossRef]
- Mu, A.; Deng, Z.; Wu, X.; Zhou, L. Does digital technology reduce health disparity? Investigating difference of depression stemming from socioeconomic status among chinese older adults. BMC Geriatr. 2021, 21, 264. [Google Scholar] [CrossRef]
- Choudrie, J.; Junior, C.-O.; McKenna, B.; Richter, S. Understanding and conceptualising the adoption, use and diffusion of mobile banking in older adults: A research agenda and conceptual framework. J. Bus. Res. 2018, 88, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.-F.; Wu, C.-M.; Deng, W.-J. The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Comput. Hum. Behav. 2009, 25, 887–896. [Google Scholar] [CrossRef]
- Boksberger, P.E.; Melsen, L. Perceived value: A critical examination of definitions, concepts and measures for the service industry. J. Serv. Mark. 2011, 25, 229–240. [Google Scholar] [CrossRef]
- Coutelle-Brillet, P.; Riviere, A.; Garets, V.D. Perceived value of service innovation: A conceptual framework. J. Bus. Ind. Mark. 2014, 29, 164–172. [Google Scholar] [CrossRef]
- Gallarza, M.; Sánchez-Fernández, R. Cross fertilization between psychology and marketing: Insights on consumer value measures through an in-class exercise with master students. In Proceedings of the 12th annual International Conference of Education, Research and Innovation, Seville, Spain, 11–13 November 2019; pp. 5368–5375. [Google Scholar]
- Parente, S.L. Technology adoption, learning-by-doing, and economic growth. J. Econ. Theory 1994, 63, 346–369. [Google Scholar] [CrossRef]
- Chen, H.L. Project technological capacity and project outcomes: The moderating role of team creativity. J. Adv. Humanit. Res. 2022, 1, 69–76. [Google Scholar] [CrossRef]
- Song, Y.; Fox, R. Integrating m-technology into web-based esl vocabulary learning for working adult learners. In Proceedings of the The 3rd IEEE International Workshop on Wireless and Mobile Technologies in Education, Tokushima, Japan, 28–30 November 2005; p. 163. [Google Scholar]
- Ali, M. A study of citizen satisfaction with the spirit of innovation and work validity of basic government personnel in shandong province, China. J. Adv. Humanit. Res. 2022, 1, 2. [Google Scholar] [CrossRef]
- Magsamen-Conrad, K.; Dillon, J.M. Mobile technology adoption across the lifespan: A mixed methods investigation to clarify adoption stages, and the influence of diffusion attributes. Comput. Hum. Behav. 2020, 112, 106456. [Google Scholar] [CrossRef]
- Janawade, V.; Bertrand, D.; Léo, P.-Y.; Philippe, J. Assessing ‘meta-services’: Customer’s perceived value and behaviour. Serv. Ind. J. 2015, 35, 275–295. [Google Scholar] [CrossRef]
- Verhagen, T.; Feldberg, F.; van den Hooff, B.; Meents, S.; Merikivi, J. Understanding users’ motivations to engage in virtual worlds: A multipurpose model and empirical testing. Comput. Hum. Behav. 2012, 28, 484–495. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, U.; Rahman, K.U.; Ullah, A. Problems and benefits of the China-pakistan economic corridor cpec) for local people in Pakistan: A critical review. Asian Perspect. 2021, 45, 861–876. [Google Scholar] [CrossRef]
- Ghalandari, K. The effect of performance expectancy, effort expectancy, social influence and facilitating conditions on acceptance of e-banking services in Iran: The moderating role of age and gender. Middle-East J. Sci. Res. 2012, 12, 801–807. [Google Scholar]
- Chao, C.-M. Factors determining the behavioral intention to use mobile learning: An application and extension of the utaut model. Front. Psychol. 2019, 10, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolopoulou, K.; Gialamas, V.; Lavidas, K. Habit, hedonic motivation, performance expectancy and technological pedagogical knowledge affect teachers’ intention to use mobile internet. Comput. Educ. Open 2021, 2, 100041. [Google Scholar] [CrossRef]
- Onaolapo, S.; Oyewole, O. Performance expectancy, effort expectancy, and facilitating conditions as factors influencing smart phones use for mobile learning by postgraduate students of the University of Ibadan, Nigeria. Interdiscip. J. e-Ski. Lifelong Learn. 2018, 14, 95–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyembezi, N.; Bayaga, A. Performance expectancy and usage of information systems and technology: Cloud computing (PEUISTCC). Int. J. Educ. Sci. 2014, 7, 579–586. [Google Scholar]
- Milošević, I.; Živković, D.; Manasijević, D.; Nikolić, D. The effects of the intended behavior of students in the use of m-learning. Comput. Hum. Behav. 2015, 51, 207–215. [Google Scholar] [CrossRef]
- Alraja, M.N.; Hammami, S.; Chikhi, B.; Fekir, S. The influence of effort and performance expectancy on employees to adopt e-government: Evidence from oman. Int. Rev. Manag. Mark. 2016, 6, 930–934. [Google Scholar]
- Abdallah, N.; Abdallah, O.; Bohra, O. Factors affecting mobile learning acceptance in higher education: An empirical study. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 664–671. [Google Scholar] [CrossRef]
- Maiga, G.; Namagembe, F. Predicting adoption of mhealth technology in resource constrained environments. In Proceedings of the 2014 IST-Africa Conference Proceedings, Pointe aux Piments, Mauritius, 7–9 May 2014; pp. 1–12. [Google Scholar]
- Milosevic, D.; Andrei, S.; Vishny, R.W. A survey of corporate governance. J. Financ. 2015, 52, 737–783. [Google Scholar]
- Mcmanus, P.; Standing, C.; Zanoli, R. A preliminary Laddering Analysis on Mobile Services Usage; McGraw Hill: New York, NY, USA, 2009. [Google Scholar]
- Kreitner, R.; Kinicki, A.; Buelens, M. Organizational Behavior; Irwin: Homewood, IL, USA, 1989. [Google Scholar]
- Aditya, D.S.; Suprayitno, E. Mobile technology in indonesian nursing education: Potential and challenge. J. Keperawatan 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Bombaes, A. Student’s intentions to use m-learning: An empirical perspective from the philippines. Learning 2018, 8, 68. [Google Scholar] [CrossRef]
- Ajzen, I.; Cote, N.G. Attitudes and the prediction of behavior. In Attitudes Attitude Change; Psychology Press: London, UK, 2008; p. 13. [Google Scholar]
- Hajer, H.; Habib, A. Factors of entrepreneurial intention of the public civil servant: Empirical evidence in the case of tunisia. Int. J. Bus. Manag. Econ. Res. 2013, 4, 673–687. [Google Scholar]
- AlTameemy, F. Mobile phones for teaching and learning: Implementation and students’ and teachers’ attitudes. J. Educ. Technol. Syst. 2017, 45, 436–451. [Google Scholar] [CrossRef]
- Chi, I.; Yip, P.S.; Chiu, H.F.; Chou, K.L.; Chan, K.S.; Kwan, C.W.; Conwell, Y.; Caine, E. Prevalence of depression and its correlates in hong kong’s chinese older adults. Am. J. Geriatr. Psychiatry 2005, 13, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Mills, J.E. Exploring tourist satisfaction with mobile technology. In Information and Communication Technologies in Tourism 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 141–152. [Google Scholar]
- Krueger, N.F., Jr.; Reilly, M.D.; Carsrud, A.L. Competing models of entrepreneurial intentions. J. Bus. Ventur. 2000, 15, 411–432. [Google Scholar] [CrossRef]
- Elster, J. Social norms and economic theory. J. Econ. Perspect. 1989, 3, 99–117. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.Y.; Sidani, J.E.; Shensa, A.; Radovic, A.; Miller, E.; Colditz, J.B.; Hoffman, B.L.; Giles, L.M.; Primack, B.A. Association between social media use and depression among us young adults. Depress. Anxiety 2016, 33, 323–331. [Google Scholar] [CrossRef]
- Zhao, S.; Yao, Y.; Ya, N. Adoption of mobile social media for learning among chinese older adults in senior citizen colleges. Educ. Technol. Res. Dev. 2021, 69, 3413–3435. [Google Scholar] [CrossRef]
- Primack, B.A.; Escobar-Viera, C.G. Social media as it interfaces with psychosocial development and mental illness in transitional age youth. Child Adolesc. Psychiatr. Clin. 2017, 26, 217–233. [Google Scholar] [CrossRef]
- Krosnick, J.A.; Visser, P.S.; Harder, J. The psychological underpinnings of political behavior. In Handbook of Social Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Levitan, L.C.; Visser, P.S. The impact of the social context on resistance to persuasion: Effortful versus effortless responses to counter-attitudinal information. J. Exp. Soc. Psychol. 2008, 44, 640–649. [Google Scholar] [CrossRef]
- Bandura, A.; Reese, L.; Adams, N.E. Microanalysis of action and fear arousal as a function of differential levels of perceived self-efficacy. J. Personal. Soc. Psychol. 1982, 43, 5. [Google Scholar] [CrossRef]
- Goh, T.-T. Exploring gender differences in sms-based mobile library search system adoption. J. Educ. Technol. Soc. 2011, 14, 192–206. [Google Scholar]
- Solvberg, A.M. Computer-related control beliefs and motivation: A panel study. J. Res. Technol. Educ. 2003, 35, 473. [Google Scholar] [CrossRef]
- Rønning, W.M.; Sølvberg, A.M. Older adults’ coping with the digital everyday life. Seminar 2017, 13, 2. [Google Scholar] [CrossRef]
- Igbaria, M.; Parasuraman, S. A path analytic study of individual characteristics, computer anxiety and attitudes toward microcomputers. J. Manag. 1989, 15, 373–388. [Google Scholar]
- Hsu, L.-C.; Wang, K.-Y.; Chih, W.-H.; Lin, W.-C. Modeling revenge and avoidance in the mobile service industry: Moderation role of technology anxiety. Serv. Ind. J. 2021, 41, 1029–1052. [Google Scholar] [CrossRef]
- Yang, K.; Forney, J.C. The moderating role of consumer technology anxiety in mobile shopping adoption: Differential effects of facilitating conditions and social influences. J. Electron. Commer. Res. 2013, 14, 334. [Google Scholar]
- Arora, S.; Chaudhary, P.; Singh, R.K. Impact of coronavirus and online exam anxiety on self-efficacy: The moderating role of coping strategy. Interact. Technol. Smart Educ. 2021, 18, 475–492. [Google Scholar] [CrossRef]
- Giao, H.N.K.; Vuong, B.N.; Tung, D.D.; Quan, T.N. A model of factors influencing behavioral intention to use internet banking and the moderating role of anxiety: Evidence from vietnam. WSEAS Trans. Bus. Econ. 2020, 17, 551–561. [Google Scholar] [CrossRef]
- David, M.E.; Roberts, J.A. Investigating the impact of partner phubbing on romantic jealousy and relationship satisfaction: The moderating role of attachment anxiety. J. Soc. Pers. Relatsh. 2021, 38, 3590–3609. [Google Scholar] [CrossRef]
- Peltier, J.W.; Chennamaneni, P.R.; Barber, K.N. Student anxiety, preparation, and learning framework for responding to external crises: The moderating role of self-efficacy as a coping mechanism. J. Mark. Educ. 2022, 44, 149–165. [Google Scholar] [CrossRef]
- Keren, F.; Siddiquei, A.N.; Anwar, M.A.; Asmi, F.; Ye, Q. What explains natives and sojourners preventive health behavior in a pandemic: Role of media and scientific self-efficacy. Front. Psychol. 2021, 12, 2446. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-L. Organizing through division and exclusion. In Organizing through Division and Exclusion; Stanford University Press: Redwood City, CA, USA, 2022. [Google Scholar]
- Huang, Y.; Sengupta, J. The influence of disease cues on preference for typical versus atypical products. J. Consum. Res. 2020, 47, 393–411. [Google Scholar] [CrossRef]
- Alomari, Y.M.; Abdullah, S.N.H.S.; Azma, R.Z.; Omar, K. Automatic detection and quantification of wbcs and rbcs using iterative structured circle detection algorithm. Comput. Math. Methods Med. 2014, 2014, 979302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares: The better approach to structural equation modeling? Long Range Plan. 2012, 45, 312–319. [Google Scholar] [CrossRef]
- Hair, J.F.J.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Fornell, C.; Larcker, D.F. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra And Statistics; Sage Publications: Los Angeles, CA, USA, 1981. [Google Scholar]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Kyriazos, T.A. Applied psychometrics: Sample size and sample power considerations in factor analysis (efa, cfa) and sem in general. Psychology 2018, 9, 2207. [Google Scholar] [CrossRef] [Green Version]
- Arbuckle, J.L.; Wothke, W. Amos 4.0 User’s Guide; Citeseer: Pittsburgh, PA, USA, 1999. [Google Scholar]
- Yamane, Y. Statistics: An Introductory Analysis, 3rd ed.; Harper Row Publishers Inc.: New York, NY, USA, 1973. [Google Scholar]
- Lang, F.R.; Carstensen, L.L. Time counts: Future time perspective, goals, and social relationships. Psychol. Aging 2002, 17, 125. [Google Scholar] [CrossRef]
- Haq, M.A.; Ghouri, A.M. Mobile advertising technology acceptance model m-tam, An extension of tam in mobile marketing context. South Asian J. Manag. 2018, 12, 188–209. [Google Scholar] [CrossRef]
- Selwyn, N.; Gorard, S.; Furlong, J.; Madden, L. Older adults’ use of information and communications technology in everyday life. Ageing Soc. 2003, 23, 561–582. [Google Scholar] [CrossRef]
- Tajudeen, F.P.; Bahar, N.; Pin, T.M.; Saedon, N.I. Mobile technologies and healthy ageing: A bibliometric analysis on publication trends and knowledge structure of mhealth research for older adults. Int. J. Hum. Comput. Interact. 2022, 38, 118–130. [Google Scholar] [CrossRef]
- Schieber, A.; Hilt, P.; Streker, P.; Endreß, H.-U.; Rentschler, C.; Carle, R. A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innov. Food Sci. Emerg. Technol. 2003, 4, 99–107. [Google Scholar] [CrossRef]
- Valente, T.W.; Rogers, E.M. The origins and development of the diffusion of innovations paradigm as an example of scientific growth. Sci. Commun. 1995, 16, 242–273. [Google Scholar] [CrossRef] [PubMed]
- Valente, T.W.; Davis, R.L. Accelerating the diffusion of innovations using opinion leaders. Ann. Am. Acad. Political Soc. Sci. 1999, 566, 55–67. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Liu, Y.; Ranagalage, M.; Zhang, H.; Zhou, R. Examining land use/land cover change and the summertime surface urban heat island effect in fast-growing greater hefei, China: Implications for sustainable land development. ISPRS Int. J. Geo-Inf. 2020, 9, 568. [Google Scholar] [CrossRef]
- Al-Emadi, T.A.; Al-Asmakh, M.A. Cultural differences and their impact: Some brief comments. Chin. J. Int. Law 2006, 5, 807–810. [Google Scholar] [CrossRef]
- Holden, R.J.; Schubert, C.C.; Mickelson, R.S. The patient work system: An analysis of self-care performance barriers among elderly heart failure patients and their informal caregivers. Appl. Ergon. 2015, 47, 133–150. [Google Scholar] [CrossRef]
- Yao, D.; Giannoumis, G.A. Information and Communications Technology and Social Media Accessibility in China; Routledge: London, UK, 2017. [Google Scholar]
Demographic Information | Frequency | Percentage |
---|---|---|
Age | ||
45–50 | 91 | 36.4 |
50–55 | 98 | 39.2 |
55–60 | 54 | 21.6 |
60–onward | 7 | 2.8 |
Gender | ||
Male | 136 | 54 |
Female | 115 | 46 |
Education | ||
Pre-primary | 39 | 15.7 |
Primary school | 19 | 7.80 |
Secondary | 119 | 47.50 |
Post-secondary | 74 | 29 |
Experience using M-technology | ||
2–7 months | 15 | 5.76 |
8–13 months | 50 | 20.15 |
14–18 months | 89 | 35.5 |
At least 19 months | 96 | 38.59 |
Constructs | Items | Loadings | Cronbach Alpha | CR | AVE |
---|---|---|---|---|---|
Attitude | ATD 1 | 0.856 | 0.885 | 0.886 | 0.722 |
ATD 2 | 0.801 | ||||
ATD 3 | 0.823 | ||||
Performance expectancy | PRE 1 | 0.844 | 0.789 | 0.796 | 0.568 |
PRE 2 | 0.760 | ||||
PRE 3 | 0.791 | ||||
Perceived value | PV1 | 0.900 | 0.932 | 0.933 | 0.776 |
PV2 | 0.861 | ||||
PV3 | 0.866 | ||||
PV4 | 0.885 | ||||
Technology anxiety | TA1 | 0.815 | 0.794 | 0.795 | 0.565 |
TA2 | 0.768 | ||||
TA3 | 0.733 | ||||
Intention | IT1 | 0.805 | 0.823 | 0.825 | 0.612 |
IT2 | 0.762 | ||||
IT3 | 0.794 | ||||
Effort expectancy | EE1 | 0.761 | 0.804 | 0.807 | 0.512 |
EE2 | 0.826 | ||||
EE3 | 0.771 | ||||
EE4 | 0.801 | ||||
Subjective norm | SN1 | 0.772 | 0.778 | 0.784 | 0.554 |
SN2 | 0.827 | ||||
SN3 | 0.720 | ||||
Self-efficacy | SF1 | 0.863 | 0.809 | 0.890 | 0.619 |
SF2 | 0.828 | ||||
SF3 | 0.832 | ||||
SF4 | 0.821 |
Construct | M (SD.) | PRE | PV | EE | ATD | IT | TA | SN |
---|---|---|---|---|---|---|---|---|
Performance Expectancy | 4.36 (1.22) | 0.751 | ||||||
Perceived value | 4.62 (1.25) | 0.181 | 0.818 | |||||
Effort expectancy | 5.15 (1.49) | 0.087 | 0.060 | 0.792 | ||||
Attitude | 4.43 (1.01) | 0.158 | 0.098 | −0.004 | 0.770 | |||
Intention | 4.69 (1.29) | 0.474 | 0.300 | −0.023 | 0.300 | 0.846 | ||
Technology anxiety | 4.46 (1.20) | 0.412 | 0.430 | 0.020 | 0.007 | 0.458 | 0.771 | |
Subjective norms | 4.26 (1.45) | 0.368 | 0.241 | −0.011 | 0.146 | 0.500 | 0.471 | 0.741 |
Self-efficacy | 4.79 (1.16) | 0.389 | 0.435 | 0.082 | 0.150 | 0.430 | 0.420 | 0.531 |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
Age | 0.548 *** | 0.363 *** | 0.323 *** |
Gender | −0.062 | −0.022 | −0.020 |
Education | 0.26 | 0.011 | 0.023 |
Attitude | 0.105 *** | 0.151 *** | |
Technology anxiety | 0.501 *** | ||
Attitude × technology anxiety | −0.162 *** | ||
R2 | 0.463 | 0.548 | 0.598 |
F | 62.82 *** | 61.07 *** | 57.74 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Ying, L.; Khan, M.A.; Ali, M.; Barykin, S.; Jahanzeb, A. Sustainable Digital Marketing: Factors of Adoption of M-Technologies by Older Adults in the Chinese Market. Sustainability 2023, 15, 1972. https://doi.org/10.3390/su15031972
Zhang B, Ying L, Khan MA, Ali M, Barykin S, Jahanzeb A. Sustainable Digital Marketing: Factors of Adoption of M-Technologies by Older Adults in the Chinese Market. Sustainability. 2023; 15(3):1972. https://doi.org/10.3390/su15031972
Chicago/Turabian StyleZhang, Bohan, Li Ying, Muhammad Asghar Khan, Madad Ali, Sergey Barykin, and Agha Jahanzeb. 2023. "Sustainable Digital Marketing: Factors of Adoption of M-Technologies by Older Adults in the Chinese Market" Sustainability 15, no. 3: 1972. https://doi.org/10.3390/su15031972
APA StyleZhang, B., Ying, L., Khan, M. A., Ali, M., Barykin, S., & Jahanzeb, A. (2023). Sustainable Digital Marketing: Factors of Adoption of M-Technologies by Older Adults in the Chinese Market. Sustainability, 15(3), 1972. https://doi.org/10.3390/su15031972