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Abstract: With the continuous increase in highway mileage and vehicles in China, highway accidents
are also increasing year by year. However, the on-site disposal procedures of highway accidents
are complex, which makes it difficult for the emergency department to fully observe the accident
scene, resulting in the lack of sufficient communication and cooperation between multiple emer-
gency departments, making the rescue efficiency low and wasting valuable rescue time, and causing
unnecessary injury or loss of life due to the lack of timely assistance. Thus, this paper proposes a
multi-agent-based collaborative emergency-decision-making algorithm for traffic accident on-site
disposal. Firstly, based on the analysis and abstraction of highway surveillance videos obtained
from the Shaanxi Provincial Highway Administration, this paper constructs an emergency disposal
model based on Petri net to simulate the emergency on-site disposal procedures. After transforming
the emergency disposal model into a Markov game model and applying it to the multi-agent deep
deterministic strategy gradient (MADDPG) algorithm proposed in this paper, the multiple agents
can optimize the emergency-decision-making and on-site disposal procedures through interactive
learning with the environment. Finally, the proposed algorithm is compared with the typical al-
gorithm and the actual processing procedure in the simulation experiment of an actual Shaanxi
highway traffic accident. The results show that the proposed emergency-decision-making method
could greatly improve collaboration efficiency among emergency departments and effectively reduce
emergency response time. This algorithm is not only superior to other decision-making algorithms
such as genetic algorithm (EA), evolutionary strategy (ES), and deep Q network (DQN), but also
reduces the disposal processes by 28%, 28%, and 42%, respectively, compared with the actual dis-
posal process in three emergency disposal cases. In summary, with the continuous development
of information technology and highway management systems, the multi-agent-based collaborative
emergency-decision-making algorithm will contribute to the actual emergency response process and
emergency disposal in the future, improving rescue efficiency and ensuring the safety of individuals.

Keywords: traffic engineering; emergency decision making; multi-agent deep reinforcement learning;
traffic accident; Petri net; Markov game

1. Introduction

In recent years, the rapid development an increasing scale of freeways has brought
huge economic benefits to society and also provided great convenience for individuals.
However, with the increase in the number of vehicles and the driving distance, freeway
traffic accidents occur frequently [1,2]. Research has shown that there is a significant spatial
autocorrelation between traffic accidents in various provinces and cities in China, which
means that the number of traffic accidents and deaths is high with high aggregation, which
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leads to traffic congestion in populated areas, resulting in the waste of resources and in-
ability to reflect sustainable development. Traffic accidents will not only threaten people’s
safety; improper emergency response will increase rescue time, cause secondary damage to
the accident site, waste resources, and hinder sustainable development [3]. In the actual
emergency disposal process of highway emergencies, the accident site is often complex,
the response time of the emergency department is urgent, and there is a lack of adequate
communication between multiple emergency departments, which makes the emergency
departments unable to fully understand the progress of the accident site, resulting in poor
cooperation between the emergency departments and low emergency rescue efficiency.
Therefore, the emergency response process can be optimized to improve the emergency
rescue efficiency, and to better protect people’s lives [4,5]. Thus , an emergency response
decision-making method is crucial to improve inter-department cooperation and optimize
the emergency response process. On this basis, how to obtain timely and accurate emer-
gency decision making, as well as reduce casualties and economic losses effectively, is also
an urgent subject to study [6].

As one of the typical means to improve traffic safety, emergency decision making
(EDM) in road traffic accident emergency response has been highly valued by road safety
researchers. A large number of researchers have tried to use various methods to formu-
late emergency-decision-making procedures to improve the safety of road traffic: Khan
conducted research on sustainable traffic safety in Hong Kong based on the Bayesian
network method, in which accident risk factors are introduced into the analysis of real
accident reports [7]; Ding proposed a zero-sum game method containing Pythagorean fuzzy
uncertain linguistic variables, which improved the fuzziness of decision makers’ evaluation
data in emergency situations for road emergency decision making [8]; J. Pérez González
has developed an analytical network platform to conduct time–space distribution statistics
and display of the accident distribution information, thus providing information assistance
and support for the decision making of emergency personnel [9]; Wang’s interval dynamic
reference point method based on prospect theory introduces psychological factors into the
consideration of emergency decision making, effectively improving the rationality of emer-
gency decision making [10]. The above research has made unique contributions to the field of
emergency decision making, but there are few studies on the emergency disposal processes
of road accident scenes, especially regarding the team cooperation of various departments
and the emergency disposal process, which need to be further improved [11–13].

The mathematical modeling of road emergency scene disposal is the basis of emer-
gency decision making research. How to retain the characteristics of highway traffic
accident emergency disposal while simulating the evolution of accident scenes is the focus
of modeling research. Nowadays, a large number of researchers at home and abroad have
put forward their own solutions to the modeling of emergency accidents: Song et al. have
considered the actual situation and features of emergency traffic evacuation, and developed
maximum covering models [14]; Qi L et al. used hybrid Petri nets to comprehensively
and systematically simulate the situation and response of emergency accidents, discrete
events and the evolution of emergency scenarios being clearly depicted, and with the help
of Markov chain and fuzzy mathematics, they analyzed the performance of the traffic emer-
gency command system, which greatly improved the rescue efficiency of the system [15,16];
based on Markov chains and the evolution mechanism of emergencies, Sun et al. built a
situation assessment model for emergency responses to highway traffic accidents, and used
it to infer the probability of traffic accidents under different conditions [17]. The above
research often regards the uncertainty and dynamic of the emergency scenario evolution
at the accident site as a dynamic sequential decision-making problem based on “scenario
disposal”. However, considering that accident disposal often involves multiple emergency
response departments, the on-site disposal of highway accidents should be considered
as a multi-agent cooperation problem. Therefore, as a sequential decision-making model
involving multiple objects, the Markov game method provides a reliable theoretical basis
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and potential solutions for building a decision-making model for the emergency disposal
of traffic accidents.

On the basis of building a model that can simulate the evolution law of the accident
scene, the design of supporting collaborative emergency response algorithms has become
the focus of further research. To date, a variety of intelligent decision-making algorithms,
including genetic algorithms, and evolutionary strategies have been applied to various
decision-making problems [18,19]. With the rapid development of artificial intelligence
algorithms, decision-making algorithms represented by reinforcement learning have pro-
vided solutions for emergency-decision-making and other problems [20,21]. Among them,
the multi-agent reinforcement learning algorithm is particularly suitable for solving the
emergency disposal problem at an accident site. In fact, the multi-agent reinforcement
learning algorithm has been widely used in the control and decision-making problems of
intelligent transportation systems. Wang et al. proposed a new multi-agent reinforcement
learning framework based on a collaboration group, which can effectively control the large-
scale road network through the collaborative vehicle infrastructure system and effectively
alleviate the congestion at multiple intersections [22]. On the basis of a highly scalable inde-
pendent double Q-learning method based on double estimators and the upper confidence
limit strategy, Wang et al. provided a solution for finding the optimal signal timing strategy
in large-scale traffic signal control [23]. Guo et al. proposed an improved near-end strategy
optimization algorithm to improve vehicle congestion in the traffic system. By adaptively
adjusting the algorithm’s super parameters and limiting the update range of the strategy,
the algorithm’s decision optimization capability is improved as much as possible while en-
suring the robustness of the algorithm [24]. The above research shows the wide applicability
and decision-making ability of a multi-agent in-depth reinforcement learning algorithm
in the transportation system. Considering the strong demand for stability in highway
emergencies, due to its high stability and strong performance, the multi-agent in-depth
deterministic strategy gradient (MADDPG) algorithm shows natural advantages [25–27].
The introduction of this algorithm induces the emergency-decision-making algorithm to im-
prove the efficiency of emergency disposal decision making under a high degree of stability,
and contributes towards coordinating the emergency behavior of various departments.

The rest of this paper is organized as follows: The second section describes how to use
Petri nets to establish a traffic emergency response decision-making model to simulate the
process of highway emergency disposal. The third section proposes an emergency-decision-
making method based on a multi-agent reinforcement learning framework, and explains
how to use this method to coordinate the emergency responses of different departments in
detail. The fourth section shows how to use the proposed modeling and decision-making
methods to optimize decision making in real traffic accident disposal cases, and analyzes
the results. The fifth section summarizes the contributions of this paper and the conclusions
derived from the experimental results, pointing out the limitations of existing research and
potential future research directions.

2. Modeling of a Highway Emergency Scene Disposal Process Based on Petri Net

Based on the analysis of emergency response monitoring videos and a large number
of written reports of highway emergencies from February to September 2019 obtained from
the Shaanxi Highway Toll Center, as well as discussions with emergency experts from the
Qinling Highway Management Office, this paper establishes a mathematical model based
on Petri net that can subdivide the functions of various emergency departments and simu-
late the on-site emergency disposal process. The emergency disposal process at the accident
site is regarded as the interactive process between the emergency response department and
the emergency disposal at the accident site. The accident site is constantly changing under
the influence of the response behavior exhibited by the emergency department, and the
complete process from the occurrence of the accident to the completion of on-site disposal
can be described as the emergency task. With the model construction method utilizing the
flow chart style, the disposal process at the traffic accident site can be simulated.
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Petri net is a mathematical representation of discrete parallel systems that is suitable for
describing asynchronous and concurrent computer system models. Petri net has both strict
mathematical representation and intuitive graphical representation; it also has rich system
description means and system behavior analysis techniques, providing a solid conceptual
basis for the simulation of multiple systems in the physical world. The place, transition, flow
relationship, and token are the basic components of Petri net. In the mathematical model
established in this paper, these elements represent the on-site accident disposal situation,
the emergency disposal behavior of various departments, and the evolution principle of the
emergency scenario, where the flow relationship specifies the impact relationship between
emergency tasks and various response behaviors, and the token indicates the current state
of the accident disposal process.

Petri nets are often expressed as Ne = [P, T, RPre, RPost, C], where P is the collection of
places and represents the emergency disposal task at the accident site; T is the transition
set, representing the disposal behavior of the corresponding department; C is the token set
of the model, and different token locations distinguish the situation of the accident; RPre
and RPost are the forward and backward correlation matrices of Petri nets, respectively.
The combination of the two defines the flow relationship of Petri nets, that is, the evolution
rules of accidents. In the Petri net constructed in this paper, the place is used to represent
emergency tasks in an emergency response, including a series of typical emergency task
processes in accident disposal such as casualty rescue, fire rescue, road cleaning, etc., which
are abstracted. In addition, the completion of each emergency task is distinguished by nu-
merical value. Taking the fire suppression task as an example, the on-site fire can be divided
into three conditions: no fire, fire existed, and fire spread, respectively corresponding to the
repository in the Petri net p14, p15, and p13. According to the different description objects,
the emergency disposal at the accident site is abstracted as a collection of six dimensions,
including people, vehicle, road, environment, road facilities, and accident information,
and multiple emergency tasks are extracted from the actual on-site emergency disposal
process; their corresponding situation with place is shown in Table 1.

Table 1. Mapping between places and emergency tasks.

Emergency Tasks Place Description

People

Emergency site evacuation
p1 Crowd is chaotic
p2 Crowd to be evacuated
p3 Crowd has been evacuated

Rescue of accident victims p4 The victims need rescue
p5 The victims are rescued

Care of accident victims
p6 Rescue workers injured
p7 The victims are dead or injured
p8 The victims were treated

Vehicle

Explosion risk p9 Risk of explosion
p10 No explosion risk

Cause of fire p11 Fire fighting plan is required
p12 Fire fighting plan existed

Fire conditions
p13 Fire spread at the accident site
p14 Fire existed at accident site
p15 No fire at the emergency site

Vehicle damage p16 Damaged vehicles are not handled
p17 Damaged vehicles are handled

Traffic

Traffic control p18 No traffic control
p19 Temporary traffic control
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Table 1. Cont.

Emergency Tasks Place Description

Traffic control p20 Blockage at the accident site
p21 No blockage at the accident site

Environment

Road cleaning p22 Sundries on site need to be cleaned
p23 No sundries on site

Site smoke
p24 Smoke spread
p25 Smoke existed
p26 No smoke

Road facilities

Facility damage p27 Road facilities are damaged
p28 Road facilities have been repaired

Escape routes p29 Escape routes closed
p30 Escape routes opened

Information board p31 Information not published
p32 Information published

Accident information

Accident report p33 Site conditions not reported
p34 Site situation has been reported

Accident record p35 The accident is not recorded
p36 The accident is recorded

In the disposal process of highway traffic accidents, different emergency response
departments have unique emergency response responsibilities. In order to improve the
efficiency of emergency disposal and avoid secondary accidents caused by misoperation,
various emergency disposal tasks at the accident site need to be completed by a special
emergency response crew. For example, facing a traffic accident with fire, the fire can only
be extinguished by the fire department at the accident site using fire-fighting equipment,
while other departments’ hasty attempts to extinguish the fire may exacerbate the fire due
to improper extinguishing methods, thus hindering the disposal process of the accident.
In order to effectively simulate the response responsibilities of different departments, this
paper uses the transition function in Petri net to describe the specific response responsibili-
ties of the emergency department. By sector, Table 2 shows the corresponding relationship
between a variety of typical emergency site response behaviors and transitions.

Table 2. Mapping between transitions and emergency actions.

Transition Description

Road Administration Department
t1 Evacuate the crowd
t2 Report the accident
t3 Early fire fighting
Traffic Police Department
t4 Block the accident site
t5 Record the accident site
t6 Deregulate the accident site
Fire department
t7 Develop fire fighting plan
t8 Fire fighting
t9 Dismantle damaged vehicle
Emergency medical department
t10 Rescue the injured
t11 Emergency treatment
Road clearance department
t12 Tow the damaged vehicle
Road maintenance department
t13 Clean up the accident site
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Table 2. Cont.

Transition Description

t14 Maintenance of road facilities
Traffic Management Center
t15 Turn on the on-site fan
t16 Open the escape route
t17 Change variable signal notification

The evolution of the accident scene can be seen as a process in which emergency
disposal tasks change constantly under the influence of emergency response behavior.
In this paper, the rule of accident site evolution is represented by flow relationships and
tokens in Petri nets. Taking the emergency task of on-site evacuation as an example, Figure 1
shows the situation in which on-site evacuation described by Petri nets changes under the
influence of response behavior.

Figure 1. Interaction rules between emergency tasks and response behaviors in the case of evacuation.

As shown in Figure 1, p1, p2, and p3 indicate that the on-site crowd is chaotic, the on-
site crowd is to be evacuated, and the on-site crowd has been evacuated, respectively;
p29 and p30 describe whether escape routes are opened, p31 and p32 show whether the
information on the information board is released. The meanings of different places are
listed in Table 1. The evolution law of on-site evacuation in Figure 1 is designed according
to the following principles: when there is a crowd at the scene of a traffic accident that needs
to be evacuated, and if the evacuation channel is opened and the variable information signs
indicate the correct direction, the on-site crowd will be successfully evacuated under the
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guidance of the response behavior of the traffic police department to evacuate the crowd.
However, when the evacuation route is closed or the variable information signs give the
wrong instructions, if the behavior of evacuating people is still carried out, the crowd will
be confused because the escape route is closed or the guidance information is wrong, thus
worsening the on-site disposal situation and hindering the emergency response process.

In order to better illustrate how the constructed model simulates the complete accident
handling process, Figure 2 shows the video captured during the fire accident monitoring
of the K1161+300m super-long tunnel No.1 in the Qinling Mountains of the Western Han
Dynasty in Shaanxi on 1 November 2019. From Figure 3, we can see the emergency accident
scene of vehicle collision and fire in the tunnel. Meanwhile, we can deduce that vehicle fire
fighting, victim rescue, and traffic control have been carried out, and the traffic accident
has been recorded, which provides a basis to establish the state space of the Markov game
(based on Table 3). Figure 3 shows how to use the constructed Petri net model to simulate
the fire drill.

(a) (b)

Figure 2. Road surveillance video of traffic emergency fire drill in Qinling No.1 Tunnel. (a) Traffic
control at accident scene, (b) On-site disposal of accidents.

Figure 3. Petri net that simulates the emergency-decision-making process in the case of a traffic
emergency fire drill in Qinling No.1 Tunnel.
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Table 3. State space of Markov game.

Emergency Tasks
Value

−1 0 1

People
Site evacuation s11 p1 p2 p3
Victim rescues12 p4 p5
Victim care s13 p6 p7 p8

Vehicle
Explosion risk s21 p9 p10

Fire cause s22 p11 p12
Fire condition s23 p13 p14 p15

Vehicle damage s24 p16 p17
Traffic

Traffic control s31 p18 p19
Site blocking s32 p20 p21

Environment
Road clearing s41 p22 p23

Site smoke s42 p24 p25 p26
Road facilities

Facility damage s51 p27 p28
Escape routes s52 p29 p30

Information board s53 p31 p32
Accident information

Accident report s61 p33 p34
Accident record s62 p35 p36

As shown in Figure 3, the emergency disposal tasks with 36 states are represented
in Table 1, the 17 emergency response behaviors defined in Table 2 belonging to different
departments are shown in Figure 3. As shown in Petri net, p3, p7, and p9 in the figure
correspond to three places, respectively, where the on-site crowd has been evacuated,
the incident victim has been injured or has died, and where there is an explosion risk.
The token in the place indicates that these states are activated at present, which also
indicates that the emergency drill is in the early stage of the accident.

3. Collaborative Emergency Decision-Making Method
3.1. Emergency Decision-Making Framework Based on Multi-Agent Reinforcement
Learning Algorithm

On the basis of using Petri nets to model the disposal process of highway accident
scenes, this paper proposes a collaborative emergency-decision-making algorithm to for-
mulate strategies for multiple emergency response departments at an accident scene.
With the MADDPG algorithm, the multi-agent reinforcement learning agent represents
the interaction between emergency response departments, including traffic police and
road administration, and the on-site disposal model based on Petri net, and optimizes its
decision-making ability by updating parameters. Figure 4 shows the framework of a collab-
orative emergency-decision-making method for traffic accidents based on the reinforcement
learning algorithm:

The proposed method is composed of three parts: database, modeling, and collabora-
tive decision-making. In this established framework, based on the analysis of the on-site
emergency monitoring video and a large number of literal reports of highway emergencies
from February to September 2019 obtained by the Shaanxi Highway Toll Center, and the
discussion and exchange of disposal experience with emergency experts from the Qinling
Highway Management Office, the disposal process of typical traffic accidents, including
vehicle rear collision, rollover, and vehicle on fire, was summarized and analyzed. We
extracted the interaction rules between the accident scene and the emergency crew from
the road monitoring video of a real traffic emergency disposal event, and clarified the
emergency tasks of each emergency department and the responsibilities of emergency



Sustainability 2023, 15, 2099 9 of 23

crew. On this basis, this paper uses the place, transition and flow relationships in Petri
net to simulate the evolution of the accident scene, respectively. On this basis, this paper
respectively uses the place, transition, and flow relationships in Petri net to simulate the
evolution of the accident scene, the disposal work of the different emergency departments,
and the information transmission of the different emergency departments. Then, in order to
combine it with the reinforcement learning method, Petri net is transformed into a Markov
game (MG) model. Since the state, action, and state transition laws of MG correspond to the
place, transition, and flow relationships of Petri net, respectively, we can transform the Petri
net of accident scene into a MG model to carry out reinforcement learning. Finally, with the
help of the multi-agent deep reinforcement learning algorithm, the decision generation of
collaborative emergency disposal for multiple emergency response departments is realized.
In the multi-agent deep reinforcement learning algorithm, each emergency department cor-
responds to different agents, and each agent can obtain the MG model, which corresponds
to the emergency site, and perform specific actions within each department to realize the
optimal emergency-decision-making strategy through continuous learning. Instructions on
how to convert the Petri net model into MG, and how to achieve collaborative emergency
decision making with the help of the reinforcement learning algorithm, are described in
detail in Sections 3.2 and 3.3, respectively.

Figure 4. Framework of cooperative decision-making method for traffic incident emergency response.

3.2. Emergency Decision-Making Process Based on Markov Game

In order to provide a collaborative disposal decision for a highway traffic accident,
it is necessary to convert the constructed Petri net model into a Markov game model,
so as to facilitate further application in the reinforcement learning framework. Markov
game is a dynamic and stochastic mathematical model that involves multiple participants,
and is often used to describe the sequential decision-making processes of multiple agents.
The Markov game model can be divided into tuples N, S, {ai}i∈N , T, and {ri}i∈N , where
N = {1, ..., n} means different decision makers, representing the emergency response
department in the disposal process of traffic emergency decision making; S is the state
involved in the game, representing the emergency disposal at the accident site, and the
specific composition is shown in Table 1; {ai}i∈N is the action space, which specifies
the functional scope of emergency response crew in different emergency departments,
A = ∏ ai; and i ∈ N is the cooperative action space, including all agents. The functions of
the departments are shown in Table 2. T : S× A× S → [0, 1] represents the distribution
of state transition probability, which is the state transition matrix in the Markov game. It
describes the evolution process of emergency scenarios under the influence of emergency
actions, and is shown in Table 3. In addition, ri : S× A× S→ R, i ∈ N reflects the reward
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obtained by each agent in the current state, where R is the reward space, corresponding
to the evaluation of emergency response behavior. A typical Markov game is shown
in Figure 5.

Figure 5. Diagram of Markov game.

As shown in the above figure, S0 is the initial state of the emergency site, the initial sce-
nario after the accident, and O0 represents the state observed by the emergency department
on the site; we set Oi = Si in this paper. Each agent according to the observation value
O0 and their current emergency response strategy π0(o0), generates an action A0, and the
corresponding reward value can be obtained. This cycle is repeated until the end, so that
the evolution of the accident site is simulated iteratively. More specifically, Formula (1)
mathematically describes the evolution process of emergency scenarios under the influence
of emergency actions:

Pa
ss′ = E

(
St+1 = s′ | St = s, At = a

)
(1)

in which St and St+1 represent the disposal scenario of the accident scene at the time t and
t + 1, At is the emergency response action at time t, and Pa

ss′ represents the probability that
state s changes to state s′ through action a.

In addition, as an important component of MG, the generation of reward value R
for emergency decision making follows these principles: when any urgent task is not
completed, −1 reward will be sent to each agent, and once all urgent tasks are completed,
∀Sij = 1 , that is, after the on-site emergency management is completed, each agent will be
given a reward of +100. This setting can urge the emergency department to understand
the urgency of the task, so as to better help the agent optimize its own decision-making
ability [28].

When the Petri net model is converted into a Markov game model, Petri’s place,
transition, and flow relationships correspond to the state, action, and state transition
relationships in the Markov game, respectively. In addition to simple element mapping,
MG elements also need to be quantified to facilitate later numerical calculation. Table 3
shows the corresponding relationship between the state space in MG and the repository of
Petri net. At the same time, the corresponding states and values are defined.

In order to show how to abstract the state, action, and evolution law from the actual
accident scene using the MG model more intuitively, Figure 6 shows the process of abstract-
ing the state of the MG model from the accident scene, and Figure 7 shows the method of
using the MG model to simulate the evolution of the scene.

Figure 6 shows the state in the Markov game generated from road incident on-site
scenarios. We mainly conduct an accident assessment on the incident site through the
roadside high-definition camera to preliminarily judge the scene. If there are on-site persons
to communicate with the emergency department, we can obtain more precise site state
information. It can be seen from Figure 6 that the camera can cover the entire incident site;
when the victims are rescued, Markov game state s12 is 1, and when the victims are not
rescued, the state s12 sets to 0 [29]. As shown in Figure 7, if there is smoke at the accident
site, the fire status of vehicles emergency task in the Markov model is assigned as 0. If there
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is no fire at the site, the corresponding status is assigned as 1. In addition, it can be seen
from the figure that the on-site vehicles have changed from the vehicle fire status to the
flame extinguishment status after fire-fighting action. Therefore, according to the spatial
distribution of the Markov model status and the corresponding relationship between the
place and the emergency task, the state of on-site fire (s23) in Markov state space changes
from 0 to 1.

Figure 6. State in Markov game generated from road incident on-site scenarios.

Figure 7. Example of emergency scenario evolution at the accident scene.

3.3. Emergency Decision-Making Method Based on Multi-Agent Reinforcement Learning

The multi-agent reinforcement learning method is an effective method to gradually
train and generate agents with intelligent strategies in the process of interaction between
agents and tasks. It is a common solution of the Markov game. The multi-agent depth
deterministic strategy gradient algorithm (MADDPG) is a classical MADRL algorithm that
has been widely used in various fields. MADDPG can use local information and then learn
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how to obtain the optimal strategy, so as to achieve optimal action. It is also suitable for
the cooperative environment and competitive environment of agents, and can effectively
reduce the influence and interference between multiple agents. Figure 8 shows a schematic
diagram of the MADDPG algorithm.

Figure 8. Diagram of the MADDPG algorithm.

MADDPG uses the centralized learning method to train the neural network. Specifi-
cally, optimizing the emergency strategy is to maximize the expected cumulative return
J(θi) = ES∼pµ ,ai∼πi

[
∑∞

t=0 γtri,t
]
, where π = [π1, ...πn] is used to represent the emergency

response strategy of n emergency response departments and θ = [θ1, ..., θn] is the parameter
of the neural network used by these generation strategies. Furthermore, the gradient
function of strategy update can be obtained by derivation of emergency strategy, as shown
in the following Formula (2):

∇θi J(θi) = Es∼pµ ,ai∼πi

[
∇θi log πi(ai | oi)Qπ

i (x, a1, . . . , aN)
]

(2)

where oi is the scene of the accident scene observed by the emergency department of
ith and x = {o1, ..., on} consists of the observation values of n emergency departments.
Qπ

i (x, a1, ..., aN) is the action value function of the ith emergency department, which is used
to evaluate different emergency response behaviors. Through this function, the emergency
department agent can estimate the expected reward for different actions and select the
optimal behavior accordingly. When policy µθi is determined, the gradient of expected
return will be updated as Formula (3):

∇θi J(µi) = Ex,a ∼D

[
∇θi µi(ai | oi)∇ai Q

µ
i (x, a1, . . . , aN)

∣∣∣
ai=µi(oi)

]
(3)

In order to learn from the experience of environmental interaction, MADDPG also sets
up an experience memory D to store the past experience of emergency disposal. The tuple
[s, s′, {ai}i∈N , {ri}i∈N ] constitutes the element in D. In addition, the algorithm also sets a
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loss function, which can break the correlation between sampled data through replaying
experience and updating the target network, so as to better fit the real action value function
Qπ

i (x, a1, ..., aN); the parameter update method of the evaluation network of the agent ith

is Formula (4):

L(θi) = Ex,a,r,x

[(
Qµ

i (x, a1, . . . , aN)− y
)2
]

(4)

where y is

y = ri + γQµ′

i
(
x′, a′1, . . . , a′N

)∣∣∣
a′ j=µj(oj)

(5)

Qµ′

i represents the target network of the agent, µ′ = [µ′1, ..., µ′n] is the emergency
strategy of the target network. In order to strengthen the communication and cooperation
between emergency crew, the strategies of other agents are used as a part of the prediction
target in the process of agent parameter update. Among them, µ̂

∅j
i

indicates the prediction

µ̂j from agent i to agent j, the loss function of agent i is defined as Formula (6):
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 (7)

With the help of experience memory D, the parameter update of any agent will be an
emergency strategy optimization of all agents, hence the update gradient of each emergency
disposal person’s strategy is Formula (8)

∇(k)
θi

Je(µi) =
1
K
Ex,a ∼Dk

i

[
∇θi(k)µ

(k)
i (ai | oi)∇ai Q

µ
i (x, a1, . . . , aN)

∣∣∣
ai=µ

(k)
i (oi)

]
(8)

In addition, in order to apply MADDPG to discrete action space, we use the reparameter-
ization method, which is recommended in the literature [30], and introduce ε-Greedy, which
balances the exploration and utilization in the process of strategy optimization. Figure 9 shows
the real intention of using MADDPG to make collaborative emergency decisions. Algorithm 1
presents the pseudocode of the emergency disposal algorithm for a highway accident.

Figure 9. Diagram of cooperative emergency-decision-making method for freeway accident on-site
disposal based on MADDPG.
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Algorithm 1 Emergency decision-making method for on-site traffic incident disposal based
on MADDPG

1: for episode= 1, Emax do
2: Initialize a random noise for emergency action exploration N
3: Observe the initialization emergency of the accident site x
4: Initialize the total time step in the first episode ts = 0
5: for time step= 1, Mmax do
6: Randomly select the emergency action of each agent i with a probability of 1

ts
7: Otherwise, for each agent i, select the emergency response behavior a according

to the current emergency strategy ai = argmaxa
(
µθi (oi) + Nt

)
8: Store (x, a, r, x′) in experience memory D
9: x ← x′

10: ts ← ts + 1
11: for Emergency department person i=1, N do
12: Take S random batch samples (xj, aj, rj, x′j) from D
13: Calculated yj according to formula (7)
14: Update the evaluation by formula (4) to minimize the loss
15: Update the strategy gradient according to formula (8) according to the sam-

pling results
16: Update the target network parameters of each agent i:θ′i ← τθi + (1− τ)θ′i
17: end for
18: end for
19: end for

4. Results
4.1. Experiment Initialization

In order to verify the effectiveness of the proposed collaborative emergency-decision-
making method in the on-site emergency disposal of highway accidents, three real highway
accidents were selected from the research database (represented by cases 1–3 in this paper).
These three accidents covered different typical types of highway emergencies, including a
fire accident that occurred in the K1161+300m extra-long tunnel No. 1 of Qinling, Western
Han, Shaanxi, on 1 November 2019; a vehicle spontaneous combustion accident occurred
at K4+000m of Shaanxi Wuding Highway on 7 September 2019; and a vehicle collision
with a highway fence that occurred at K13+800m of Xi’an Ring Highway in Shaanxi on
26 February 2019. In order to verify the collaborative decision-making capability of the
proposed algorithm, many algorithms, including the comparison baseline, were used for
emergency decision making in these cases, and the disposal process steps were used as
indicators to measure the length of disposal time and algorithm performance. Meanwhile,
the actual emergency disposal process steps extracted from the cases were used to compare
with the algorithm evolution results, and further illustrate the potential help of the proposed
algorithm in practical applications.

As shown in Figure 9, when a traffic accident occurs, we can obtain the accident
information through the information exchange between roadside facilities such as cam-
eras and on-site personnel. The roadside camera can obtain the basic information of the
accident scene, such as whether it is on fire, vehicle collision, and the on-site person can
communicate with the emergency department by telephone to transmit more detailed
on-site accident information. Then, the emergency agents assign corresponding emergency
personnel and emergency vehicles to the site for emergency disposal. After determining
the cases used in the experiment, it is necessary to further instantiate these cases, that is,
convert them into the quantified MG model established in Section 3. Considering that the
instantiation of traffic accidents is mainly realized by the adaptive numerical initialization
of the MG model state matrix, after converting the state matrix of MG with six rows and
four columns into a vector with one row and twenty-four columns, the model conversion
method proposed in Section 3 is used. Taking the accident scenario in case 1 as an example,
according to the corresponding relationship between the state space of Markov game and
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different emergency tasks in Section 3, we can obtain the state attributes of six departments,
namely, people, vehicle, traffic, environment, road facilities, and accident information.
Among them, the vehicle department has the highest number of emergency tasks (four
emergency tasks). Therefore, a 6 × 4 state matrix is set. However, other departments do
not have four emergency tasks, so the spare matrix elements of each department are filled
completely by setting 0. Therefore, there are 16 effective state factors and 8 complemen-
tary elements to form matrix complements. The formation process of the state matrix
in presented in Figure 10. After distinguishing the initial emergency disposal tasks in-
volved in the three cases, their initial statuses are [0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0],
[1,1,1,1,0,1,1,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0] and [1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0],
respectively. In addition, this experiment was carried out on a computer equipped with
Intel i5-8300H 2.30 GHz CPU, 8 GB memory, and NVIDIA GTX1060 GPU.

Figure 10. Emergency disposal process from scenario modeling to MADDPG algorithm in case 1.

4.2. Algorithm Comparison Baseline

In addition to verifying the impact of experience transfer on emergency decision
making, the effect of the emergency-decision-making algorithm based on the MADDPG
algorithm designed for multiple emergency departments on site should also be analyzed
and compared. For this reason, this paper purposely selects a number of classic decision
optimization algorithms as algorithm comparison baselines to carry out comparative anal-
ysis of case results, including the genetic algorithm (GA) [31], and a variety of decision
optimization methods, including evolutionary strategy (ES) [32] and the deep Q network
(DQN) [33], are used for emergency decision making of highway accident disposal. In ad-
dition to the three methods that can directly match the MG model, the genetic algorithm
and evolutionary strategy are selected as non-machine learning parametric optimization
methods, and the deep Q network is selected because of its deep reinforcement learning
background. In addition, the deep Q network is selected as a single-agent algorithm. The
results of the decision-making process can highlight the importance of multiple agents
in accident scene disposal. The training super parameters of the above algorithms are
shown in Table 4. Meanwhile, in the process of emergency rescue, it is necessary to coor-
dinate different departments to form a general group decision. However, there are many
uncertain factors in this process, which have brought different degrees of influence on
group decision making. In order to improve the robustness of the system under uncertain
environments, referring to the two concepts of individual operations and unit adjustment
costs in group decision making (GDM), we have made some adjustments to the emergency
response department model to improve its robustness in uncertain environments. In the
following comparison with the experimental results of various algorithms, we can see that
the robustness of the system has been improved [34–36].

The following describes the criteria for selecting hyperparameters of each emergency-
decision-making process. In the genetic algorithm, if the crossover rate cr is too high,
the structure of individuals with high fitness in the population will be destroyed quickly,
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leading to a strong oscillation in strategy optimization; otherwise, the genes of the popula-
tion changes too slowly, and it is difficult to find an optimized strategy. As for the variability
mr in the genetic algorithm, when it is too large, the process of optimization may turn out
to be a random search, when it is too small, the algorithm will fail to produce new genes.
Thus, we set crossover rate cr as 0.2 and variability mr as 0.005. In the evolutionary strategy,
if the variation intensity ms of ES is too large, the optimization will fluctuate violently,
and if it is too small, the proceeding of optimization would be too slow; therefore, we set
the variation intensity ms of ES as 0.2. The explore decay rate γε in DQN is the decay factor
of ε-Greedy strategy, which is an exploratory strategy designed to enhance the exploration
of the environment by agents. At each time step, the agent with probability ε chooses action
randomly, otherwise, it chooses action according to the current strategy. The explore decay
rate is exactly the decay factor of ε, where εt+1 = εt + γε. The value of ε could be relatively
large at the beginning of the training process, and gradually become smaller as the training
progresses. The explore decay rate γε is generally set to range from 0.9 to 0.995; we chose
to set it to 0.995 to ensure that the agent has sufficient exploration of the environment. As a
member of DRL family, the MADDPG has a large number of sensitive hyperparameters,
while most of them are similar to DQN hyperparameters. However, compared with DQN,
noise intensity is a specific hyperparameter in MADDPG, and is specifically tuned in our
proposed method. The noise intensity N refers to the noise that needs to be added to the
action during exploration. The explore noise is added to the action when the agent interacts
with the environment and collects training data; such settings could improve the agent’s
exploration of the environment, so we set the noise intensity of MADDPG as 0.2.

Table 4. Hyperparameters of each emergency-decision-making algorithm.

Algorithm Symbol Meaning Value

GA cr Crossover rate 0.2
mr Variability 0.005

ES ms Variation intensity 0.2
DQN γε Explore decay rate 0.995

MADDPG N Noise intensity 0.2

Figure 10 shows the emergency disposal process from scenario modeling to MADDPG
algorithm in case 1 emergency scenario. Initially, the information obtained by cameras
and field personnel can be used to display the accident site states, and the corresponding
6 × 4 status matrix can be generated, in which 6 means 6 different emergency departments,
with a total of 24 elements. Then, the generated state matrix is transferred to MADDPG
network training; the MADDPG algorithm trains each agent, which represent different
emergency departments through the actor and critical networks, and the agent selects the
corresponding action accordingly. Finally, the corresponding emergency response process
of case 1 can be obtained. More specifically, the internal parameters of each algorithm are set
as follows: the structure of the neural network of MADDPG algorithm agents is identical;
the main network and target network of each agent in the algorithm are the same; and the
structure of actor network and critic network is also the same. They are all composed of
fully connected neural networks with three hidden layers. The number of neurons in the
three hidden layers is 96, 128, and 64, respectively. The number of neurons in the input
layer and output layer of the neural network is determined by the state of the network
perception and the shape of the output action. In addition, the population number of the
genetic algorithm is 50, the population number of the evolutionary strategy is 50, and the
sub algebra is 25. The neural network of the depth Q network also uses the full connection
structure. The number of neurons in the four hidden layers is 10, 50, 30, and 15, respectively.
Each algorithm will go through 150,000 steps of the decision-making optimization training
process, and its final emergency-decision-making effect will be evaluated through the
average reward in the training stage and emergency disposal process steps.
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4.3. Collaborative Emergency Decision-Making Based on Multi-Agent Deep
Reinforcement Learning

In order to elaborate the application of the proposed algorithm in the actual case and
its improvement effect on on-site disposal, this paper first analyzes the emergency-decision-
making effect of case 1 abstracted from the traffic fire emergency drill at K1161+300m
of Qinling Tunnel 1 in the Western Han Dynasty in Shaanxi Province on 1 November
2019. A variety of emergency-decision-making algorithms, including GA, ES, DQN, and
MADDPG, have been trained by 1000 episodes, respectively. The maximum step size of
each episode is 1000 steps. The time step required for each episode algorithm to complete
an emergency response is shown in Figure 11.

Figure 11. Performance of various algorithms in the case of a fire drill in Qinling No.1 Tunnel.

The horizontal axis in Figure 11 represents the number of training cycles, and the
vertical axis is the emergency response time step required for the algorithm to complete
all emergency response tasks in one episode. Considering that the disposal time is an
important indicator of emergency response evaluation, the time step required for the
algorithm to complete all emergency response tasks in a cycle was used to evaluate the
quality of emergency decision making. In order to clearly display the results, we divided
1000 training episodes into 20 sections, each of which contained 50 episodes. The average
and median values of emergency response time steps of different algorithms in each section
are displayed in the form of a histogram and broken line graph, respectively. In addition,
this paper selects the time step size of each algorithm in the last section for evaluation,
because this represents their emergency-decision-making level after fully training the
algorithm convergence. Therefore, a box plot of decision time steps of the last 50 cycles
of each algorithm is shown in Figure 12, and the corresponding numerical statistics are
shown in Table 5.

Through comparison, it can be found that the time steps of GA and ES decreased to
varying degrees after training, and they are respectively stable at 180 steps and 50 steps in
the last 50 episodes. The DQN algorithm diverges after training, and the final step cost is
more than 2000. The emergency response time step of the MADDPG algorithm decreased
significantly after training, and finally stabilized to about 10. It can be seen that MADDPG
algorithm performs best among these algorithms. In the last 50 episodes, the time steps
for MADDPG to complete an emergency response ranged from 9 to 15, with a standard
deviation of 1.69. It shows that the emergency decision making of the trained MADDPG
agent is not only fast but also stable.
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In order to further evaluate the improvement of the MADDPG algorithm’s collabo-
rative emergency decision making on actual emergency disposal, this paper also extracts
the actual human disposal process in the fire drill of Qinling Tunnel 1, and compares it
with the emergency disposal time step as an indicator. After abstraction, it was found
that in the actual emergency drill, the on-site response department spent 14 time steps to
complete an emergency response. In order to more intuitively show the difference between
MADDPG decision-making algorithm and manual disposal, the difference between the
final 300-episode MADDPG disposal time step and manual disposal is shown in Figure 13.

Table 5. Algorithm statistics for the last 50 episodes.

Algorithm
Quantitative Characteristics of Emergency Response

Average Standard Deviation Maximum Minimum

GA 52.04 58.45 326 16
ES 184.04 108.86 558 56

DQN 1132.52 682.36 3004 308
MADDPG 10.82 1.69 15 9

Figure 12. Box plot of step cost for different algorithms in last 50 episodes.

Figure 13a shows the change of the time step of MADDPG based emergency disposal
decision in the form of a line chart. It can be seen that with the process of agent training,
the decision making time step of emergency disposal is significantly reduced. It should be
pointed out that the oscillation of the curve in the exploration period is due to the fact that
there is no parameter update of the algorithm at this time, but the algorithm really starts to
update the parameters from the 572th episode. The time step of the algorithm gradually
decreases with the rapid rise, and finally stabilizes to a lower level. This process is the
process that MADDPG continues to improve and optimize its emergency response strategy.
Figure 13b shows the difference in time step between MADDPG and actual emergency
disposal. The horizontal axis of Figure 13b is the number of training cycles, and the vertical
axis is the step cost difference between the real emergency disposal decision and the agent.
The green and red are used to distinguish the positive and negative step cost differences,
respectively. If the difference is greater than zero, the curve is represented by green, indicat-
ing that the time required for the emergency decision generated by the agent to complete all
tasks in the fire emergency drill is less than 14 steps spent in actual disposal. It can be seen
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that with the training of agents, the difference gradually increases, and the decision-making
of agents becomes better than the real emergency response process. The reason for this
result is that the trained MADDPG based emergency response departments can effectively
cooperate with each other, thus improving the efficiency of emergency response.

(a) (b)

Figure 13. Comparison of step cost between MADDPG emergency decision-making and actual
emergency response. (a) Step cost for MADDPG in Fire Emergency Drill, (b) Difference of step cost
between MADDPG and real disposal.

Figure 13a shows the change in the time step of MADDPG-based emergency disposal
decision in the form of a line chart. With the process of agent training, the decision making
time step of emergency disposal is significantly reduced. It should be pointed out that the
oscillation of the curve in the exploration period is because there is no parameter update of
the algorithm at this time, and the algorithm starts to update the parameters from the 572th
episode. The time step of the algorithm gradually decreases after the rapid rise after it starts
to update, and finally stabilizes to a lower level, which clearly demonstrates the process of
MADDPG continuous improvement and optimization of its emergency response strategy.
Figure 13b shows the difference in time step between MADDPG and actual emergency
disposal. The horizontal axis of Figure 13b is the number of training episodes, and the
vertical axis is the difference in step cost in an entire emergency disposal . The green and
red lines are used to distinguish the positive and negative step cost differences, respectively.
If the difference is greater than zero, the curve is represented by green, indicating that
the time required for the emergency decision generated by the agent to complete all
emergency disposal tasks is less than 14 steps spent in actual disposal, and also indicating
that the emergency decision generated by the agent is better than the actual disposal, which
improves the efficiency of emergency disposal. We can see from Figure 13b, with the
continuous training and learning of the agent, the difference between agent and actual
disposal gradually increases, and the emergency disposal decision generated by the agent
is better than the real emergency disposal process. This illustrates that the emergency
response departments trained by MADDPG can effectively cooperate with each other to
improve the efficiency of emergency disposal.

In order to prove that the proposed algorithm can provide collaborative decision
making for the corresponding departments in the emergency response of different highway
emergencies, two additional traffic accident cases, one single-vehicle collision accident that
occurred on 2 April 2019 at K20+000m of Xi’an Ring Highway and one two-vehicle rear
end collision accident that occurred on 5 April 2019 at K20+070m of Xi’an Ring Highway,
were studied as case 2 and case 3. Emergency decision-making algorithms, including actual
disposal (AD), GA, ES, DQN, and MADDPG were used in the on-site disposal decisions
of case 2 and case 3, and the experimental results of each algorithm were consistent with
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the performance of case 1. In order to intuitively demonstrate the optimization ability
of different algorithms to respond to emergency decisions, the time steps of emergency
disposal generated by different algorithms in the last training cycle of cases 1, 2, and 3 are
shown in Table 6.

Table 6. Time step of different decision-making methods in last training episode.

Case
Quantitative Characteristics of Emergency Response

AD GA ES DQN MADDPG

I 14 16 56 308 9
II 7 19 45 158 5
III 7 10 33 163 4

As shown in Table 6, the performances of each algorithm in different cases are con-
sistent: the MADDPG-based emergency-decision-making method is significantly better
than GA, ES, and DQN. Meanwhile, in case 2 and case 3, the time step required for actual
disposal extracted from the road monitoring video is 7, which is larger than the emer-
gency decision generated by MADDPG, further indicating that the emergency disposal
decision based on the MADDPG algorithm can optimize the emergency disposal process
by coordinating different emergency departments so as to further improve the efficiency of
emergency disposal and reduce the disposal time.

5. Conclusions

With the continuous increase in highway mileage and vehicles in China, highway
accidents are also increasing year by year. However, the on-site disposal procedures of
highway accidents are complex, which makes it difficult for the emergency department
to fully observe the accident scene, resulting in the lack of sufficient communication and
cooperation between multiple emergency departments, making the rescue efficiency low
and wasting valuable rescue time, seriously endangering the lives of the people involved.
This paper proposes a decision-making algorithm for on-site emergency collaborative
disposal based on multi-agent deep reinforcement learning algorithm. First of all, with the
help of the analysis of Shaanxi provincial highway monitoring videos obtained from the
Shaanxi Provincial Highway Administration, this paper constructs an accident scene emer-
gency disposal model based on Petri net to simulate the emergency disposal process at
an accident site. After transforming the emergency disposal model into a Markov game
model and applying it to the multi-agent deep deterministic strategy gradient (MADDPG)
algorithm, which is proposed in this paper, the multi-agent can optimize the emergency-
decision-making and on-site disposal procedures through interactive learning with the
environment. Finally, in the actual emergency case verification, the difference between the
disposal processes of the algorithm simulation and the actual situation are compared, and
the proposed algorithm is also compared with typical algorithms such as the genetic algo-
rithm (EA),evolutionary strategy(ES), and deep Q network(DQN). The results show that the
emergency response of the proposed algorithm can better mobilize the team cooperation
among emergency departments, and effectively reduce the time spent on the emergency
disposal process. The algorithm proposed in this paper has been verified on three actual
typical highway emergency disposal cases reported by highway road monitoring in Shaanxi
Province. The experimental results show the advantages of our algorithm in the collabora-
tive disposal of multiple emergency departments. Furthermore, by comparing the response
time steps of MADDPG with actual video recordings of highway traffic emergencies, it
can be seen that the response decisions generated by MADDPG can better promote the
collaborative response among emergency departments. The response decision proposed
by algorithm can reduce the time steps required for emergency response, and shorten the
response time by 28%, 28%, and 42%, respectively, in the three actual emergency disposal
cases, providing decision support and optimization to the actual response.
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With this algorithm, the highway emergency disposal simulation can obtain the real-
time emergency disposal situation of the accident scene through high-definition road
cameras, make emergency decisions for different emergency disposal departments through
the reinforcement learning agent, and finally conduct real-time collaborative disposal
among multiple departments through communication terminals, including mobile phones
and intercoms. In addition, with the promotion of intelligent highway management and
the application of cloud computing technology in actual emergency management, the pro-
posed algorithm will be able to learn the on-site disposal processes of different accidents,
and provide decision support to the on-site emergency disposal crew. The multi-agent-
based collaborative emergency-decision-making algorithm proposed in this paper can
provide technical support for emergency response decisions for emergency departments in
the future. In a serious traffic accident, which may cause a large number of casualties and
property damage, the emergency decision generated by algorithm can strengthen the coor-
dination of emergency departments, shorten the time of emergency disposal, and improve
the efficiency of on-site emergency disposal through the emergency decision proposed
by the algorithm according to the situation of the emergency site, which can increase
valuable rescue time to ensure people’s safety; meanwhile, the traditional traffic accident
emergency drill takes a long time and requires a lot of manpower and material resources,
which makes the economic cost and time cost of the drill higher, which has a significant
impact on sustainability; thus, the number of emergency drills is lower. The introduc-
tion of this algorithm can provide a reference for emergency drills, greatly improve the
efficiency of emergency drills, reduce the economic cost and time cost loss of emergency
drills, and also reduce the waste of resources in the process of emergency response, so as to
achieve sustainable development.

However, there are still limitations and space to be improved in this research. For the
model building, although major traffic accident scenarios have been taken into account
in this accident scene emergency disposal model based on Petri net, there are still some
special circumstances that have not been considered, such as whether there are hazardous
chemicals and explosion risks on the site, and the reward evaluation of the algorithm is
relatively simple, mainly for traffic efficiency and traffic safety; for the the emergency-
decision-making algorithm, in this paper, a multi-agent reinforcement learning algorithm
is proposed, which mainly optimizes emergency decision making through the agents’
interactive learning with the environment. However, these agents lack initiative and cannot
directly accept the experience of emergency disposal experts, and they need to constantly
learn to obtain optimized emergency disposal processes, which will waste some learning
time. Therefore, the further aim of this research is mainly divided into two directions.
Firstly, the on-site emergency disposal model can be improved, the emergency disposal
process can also be more refined, and the evaluation factor of the emergency disposal site
can be added. Secondly, we can select a multi-agent algorithm with better performance,
or introduce supervision learning into the optimization decision of emergency disposal
to further improve the learning speed of emergency disposal agents and improve the
efficiency of emergency disposal. In short, with the continuous development of informa-
tion technology and highway management system, the multi-agent-based collaborative
emergency-decision-making algorithm will help the actual emergency response and emer-
gency disposal in the future, effectively improve the rescue efficiency, ensure people’s safety,
and also reduce the waste of resources caused by insufficient coordination in the processes
of emergency disposal and emergency drills, so as to achieve sustainable development.
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