The Implications of Food Security on Sustainability: Do Trade Facilitation, Population Growth, and Institutional Quality Make or Mar the Target for SSA?
Abstract
:1. Introduction
Stylized Facts on Trade Facilitation and Food Security
2. Literature Review
3. Method
3.1. Model Specification
3.2. Research Hypotheses
3.3. Estimation Technique
3.4. Principal Component Analysis (PCA)
3.5. Correlation Matrix
4. Empirical Results
5. Conclusions, Caveats, and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutterman, A. Older Persons’ Right to Adequate Food; Available at SSRN 4275564; FAO: Rome, Italy, 2022. [Google Scholar]
- United Nations. Commission on Human Rights: Report of the 30th Session. Available online: https://digitallibrary.un.org/record/220199?ln=en (accessed on 25 November 2022).
- Ibrahim, R.L.; Yu, Z.; Hassan, S.; Ajide, K.B.; Tanveer, M.; Khan, A.R. Trade Facilitation and Agriculture Sector Performance in Sub-Saharan Africa: Insightful Policy Implications for Economic Sustainability. Front. Environ. Sci 2022, 10, 962838. [Google Scholar] [CrossRef]
- Food & Agriculture Organization. Food Security; Development Economics Division (June 2006); FAO: Rome, Italy, 2012. [Google Scholar]
- Makwata, L.C.J. The Role of Military Forces in National Food Security Strategies a Comparative Analysis of Egypt and Kenya. Ph.D. Dissertation, University of Nairobi, Nairobi, Kenya, 2022. [Google Scholar]
- Food & Agriculture Organization. Trade Reforms and Food Security: Conceptualizing the Linkages; FAO: Rome, Italy, 2003; pp. 43–61. [Google Scholar]
- Kareem, F.O.; Martínez-Zarzoso, I.; Brümmer, B. What Drives Africa’s Inability to Comply with EU Standards? Insights from Africa’s Institution and Trade Facilitation Measures. Eur. J. Dev. Res. 2022, 1–36. [Google Scholar] [CrossRef]
- Kuteyi, D.; Winkler, H. Logistics Challenges in Sub-Saharan Africa and Opportunities for Digitalization. Sustainability 2022, 14, 2399. [Google Scholar] [CrossRef]
- Safaeimanesh, S.; Jenkins, G.P. Estimation of the potential economic welfare to be gained by the South African Customs Union from trade facilitation. South Afr. J. Econ. Manag. Sci. 2021, 24, 1–14. [Google Scholar] [CrossRef]
- Nyameino, D.; Kagira, B.; Njukia, S. Maize Market Assessment and Baseline Study for Kenya; Regional Agricultural Trade Expansion Support Program: Nairobi, Kenya, 2003. [Google Scholar]
- Tschirley, D.L.; Abdula, D.C.; Weber, M.T. Toward Improved Maize Marketing and Trade Policies to Promote Household Food Security in Central and Southern Mozambique; No. 1093-2016-88075; Michigan State University: East Lansing, MI, USA, 2006. [Google Scholar]
- Molini, V. Food security in Vietnam during the 1990s: The empirical evidence. In Food Security: Indicators, Measurement, and the Impact of Trade Openness; United Nations University: Tokyo, Japan, 2007; pp. 129–149. [Google Scholar]
- Kuku, O.; Gundersen, C.; Garasky, S. Differences in food insecurity between adults and children in Zimbabwe. Food Policy 2011, 36, 311–317. [Google Scholar] [CrossRef]
- Mahadevan, R.; Suardi, S. Regional differences pose challenges for food security policy: A case study of India. Reg. Stud. 2014, 48, 1319–1336. [Google Scholar] [CrossRef]
- Mahadevan, R.; Hoang, V. Is there a link between poverty and food security? Soc. Indic. Res. 2016, 128, 179–199. [Google Scholar] [CrossRef]
- Brown, L.R. World population growth, soil erosion, and food security. Science 1981, 214, 995–1002. [Google Scholar] [CrossRef]
- Masters, W.; Djurfeldt, A.A.; De Haan, C.; Hazell, P.; Jayne, T.; Jirström, M.; Reardon, T. Urbanization and farm size in Asia and Africa: Implications for food security and agricultural research. Glob. Food Secur. 2013, 2, 156–165. [Google Scholar] [CrossRef]
- Tian, J.; Bryksa, B.C.; Yada, R.Y. Feeding the world into the future – food and nutrition security: The role of food science and technology. Front. Life Sci. 2016, 9, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G.; Sharma, B. The nexus approach to water–energy–food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef] [Green Version]
- Dawson, T.P.; Perryman, A.H.; Osborne, T.M. Modelling impacts of climate change on global food security. Clim. Chang. 2014, 134, 429–440. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wang, J.Y.; Long, H.L. Analysis of arable land loss and its impact on rural sustainability in Southern Jiangsu Province of China. J. Environ. Manag. 2010, 91, 646–653. [Google Scholar] [CrossRef] [PubMed]
- McMichael, P.; Schneider, M. Food security politics and the Millennium Development Goals. Third World Q. 2011, 32, 119–139. [Google Scholar] [CrossRef]
- Campbell, B.M.; Vermeulen, S.J.; Aggarwal, P.K.; Corner-Dolloff, C.; Girvetz, E.; Loboguerrero, A.M.; Ramirez-Villegas, J.; Rosenstock, T.; Sebastian, L.; Thornton, P.K.; et al. Reducing risks to food security from climate change. Glob. Food Secur. 2016, 11, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Loopstra, R.; Tarasuk, V. Severity of household food insecurity is sensitive to change in household income and employment status among low-income families. J. Nutr. 2013, 143, 1316–1323. [Google Scholar] [CrossRef] [Green Version]
- Etana, D.; Tolossa, D. Unemployment and food insecurity in urban Ethiopia. Afr. Dev. Rev. 2017, 29, 56–68. [Google Scholar] [CrossRef]
- Hussain, A.; Thapa, G.B. Smallholders’ access to agricultural credit in Pakistan. Food Secur. 2012, 4, 73–85. [Google Scholar] [CrossRef]
- Dithmer, J.; Abdulai, A. Does trade openness contribute to food security? A dynamic panel analysis. Food Policy 2017, 69, 218–230. [Google Scholar] [CrossRef]
- Subramaniam, Y.; Masron, T.A.; Azman NH, N. The impact of biofuels on food security. Int. Econ. 2019, 160, 72–83. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Rasoulinezhad, E.; Yoshino, N. Energy and food security: Linkages through price volatility. Energy Policy 2019, 128, 796–806. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H. Making the Paris agreement climate targets consistent with food security objectives. Glob. Food Secur. 2019, 23, 93–103. [Google Scholar] [CrossRef]
- Danse, M.; Klerkx, L.; Reintjes, J.; Rabbinge, R.; Leeuwis, C. Unravelling inclusive business models for achieving food and nutrition security in BOP markets. Glob. Food Secur. 2020, 24, 100354. [Google Scholar] [CrossRef]
- Ogunniyi, A.I.; Mavrotas, G.; Olagunju, K.O.; Fadare, O.; Adedoyin, R. Governance quality, remittances and their implications for food and nutrition security in Sub-Saharan Africa. World Dev. 2020, 127, 104752. [Google Scholar] [CrossRef]
- Schleifer, P.; Sun, Y. Reviewing the impact of sustainability certification on food security in developing countries. Glob. Food Secur. 2020, 24, 100337. [Google Scholar] [CrossRef]
- Ibrahim, R.L.; Ajide, K.B. Trade facilitation, institutional quality, and sustainable environment: Renewed evidence from Sub-Saharan African Countries. J. Afr. Bus. 2020, 23, 281–303. [Google Scholar] [CrossRef]
- Ibrahim, R.L.; Ajide, K.B. Trade facilitation and environmental quality: Empirical evidence from some selected African countries. Environ. Dev. Sustain. 2021, 24, 1282–1312. [Google Scholar] [CrossRef]
- Jiahao, S.; Ibrahim, R.L.; Bello, K.A.; Oke, D.M. Trade facilitation, institutions, and sustainable economic growth. Empirical evidence from Sub-Saharan Africa. Afr. Dev. Rev. 2022, 43, 201–214. [Google Scholar]
- Raheem, D.; Dayoub, M.; Birech, R.; Nakiyemba, A. The Contribution of Cereal Grains to Food Security and Sustainability in Africa: Potential Application of UAV in Ghana, Nigeria, Uganda, and Namibia. Urban Sci. 2021, 5, 8. [Google Scholar] [CrossRef]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 317. [Google Scholar] [CrossRef]
- Alrobaish, W.S.; Vlerick, P.; Luning, P.A.; Jacxsens, L. Food safety governance in Saudi Arabia: Challenges in control of imported food. J. Food Sci. 2021, 86, 16–30. [Google Scholar] [CrossRef]
- Ahn, S.; Steinbach, S. COVID-19 trade actions in the agricultural and food sector. J. Food Distrib. Res. 2021, 52, 51–75. [Google Scholar]
- Jiren, T.S.; Dorresteijn, I.; Hanspach, J.; Schultner, J.; Bergsten, A.; Manlosa, A.; Jager, N.; Senbeta, F.; Fischer, J. Alternative discourses around the governance of food security: A case study from Ethiopia. Glob. Food Secur. 2020, 24. [Google Scholar] [CrossRef]
- Oyetunde-Usman, Z.; Olagunju, K.O. Determinants of Food Security and Technical Efficiency among Agricultural Households in Nigeria. Economies 2019, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- El Bilali, H. Research on agro-food sustainability transitions: Where are food security and nutrition? Food Secur. 2019, 11, 559–577. [Google Scholar] [CrossRef] [Green Version]
- Mary, S. Hungry for free trade? Food trade and extreme hunger in developing countries. Food Secur. 2019, 11, 461–477. [Google Scholar] [CrossRef]
- Richardson, K.J.; Lewis, K.H.; Krishnamurthy, P.K.; Kent, C.; Wiltshire, A.J.; Hanlon, H.M. Food security outcomes under a changing climate: Impacts of mitigation and adaptation on vulnerability to food insecurity. Clim. Change 2018, 147, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Sassi, M.A.; Spatial Nonsi, M. 201 Analysis of the Determinants of Food Insecurity in Subalysis o Africa. Afr. Dev. Rev. 2015, 27, 92–105. [Google Scholar] [CrossRef]
- Hannum, E.; Liu, J.; Frongillo, E.A. Poverty, food insecurity and nutritional deprivation in rural China: Implications for children’s literacy achievement. Int. J. Educ. Dev. 2014, 34, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Saaka, M.; Osman, S.M. Does household food insecurity affect the nutritional status of preschool children aged 6–36 months? Int. J. Popul. Res. 2013, 2013, 304169. [Google Scholar] [CrossRef]
- Burchi, F.; De Muro, P. Education for Rural People: A Neglected Key to Food Security; Departmental Working Papers of Economics—University ’Roma Tre’0078; Department of Economics—University Roma Tre: Rome, Italy, 2007. [Google Scholar]
- Bhattacharya, J.; Currie, J.; Haider, S. Poverty, food insecurity, and nutritional outcomes in children and adults. J. Health Econ. 2004, 23, 839–862. [Google Scholar] [CrossRef] [Green Version]
- Trueblood, M.A.; Shapouri, S. Implications of Trade Liberalization on Food Security of Low-Income Countries; No. 1474-2016-120811; USDA: Washington, DC, USA, 2001.
- Bonuedi, I.; Kamasa, K.; Opoku EE, O. Enabling trade across borders and food security in Africa. Food Secur. 2020, 12, 1121–1140. [Google Scholar] [CrossRef]
- Sakyi, D.; Villaverde, J.; Maza, A.; Bonuedi, I. The effects of trade and trade facilitation on economic growth in Africa. Afr. Dev. Rev. 2017, 29, 350–361. [Google Scholar] [CrossRef]
- Azam, M.; Khan, H.N.; Khan, F. Testing Malthusian’s and Kremer’s population theories in developing economy. Int. J. Soc. Econ. 2020, 47, 523–538. [Google Scholar] [CrossRef]
- Mellos, K. Neo-Malthusian theory. In Perspectives on Ecology; Palgrave Macmillan: London, UK, 1988; pp. 15–42. [Google Scholar]
- Schneider, U.A.; Havlík, P.; Schmid, E.; Valin, H.; Mosnier, A.; Obersteiner, M.; Böttcher, H.; Skalský, R.; Balkovič, J.; Sauer, T. Impacts of population growth, economic development, and technical change on global food production and consumption. Agric. Syst. 2011, 104, 204–215. [Google Scholar] [CrossRef]
- Hadush, M.; Holden, S.T.; Tilahun, M. Does population pressure induce farm intensification? Empirical evidence from Tigrai Region, Ethiopia. Agric. Econ. 2019, 50, 259–277. [Google Scholar] [CrossRef]
- Sakanko, M.A.; David, J. An Econometric Validation of Malthusian Theory: Evidence in Nigeria. Signifikan J. Ilmu Ekon. 2018, 7, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Okunola, A.M.; Nathaniel, S.P.; Festus, V.B. Revisiting population growth and food production nexus in Nigeria: An ARDL approach to cointegration. Agric. Resour. Econ. Int. Sci. E-J. 2018, 4, 41–51. [Google Scholar] [CrossRef]
- Ajide, K.; Ridwan, I. Energy consumption, environmental contaminants, and economic growth: The G8 experience. Appl. Econom. 2018, 51, 58–83. [Google Scholar]
- Silberberger, M.; Königer, J. Regulation, trade and economic growth. Econ. Syst. 2016, 40, 308–322. [Google Scholar] [CrossRef] [Green Version]
- Sakyi, D.; Bonuedi, I.; Opoku EE, O. Trade facilitation and social welfare in Africa. J. Afr. Trade 2018, 5, 35–53. [Google Scholar] [CrossRef]
- Menyah, K.; Nazlioglu, S.; Wolde-Rufael, Y. Financial development, trade openness and economic growth in African countries: New insights from a panel causality approach. Econ. Model. 2014, 37, 386–394. [Google Scholar] [CrossRef]
- Omri, A.; Daly, S.; Rault, C.; Chaibi, A. Financial development, environmental quality, trade and economic growth: What causes what in MENA countries. Energy Econ. 2015, 48, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Ajide, K.B.; Raheem, I.D. Institutions-FDI nexus in ECOWAS countries. J. Afr. Bus. 2016, 17, 319–341. [Google Scholar] [CrossRef]
- Asongu, S.A.; Nwachukwu, J.C. The mobile phone in the diffusion of knowledge for institutional quality in sub-Saharan Africa. World Dev. 2016, 86, 133–147. [Google Scholar] [CrossRef]
- Windmeijer, F.; Bond, S. Finite Sample Inference for GMM Estimators in Linear Panel Data Models. 2002. Available online: https://www.econstor.eu/bitstream/10419/79371/1/362533156.pdf (accessed on 25 November 2022). [CrossRef]
- Bound, J.; Jaeger, D.; Baker, R. Problems with instrumental variable estimation when the correlation between the instruments and the endogenous explanatory variables is weak. J. Am. Stat. Assoc. 1995, 90, 443. [Google Scholar]
- Baltagi, B.H. Forecasting with panel data. J. Forecast. 2008, 27, 153–173. [Google Scholar] [CrossRef]
- Roodman, D. How to do Xtabond2: An Introduction to Difference and System GMM in Stata. Stata Journal: Promot. Commun. Stat. Stata 2009, 9, 86–136. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econ. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Windmeijer, F. A finite sample correction for the variance of linear efficient two-step GMM estimators. J. Econ. 2005, 126, 25–51. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L.P. Large Sample Properties of Generalized Method of Moments Estimators. Econometrica 1982, 50, 1029. [Google Scholar] [CrossRef]
- Portugal-Perez, A.; Wilson, J.S. Export performance and trade facilitation reform: Hard and soft infrastructure. World Dev. 2012, 40, 1295–1307. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis for Special Types of Data; Springer: New York, NY, USA, 2002; pp. 338–372. [Google Scholar]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- UNECA. Economic Report on Africa 2015: Industrializing through Trade. 2015. Available online: https://hdl.handle.net/10855/22767(accessed on 25 November 2022).
- Allen, S. Food Security in East Africa from a Trade Facilitation Perspective; GREAT Insights; ECDPM: Maasttricht, The Netherlands, 2012; Volume 1. [Google Scholar]
- World Bank. The State of Social Safety Nets 2015; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Bain, L.E.; Awah, P.K.; Geraldine, N.; Kindong, N.P.; Siga, Y.; Bernard, N.; Tanjeko, A.T. Malnutrition in Sub-Saharan Africa: Burden, causes and prospects. Pan Afr. Med. J. 2013, 15. [Google Scholar] [CrossRef]
- Fan, S.; Torero, M.; Headey, D. Urgent Actions Needed to Prevent Recurring Food Crises; IFPRI Policy Brief 16; International Food Policy Research Institute: Washington, DC, USA, 2011. [Google Scholar]
- Pardey, P.G.; Alston, J.M.; Piggott, R. Agricultural R and D in the Developing World; International Food Policy Research Institute: Washington, DC, USA, 2006. [Google Scholar]
- Bello-Schünemann, J.; Moyer, J.D. Structural pressures and political instability-trajectories for sub-Saharan Africa. ISS Afr. Rep. 2018, 9, 1–32. [Google Scholar]
- Maxwell, D. Food security and its implications for political stability: A humanitarian perspective. In FAO High Level Expert Forum on Addressing Food Insecurity in Protracted Crises 2012; FAO: Rome, Italy, 2012. [Google Scholar]
- Deaton, B.J.; Lipka, B. Political instability and food security. J. Food Secur. 2015, 3, 29–33. [Google Scholar] [CrossRef]
- Simmons, E. Recurring Storms: Food Insecurity, Political Instability, and Conflict; CSIS, Center for Strategic & International Studies: Washington, DC, USA, 2017. [Google Scholar]
- Bremner, J. Population and food security: Africa’s challenge. In Policy Brief; Population Reference Bureau: Washington, DC, USA, 2012. [Google Scholar]
- Ogundari, K.; Awokuse, T. Human capital contribution to economic growth in Sub-Saharan Africa: Does health status matter more than education? Econ. Anal. Policy 2018, 58, 131–140. [Google Scholar] [CrossRef]
Pillars | Components | Source | Index Notation |
---|---|---|---|
P1: Availability | Average dietary energy supply adequacy; Average value of food production; Share of dietary energy supply derived from cereals roots and tubers; Average protein supply | FAOSTAT | FSPAV |
P2: Access | Gross domestic product per capita (in purchasing power equivalent sourced) WDI; Prevalence of undernourishment; Depth of the food deficit | FAOSTAT | FSPAC |
P3: Stability | Food per capita; Percent of arable land equipped for irrigation; Per capita food production variability | FSPST | |
P 4: Utilization | Percentage of population with access to improved drinking water sources, Percentage of population with access to sanitation facilities, Prevalence of anemia among women of reproductive age (15–49 years) | WDI | FSPUT |
(a) | |||||||||
Principal Components | Component Matrix (Loadings) | Prop | Cumm Prop | Eigenvalue | |||||
Import Costs | Import Documents | Import Time | Export Costs | Export Documents | Export Time | ||||
First PC Trade cost | 0.440 | 0.273 | 0.467 | 0.459 | 0.298 | 0.462 | 0.652 | 0.652 | 3.909 |
Second PC | −0.309 | 0.658 | −0.145 | −0.216 | 0.621 | −0.135 | 0.237 | 5.329 | 1.419 |
First PC import cost | 0.624 | 0.456 | 0.635 | ||||||
First PC export cost | - | - | - | 0.629 | 0.388 | 0.672 | 0.647 | 0.647 | 1.942 |
(b) | |||||||||
Principal Components | Component Matrix (Loadings) | Prop | Cumm Prop | Eigenvalue | |||||
IMPCOST | IMPDOC | IMPTIME | |||||||
First PC TIMPCOST | 0.624 | 0.456 | 0.635 | 0.687 | 0.687 | 2.061 | |||
Second PC | −0.363 | 0.888 | 0.055 | 0.241 | 0.928 | 0.724 | |||
Third PC | 0.692 | 0.055 | −0.719 | 0.072 | 1.000 | 0.216 | |||
(c) | |||||||||
Principal Components | Component Matrix (Loadings) | Prop | Cumm Prop | Eigenvalue | |||||
EXPCOST | EXPDOC | EXPTIME | |||||||
First PC TEXPCOST | 0.629 | 0.388 | 0.673 | 0.647 | 0.647 | 1.942 | |||
Second PC | −0.407 | 0.903 | −0.139 | 0.287 | 0.934 | 0.859 | |||
Third PC | 0.661 | 0.186 | −0.727 | 0.066 | 1.000 | 0.198 |
(a) | |||||||
Principal Components | Component Matrix (Loadings) | Prop | Cumm Prop | Eigenvalue | |||
FSPAC | FSPAV | FSPST | FSPUT | ||||
First PC FSINDEX | −0.344 | 0.585 | 0.466 | 0.568 | 0.528 | 0.528 | 2.110 |
Second PC | 0.848 | −0.059 | 0.502 | 0.162 | 0.230 | 0.758 | 0.920 |
Third PC | 0.364 | 0.332 | −0.729 | 0.476 | 0.146 | 0.904 | 0.583 |
Fourth PC | 0.177 | 0.737 | −0.002 | −0.652 | 0.096 | 1.000 | 0.385 |
(b) | |||||||
Principal Components | Component Matrix (Loadings) | Prop | Cumm Prop | Eigenvalue | |||
ASP | ASPA | AFP | DES | ||||
First PC FSPAV | −0.344 | 0.585 | 0.466 | 0.568 | 0.528 | 0.528 | 2.110 |
Second PC | 0.848 | −0.059 | 0.502 | 0.162 | 0.230 | 0.758 | 0.920 |
Third PC | 0.364 | 0.332 | −0.729 | 0.476 | 0.146 | 0.904 | 0.583 |
Fourth PC | 0.177 | 0.737 | −0.002 | −0.652 | 0.096 | 1.000 | 0.385 |
(c) | |||||||
Principal Components | Component Matrix (Loadings) | Prop | Cumm Prop | Eigenvalue | |||
NPU | PU | GDPPC | |||||
First PC FSPAC | 0.705 | 0.707 | −0.062 | 0.528 | 0.528 | 2.110 | First PC FSPAC |
Second PC | 0.848 | −0.059 | 0.502 | 0.230 | 0.758 | 0.920 | Second PC |
Third PC | 0.364 | 0.332 | −0.729 | 0.146 | 0.904 | 0.583 | Third PC |
(d) | |||||||
Principal Components | Component Matrix (Loadings) | Prop | Cumm Prop | Eigenvalue | |||
PAL | FPV | FSV | |||||
First PC FSPST | 0.659 | 0.648 | 0.383 | 0.463 | 0.463 | 1.389 | First PC FSPST |
Second PC | −0.236 | −0.305 | 0.923 | 0.311 | 0.774 | 0.934 | Second PC |
Third PC | −0.715 | 0.698 | 0.048 | 0.226 | 1.000 | 0.677 | Third PC |
(e) | |||||||
Principal Components | Component Matrix (Loadings) | Prop | Cumm Prop | Eigenvalue | |||
AWR | OAP | WATER | SANI | ||||
First PC FSPUT | 0.149 | 0.445 | 0.649 | 0.598 | 0.528 | 0.528 | 2.110 |
Second PC | 0.879 | −0.449 | 0.152 | −0.052 | 0.276 | 0.784 | 1.103 |
Third PC | 0.363 | 0.746 | −0.086 | −0.553 | 0.165 | 0.949 | 0.659 |
Fourth PC | 0.270 | 0.212 | −0.741 | 0.578 | 0.052 | 1.000 | 0.206 |
(a) | ||||||||||||||
Principal Components | Component Matrix (Loadings) | Prop | Cumm Prop | Eigenvalue | ||||||||||
CC | GE | PV | RL | RQ | VA | |||||||||
First PC INSTQTY | 0.438 | 0.202 | 0.401 | 0.477 | 0.428 | 0.443 | 0.667 | 0.667 | 4.003 | |||||
Second PC | −0.165 | 0.957 | 0.047 | −0.136 | −0.189 | 0.013 | 0.149 | 0.817 | 0.899 | |||||
Third PC | 0.206 | −0.091 | 0.774 | −0.039 | −0.444 | −0.391 | 0.076 | 0.893 | 0.454 | |||||
Fourth PC | −0.699 | −0.149 | 0.489 | −0.266 | 0.373 | 0.227 | 0.058 | 0.951 | 0.350 | |||||
Fifth PC | 0.095 | 0.149 | −0.009 | −0.043 | 0.651 | −0.737 | 0.038 | 0.989 | 0.226 | |||||
Sixth PC | 0.492 | −0.009 | 0.030 | −0.824 | 0.147 | 0.238 | 0.012 | 1.000 | 0.069 | |||||
(b) | ||||||||||||||
FSPAC | FSPAV | FSPST | FSPUT | FSINDEX | TEXPCOST | TIMPTCOST | TRADECOSTS | INSTQTY | TRADE | FTS | GFC | HC | POPG | |
1 | −0.26 | 0.02 | −0.18 | −0.41 | 0.01 | 0.02 | 0.02 | 0.04 | 0.31 | 0.08 | 0.03 | −0.02 | 0.04 | FSPAC |
1 | 0.33 | 0.66 | 0.84 | 0.1 | 0.14 | 0.12 | 0.03 | −0.08 | 0.02 | −0.06 | −0.07 | 0 | FSPAV | |
1 | 0.45 | 0.63 | 0.07 | 0.09 | 0.08 | −0.05 | −0.09 | −0.1 | −0.06 | −0.03 | 0.01 | FSPST | ||
1 | 0.87 | 0.03 | 0.06 | 0.05 | 0.17 | 0.02 | −0.05 | −0.11 | −0.06 | −0.03 | FSPUT | |||
1 | 0.07 | 0.1 | 0.09 | 0.06 | −0.12 | −0.06 | −0.09 | −0.06 | −0.02 | FSINDEX | ||||
1 | 0.96 | 0.99 | −0.01 | 0.06 | −0.33 | 0.02 | −0.23 | 0.17 | TEXPCOST | |||||
1 | 0.99 | −0.01 | 0.07 | −0.31 | −0.02 | −0.25 | 0.2 | TIMPTCOST | ||||||
1 | −0.01 | 0.06 | −0.32 | 0 | −0.25 | 0.19 | TRADECOSTS | |||||||
1 | −0.1 | 0.1 | 0.06 | 0.1 | −0.03 | INSTQTY | ||||||||
1 | −0.04 | 0.26 | −0.1 | 0.08 | TRADE | |||||||||
1 | −0.04 | −0.04 | 0.19 | FTS | ||||||||||
1 | 0.22 | −0.18 | GFC | |||||||||||
1 | −0.51 | HC | ||||||||||||
1 | POPG |
Variables | Description | Measurements | Mean | Std. Dev. | Max | Min | Signs |
---|---|---|---|---|---|---|---|
FSPAC | Food security access pillar | PCA computation | −0.17 | 1.17 | 4.44 | −1.37 | Nill |
FSPAV | Food security availability pillar | PCA computation | −0.31 | 1.56 | 2.92 | −4.79 | Nill |
FSPST | Food security stability pillar | PCA computation | −0.08 | 1.00 | 2.90 | −1.29 | Nill |
FSPUT | Food security utility pillar | PCA computation | −0.13 | 1.52 | 3.86 | −3.86 | Nill |
FSINDEX | Food security aggregated index | PCA computation | −0.12 | 1.46 | 4.41 | −3.42 | Nill |
Total export costs index | PCA computation | 0.18 | 1.58 | 5.32 | −2.16 | + | |
TIMPTCOST | Total import costs index | PCA computation | 0.16 | 1.67 | 5.70 | −2.20 | + |
TRADECOSTS | Trade costs index | PCA computation | 0.25 | 2.27 | 7.83 | −3.04 | + |
INSTQTY | Institutional quality index | PCA computation | 0.13 | 2.05 | 4.70 | −3.42 | + |
TRADE | Trade openness | Trade value added % of GDP | 81.53 | 39.87 | 321.63 | 19.46 | + |
FTS | Infrastructure | Fixed telephone subscriptions | 953,140.00 | 1,863,395.00 | 7,900,000.00 | 2000.00 | + |
GFC | Gross fixed capital | Gross fixed capital formation (% of GDP) | 23.45 | 7.61 | 45.19 | 9.18 | + |
HC | Human capital | School enrollment, secondary (% gross) | 47.33 | 25.30 | 99.90 | 9.69 | + |
POPG | Population growth | Population growth (annual %) | −2.36 | 0.91 | 3.84 | 0.16 | - |
Food Security Access Pillar | Food Security Availability Pillar | |||||
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | |
l.fspav(pac) | −0.181 *** | −0.126 *** | −0.272 *** | −0.151 *** | −0.123 *** | −0.120 ** |
(0.069) | (0.030) | (0.063) | (0.036) | (0.040) | (0.041) | |
texpcost | −0.516 *** | −0.102 *** | ||||
(0.149) | (0.028) | |||||
timptcost | −0.412 *** | −0.116 *** | ||||
(0.110) | (0.029) | |||||
tradecosts | −0.616 *** | −0.0822 *** | ||||
(0.151) | (0.0188) | |||||
instqty | −0.324 *** | −0.346 *** | −0.416 *** | −0.045 ** | 0.014 | 0.014 |
(0.089) | (0.087) | (0.092) | (0.019) | (0.031) | (0.031) | |
trade | 0.012 *** | 0.009 *** | 0.012 *** | 0.008 *** | 0.009 *** | 0.009 *** |
(0.003) | (0.003) | (0.002) | (0.001) | (0.002) | (0.002) | |
gfc | −0.044 ** | −0.012 | −0.023 | −0.013 ** | −0.023 *** | −0.023 *** |
(0.019) | (0.021) | (0.018) | (0.006) | (0.005) | (0.005) | |
popg | −2.325 * | −2.131 * | −3.519 ** | −0.850 *** | −0.982 *** | −0.986 *** |
(0.803) | (0.919) | (1.068) | (0.131) | (0.124) | (0.118) | |
hc | −0.077 *** | −0.084 *** | −0.108 *** | −0.210 *** | −0.026 ** | −0.027 ** |
(0.023) | (0.026) | (0.028) | (0.037) | (0.010) | (0.010) | |
fts | −0.004 *** | −0.003 *** | −0.005 *** | −0.006 *** | −0.004 *** | −0.006 *** |
(0.001) | (0.001) | (0.001) | (0.003) | (0.001) | (0.002) | |
_cons | 5.350 * | 9.468 ** | 14.330 *** | 3.165 *** | 3.581 *** | 3.631 *** |
(0.682) | (3.174) | (3.698) | (0.635) | (0.856) | (0.852) | |
AR(1) | (0.058) | (0.443) | (0.471) | (0.000) | (0.001) | (0.001) |
AR(2) | (0.358) | (0.291) | (0.374) | (0.591) | (0.632) | (0.637) |
Sargan OIR | (0.734) | (0.765) | (0.72) | (0.000) | (0.000) | (0.000) |
Hansen OIR | (0.884) | (0.799) | (0.994) | (0.356) | (0.482) | (0.489) |
DHT for instruments (a) instruments in level | ||||||
H Excluding group | (0.617) | (0.365) | (0.476) | (0.035) | (0.039) | (0.041) |
Diff(null, =exogenous) | (0.877) | (0.904) | (0.135) | (0.910) | (0.972) | (0.871) |
(b) IV(years, eq (diff)) | ||||||
H Excluding group | (0.850) | (0.752) | (0.990) | (0.365) | (0.422) | (0.430) |
Diff(null, =exogenous) | (0.957) | (0.921) | (0.897) | (0.268) | (0.932) | (0.874) |
Fishers test | 289.2 *** | 150.7 *** | 130.5 *** | 156.6 *** | 174.1 *** | 0.222 *** |
Instruments | 32 | 32 | 32 | 32 | 32 | 32 |
Country(s) | 34 | 34 | 34 | 34 | 34 | 34 |
Observation | 97 | 93 | 93 | 148 | 142 | 142 |
Food Security Stability Pillar | Food Security Utility Pillar | |||||
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | |
L.fspst(put) | −0.166 *** | −0.213 *** | −0.214 *** | −0.349 *** | −0.291 *** | −0.291 *** |
(0.032) | (0.031) | (0.031) | (0.033) | (0.022) | (0.022) | |
texpcost | 0.008 | 0.146 | ||||
(0.050) | (0.336) | |||||
timptcost | 0.060 | 0.034 | ||||
(0.048) | (0.354) | |||||
tradecosts | 0.035 | 0.007 | ||||
(0.033) | (0.244) | |||||
instqty | −0.116 *** | −0.115 *** | −0.118 *** | −0.176 *** | −0.185 *** | −0.187 *** |
(0.012) | (0.009) | (0.009) | (0.039) | (0.037) | (0.040) | |
trade | 0.007 *** | 0.008 *** | 0.008 *** | 0.007 *** | 0.008 *** | 0.008 *** |
(0.001) | (0.001) | (0.001) | (0.002) | (0.002) | (0.001) | |
gfc | −0.014 * | −0.026 * | −0.025 * | −0.030 * | 0.011 | 0.012 |
(0.008) | (0.011) | (0.011) | (0.012) | (0.021) | (0.019) | |
popg | −0.523 ** | −0.579 ** | −0.571 ** | −2.255 *** | −2.299 *** | −2.392 *** |
(0.209) | (0.202) | (0.217) | (0.622) | (0.429) | (0.516) | |
hc | 0.015 | 0.004 | 0.003 | −0.092 *** | −0.094 *** | −0.096 *** |
(0.011) | (0.011) | (0.011) | (0.022) | (0.020) | (0.022) | |
fts | −0.005 *** | −0.008 ** | −0.007 *** | −0.005 ** | −0.004 ** | −0.006 *** |
(0.001) | (0.003) | (0.002) | (0.002) | (0.002) | (0.002) | |
_cons | 0.883 | 1.408 | 1.471 | 10.91 *** | 10.28 *** | 10.60 *** |
(0.925) | (1.148) | (1.134) | (2.521) | (2.400) | ||
AR(1) | (0.006) | (0.015) | (0.015) | (0.010) | (0.010) | (0.011) |
AR(2) | (0.955) | (0.572) | (0.542) | (0.709) | (0.779) | (0.781) |
Sargan OIR | (0.000) | (0.000) | (0.000) | (0.618) | (0.645) | (0.646) |
Hansen OIR | (0.552) | (0.576) | (0.562) | (0.530) | (0.329) | (0.332) |
DHT for instruments (a) instruments in level | ||||||
H Excluding group | (0.144) | (0.168) | (0.182) | (0.293) | (0.088) | (0.102) |
Diff(null, =exogenous) | (0.861) | (0.853) | (0.822) | (0.636) | (0.667) | (0.637) |
(b) IV(years, eq (diff)) | ||||||
H Excluding group | (0.540) | (0.551) | (0.539) | (0.462) | (0.273) | (0.277) |
Diff(null, =exogenous) | (0.375) | (0.451) | (0.434) | (0.855) | (0.781) | (0.752) |
Fishers test | 714 *** | 679.2 *** | 833.3 *** | 51.5 *** | 354.4 *** | 404.5 *** |
Instruments | 32 | 32 | 32 | 26 | 26 | 26 |
Country(s) | 34 | 34 | 34 | 34 | 34 | 34 |
Observation | 173 | 166 | 166 | 169 | 162 | 162 |
Food Security Aggregated Index | |||
Model 1 | Model 2 | Model 3 | |
L.fsindex | −0.301 *** | −0.256 *** | −0.269 *** |
(0.040) | (0.031) | (0.031) | |
texpcost | −1.379 * | ||
(0.566) | |||
timptcost | −0.797 ** | ||
(0.324) | |||
tradecosts | −0.839 * | ||
(0.372) | |||
instqty | −0.324 *** | −0.252 *** | −0.260 *** |
(0.033) | (0.051) | (0.041) | |
trade | 0.005 | 0.001 | 0.002 |
(0.002) | (0.002) | (0.002) | |
gfc | −0.075 *** | −0.051 ** | −0.062 ** |
(0.013) | (0.020) | (0.021) | |
popg | −0.989** | −1.498 ** | −1.286 * |
(0.468) | (0.516) | (0.487) | |
hc | −0.032 ** | −0.041 ** | −0.034 ** |
(0.012) | (0.014) | (0.013) | |
fts | −0.005 ** | −0.008 *** | −0.006 *** |
(0.002) | (0.002) | (0.002) | |
_cons | 4.793 ** | 5.831 ** | 5.185 ** |
(1.665) | (1.802) | (1.787) | |
AR(1) | (0.584) | (0.650) | (0.638) |
AR(2) | (0.358) | (0.349) | (0.367) |
Sargan OIR | (0.384) | (0.263) | (0.330) |
Hansen OIR | (0.583) | (0.419) | (0.421) |
DHT for instruments (a) instruments in level | |||
H Excluding group | (0.136) | (0.137) | (0.113) |
Diff(null, =exogenous) | (0.872) | (0.688) | (0.738) |
(b) IV(years, eq (diff)) | |||
H Excluding group | (0.819) | (0.635) | (0.668) |
Diff(null, =exogenous) | (0.037) | (0.045) | (0.035) |
Fishers test | 30.8 *** | 14.9 *** | 18 *** |
Instruments | 26 | 26 | 26 |
Country(s) | 34 | 34 | 34 |
Observation | 78 | 74 | 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, R.L.; Al-Mulali, U.; Ajide, K.B.; Mohammed, A.; Al-Faryan, M.A.S. The Implications of Food Security on Sustainability: Do Trade Facilitation, Population Growth, and Institutional Quality Make or Mar the Target for SSA? Sustainability 2023, 15, 2089. https://doi.org/10.3390/su15032089
Ibrahim RL, Al-Mulali U, Ajide KB, Mohammed A, Al-Faryan MAS. The Implications of Food Security on Sustainability: Do Trade Facilitation, Population Growth, and Institutional Quality Make or Mar the Target for SSA? Sustainability. 2023; 15(3):2089. https://doi.org/10.3390/su15032089
Chicago/Turabian StyleIbrahim, Ridwan Lanre, Usama Al-Mulali, Kazeem Bello Ajide, Abubakar Mohammed, and Mamdouh Abdulaziz Saleh Al-Faryan. 2023. "The Implications of Food Security on Sustainability: Do Trade Facilitation, Population Growth, and Institutional Quality Make or Mar the Target for SSA?" Sustainability 15, no. 3: 2089. https://doi.org/10.3390/su15032089
APA StyleIbrahim, R. L., Al-Mulali, U., Ajide, K. B., Mohammed, A., & Al-Faryan, M. A. S. (2023). The Implications of Food Security on Sustainability: Do Trade Facilitation, Population Growth, and Institutional Quality Make or Mar the Target for SSA? Sustainability, 15(3), 2089. https://doi.org/10.3390/su15032089