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Abstract: In order to improve the level of new energy consumption and reduce the dependence of
the power system on traditional fossil energy, this paper proposed a bi-level optimization model
for virtual power plant member selection by means of coordination and complementarity among
different power sources, aiming at optimizing system economy and clean energy consumption
capacity and combining it with the time sequence of load power consumption. The method comprises
the following steps: (1) The processing load, wind power, and photovoltaic data by using ordered
clustering to reflect the time sequence correlation between new energy and load and (2) uses a
double-layer optimization model, wherein the upper layer calculates the capacity configuration of
thermal power and energy storage units in a virtual power plant and selects the new energy units
to participate in dispatching by considering the utility coefficient of the new energy units and the
environmental benefit of the thermal power units. The Latin hypercube sampling (LHS) method
was used to generate a large number of subsequences and the mixed integer linear programming
(MILP) algorithm was used to calculate the optimal operation scheme of the system. The simulation
results showed that by reducing the combination of subsequences between units and establishing a
reasonable unit capacity allocation model, the average daily VPP revenue increased by RMB 12,806
and the proportion of new energy generation increased by 1.8% on average, which verified the
correctness of the proposed method.

Keywords: virtual power plant; ordered clustering; bilevel optimization; Latin hypercube mixed;
integer linear programming

1. Introduction

After 2020, China’s total terminal energy demand entered the growth stage of satu-
ration, and the scale of supply side is in excess, and the supporting thermal power units
cannot be retired immediately [1]. This makes the total installed capacity in the same
area in excess, and more of the same type of power enterprises. Virtual power plants
(VPP) aggregate generation side resources with different output characteristics through
advanced communication, control, and network technologies to participate in power grid
dispatching. Based on the software-based decentralized control structure, each entity can
receive, cooperate, and respond to demand according to requirements [2,3]. VPP can take
advantage of the current situation of excess resources in the generation side, give full play
to the output characteristics of different members, and select the members that are more
conducive to meeting the dispatching needs from the existing power plants to complete
the dispatching tasks. How to judge which subsequence multiple units are in at the same
time and how to select members and dispatch the units in different subsequences will test
the rapid response ability of VPP.

The main objective of different VPP member combinations in existing studies is to
maximize the economic benefits. Romanos P et al. proposed an operational energy manage-
ment strategy that uses thermal energy storage tanks to generate electricity in conjunction
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with 670 MW nuclear power plants in the United Kingdom [4]. Cavazzini G et al. com-
bined pumped storage and wind power to increase revenue and working hours [5]. In
Wei C, Xu J, Liao S, et al., distributed thermostatic control load and intermittent renew-
able energy were combined to form VPP, which can reduce the most unbalanced power
and was not affected by parameter heterogeneity, and was suitable for diversified virtual
electricity [6]. Cao ], Zheng Y, Han X, et al. proposed a VPP two-stage scheduling strategy
with multi-time scale optimization, which introduced external calculation to coordinate
the real-time complementation of regional energy [7]. Some members can decide the unit
capacity configuration and system deployment according to the demand side and power
plant degradation characteristics [8,9]. Li, Z. et al. took into account the heterogeneous
uncertainties from the renewable energy, market prices, and electricity loads through a
risk-averse stochastic programming approach [10].

Other studies have also analyzed the characteristics of members of the VPP: Chen Y,
Du Q, Wu M, et al. combined the seasonal characteristics of hydropower resources through
the signing of medium-term contracts to obtain a certain flexible load reserve to minimize
the daily operating cost of the VPP [11]. Sakr W S, EL-Sehiemy R A, Azmy A M, et al.
considered the uncertain load demand, renewable energy, and market price of VPP, and
determined the optimal capacity and location of the dispatchable load [12]. Rahimi M,
Ardakani F ], and Ardakani A ] established the windPDF model to speed up the uncer-
tainty and improve the expected net profit of VPP [13]. Z. Li integrated multiple levels
of renewable energy to optimize the hourly operation of distributed renewable energy
generation [14]. However, the above literature did not take into account the following.
(1) The seasonal variation of load in some areas is not obvious. The load curve cannot be
simply replaced by the typical load of the season. (2) In the process of capacity allocation,
VPP does not notice that some members also undertake the function of making up for the
lack of other members while meeting the load demand, and this part of the function is not
reflected, which indirectly affects the value of these members.

In order to complete the dispatching tasks of the virtual power plant to the power
grid more reliably, the problem of how to design indices to select members among multiple
units still needs to be solved. According to the characteristics of distributed generation such
as photovoltaic and wind power generation, the index of the uncontrollable member utility
coefficient was proposed, and a virtual power plant member selection model considering
the time sequence of power consumption was established. First, the sample was divided
into different subsequences by using ordered clustering. Then, the upper reference utility
coefficient and environmental performance index were used to calculate the capacity
configuration of thermal power and energy storage units in VPP and select the wind power
and photovoltaic units to participate in the scheduling. The lower optimization used the
MILP algorithm to calculate the optimal operation scheme of the system.

2. Data Preprocessing

The data of the load and new energy units are highly uncertain due to seasonal and
climatic factors. When forecasting, it is often considered to use collection methods with
less interference factors or to consider more interference factors for modeling [15-17].
Some clustering algorithms are also used, but the usual clustering algorithm is to disrupt
the clustering samples, and then divide the samples with similar characteristics into one
class. Ordered clustering seeks the optimal segmentation method without changing the
order of the samples [18]. Zhao ] and Liu J (2020) used ordered clustering to analyze the
degradation trend of capacitors under different temperatures and humidities, and the
proposed degradation fitting function could well fit the degradation trend under different
stresses [19]. Ping W and Zhou H (2020) improved the K-means algorithm by using the
idea of two orders to reduce the number of binning and improve the efficiency of picking
equipment [20]. Gao Chun, Yu Aiqing, and Ding Yu (2021) used the recursive ordered
clustering method to reduce the impact of distributed generation on the distribution
network reconfiguration [21]. Yuan Tie-jiang and Cao Ji-lei (2022) used a combination
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of the sequential algorithm and clustering algorithm to reduce the wind power-load
time sequence subsequence to improve the calculation speed of the subsequent optimal
allocation process [22].

Load sample data L = {Ly, Ly, ..., Ly}, select different number of points p to segment,
p € (1,n), and select the optimal segmentation position P, P = {Py, P,,..., P, }. Divide the
sample into p 4 1 subsequences, the sum of the squares of deviations is defined as shown in
Formulas (1) and (2), and finally, the number of optimal segmentation points is determined
by using the contour coefficient. The expected value of the segmented load subsequence set
is used as a typical load subsequence, and the function of the contour coefficient is defined
as shown in Formula (3), wherein the range of the contour coefficient is [-1, 1]. The larger
the value, the better the clustering effect.

T K
S=Y.2 Y IL—pi )
t=1i=1L€EL;y
1 ki
Hit = 55— Ly )
l Pi_Pi—ln_pIZ]Jr1 h)
- 1 bi — aj
c E; max{a;, b;} ®)

where K is the number of centroid samples; y; ; is the centroid of the ith centroid sample at
time ¢; n is the number of samples; g; is the average distance between the ith sample and all
other samples in the same cluster; and b; is the average distance between the ith sample and
all samples in the next best cluster. The number of segmentation points p corresponding to
the maximum contour coefficient C was selected as the optimal number of segmentation
points to determine the load classification scheme. The time series data of the wind power
and photovoltaic units were divided into multiple subsequences in units of days according
to the p segmentation points obtained by the orderly clustering of electric loads, as shown
in Figure 1.

Load .oad l.oad

Ihew
\Energy

Figure 1. Schematic diagram of new energy and load time node division based on ordered clustering.

3. Research on VPP Member Selection Architecture
3.1. System Structure of Virtual Power Plant

As is shown in Figure 2, the VPP control center exchanges information with thermal
power, wind power, photovoltaic, energy storage, and general load, and arranges power
output as a whole. Thermal power and energy storage, as the controllable members in
the selection of VPP members, play a role in stabilizing the uncertainty of renewable
energy output and ensuring the continuous and stable power supply, while wind power
and photovoltaic power, as the uncontrollable members in the selection of VPP members,
undertake the task of power supply together with thermal power units because of the
unstable output due to weather and other factors. Load is considered to be an uncontrollable
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member that must be selected by the VPP because it has similar characteristics to wind
and PV.

stored energy load
Figure 2. Control diagram of the virtual power plant.

3.2. Bi-Level Programming Structure Design of Virtual Power Plant System

In this paper, a bi-level optimization programming method was used to optimize the
member selection of the virtual power plant. The upper level is the capacity optimization
module, which is used to find the optimal configuration of the system including the capacity
of the controllable members and whether the uncontrollable members participate in the
dispatch. This low layer is a scheduling optimization module that is used to calculate the
optimal operation scheme of the system.

As shown in Figure 3, the two-level optimization contained two levels. The decision
results of the upper level generally affect the objectives and constraints of the lower level,
while the lower level feeds back the decision results to the upper level, thus realizing the
interaction between the upper and lower levels.

Load curve,
Parameters of each

unit
A
Upper layer
capacity -
optimization model
Configuration
Uncontrolled Net scheme of
meml?er load controllable
selectlc?n curve member
scenario capacity
Lower level
> scheduling

optimization model

When the benefit of VPP is
maximum A
Final Unit Output
Curve and
Estimated Revenue

Figure 3. Logic diagram of two-level optimization.
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3.2.1. Upper Layer Capacity Optimization Model
Objective Function

The upper layer selects the utility coefficient of the uncontrollable members of the
virtual power plant and the environmental performance coefficient of the controllable
members as the indices for evaluating the system, which can be described as follows:

h = max(F1 - Fz) (4)

where F is the utility coefficient of the uncontrollable member and F, is the environmental
performance coefficient of the controllable member.

Utility Coefficient of Uncontrollable Member

Markowitz portfolio theory is often applied to asset allocation, which proposes that
investors pursue the maximization of the expected return and the minimization of risk. VPP
often faces a similar situation when choosing members, that is, VPP hopes to choose more
new energy units to obtain more output, but at the same time, it has to face greater volatility
risk. The risk is mainly caused by the uncertainty of the load, wind power, and photovoltaic
output. In Figure 4, the solid line is the net load curve, the blue part is the adjustment
interval of the net load fluctuation caused by the uncertainty of the actual output of wind
power and photovoltaic power, and the dotted line is the adjustment interval of the output
of controllable members adjusted by the virtual power plant. It can be seen that: () From T1
to T2, with the increase in the net load fluctuation, the capacity of the controllable members
that needs to be mobilized increases; (2) in the stage from T1 to T2, when the output of the
uncontrollable member is within the regulation range of the controllable member of the
virtual power plant, the virtual power plant can regulate; (3) in the stage from T2 to T3,
when the output of the uncontrollable member is beyond the downward regulation range
of the virtual plant, the virtual power station needs to adjust the member selection to ensure
the downward regulation capability; and (@ from T3 to T4, the uncontrollable members
exceed the upstream regulation range of the virtual power plant, and the virtual power
plant needs to adjust the member selection to ensure the upstream regulation capability.

Load (MW)

Time (h)

Figure 4. Impact of the uncontrollable members on the capacity configuration of the controllable members.

Assuming that there are L uncontrollable members that can be selected by VPP, the
expected expectation and variance after the combination of uncontrollable members are:

L

Z

E(i)

_ NE(i)
(t,p) i=

i
E 0 Eip) ®)

I~
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. L A L
varNED Y v, x Vari\t]%l) + Y o) x 0B x cov(iy, ia) (6)
El (L) =1 ’ i=1

iy # iy
where E| t, g ) and Vari\t]igi) are the expectation and variance of the output of the ith uncon-

trollable member at time t under the subsequence p; v; is the 0-1 variable of whether the
ith unit is selected by VPP under the subsequence p; 1 represents selection; and 0 repre-
sents elimination. cov(iy, ip) is the correlation coefficient of member 71 and iy is the output.

EI\;E(O and VarNE(i) are the sum of the expectation and variance of the ith generator at

L (&p) tZ (tp)
all t1mes under the subsequence p.
To this end, the investment utility function Fj is used to represent the portfolio re-
turn rate: ) )
B =EVD 05 % A x varNED @)
L (tp) L (tp)

t=1 t=1
among them, A is the degree of risk aversion, which reflects the degree of the risk aversion
of investors. It is generally a subjective setting variable, and the value is between [0, 4] [23].
In this paper, the value of A was selected to maximize the expected total return of VPP.

Environmental Performance Indicators of Controllable Members

The flue gas discharged in the process of thermal power plant production contains
harmful substances such as CO;, SOy, and NOy, which pollute the surrounding environ-
ment. The emission of pollutants is directly proportional to the power generation of thermal
power units:

T
B = (657 592 4 6NO) x Y PG ®)
t=1

where 5502, §¢02, §NOx represent the emission coefficient of each pollutant, respectively,
T
and ) P((;’ ) is the total power generation of the thermal power unit under the condition
=1

of subsequence p.

Controllable Member Capacity Configuration Constraint

VPP will determine the capacity of controllable members according to the output
fluctuation of the selected uncontrollable members. In addition to meeting the net load
demand, the thermal power will also cooperate with energy storage to increase the output
to make up for the shortage of the output of uncontrollable members or reduce the output
to ensure new energy consumption. When the output of the new energy unit exceeds the
expected output, the thermal power unit reduces the output, in addition to meeting the
output demand of the net load part, and the energy storage is used for charging when the
reducing capacity is insufficient. When the output of the new energy unit fails to meet the
expected output, the thermal power unit increases the output, in addition to meeting the
output demand of the net load part, and the energy storage is used for supplementing the
power generation for the insufficient part.

R B EST5 < P~ Py 4 Vo) < P+ B

)
RS+ ESmin < PG, = PG, -+ [Varg o) < RSy + ES{ — ESmyin

where Pg ) is the actual output of the thermal power generating unit at time ¢t of the p

subsequence; PS,, and PG oin are the upper and lower limits of the output of the thermal

power generating unit; and RS,,, and RS, are the upper and lower limits of the climbing
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of thermal power generating units. E?f“;f is the stored energy of energy storage at time t

under the condition of subsequence p; ESmax and ESpin are the upper and lower limits

of the stored energy of energy storage; 4/ Var( : g ) is the standard deviation of the net

load, representing the power fluctuation of the uncontrollable member at time t of the
p subsequence.

Optimization Variables

The thermal power unit capacity P, 0w the energy storage capacity ESmax, and the
decision variable v}, of each uncontrollable member in the VPP member were selected as
the optimization variables.

3.2.2. Lower Dispatching Optimization Model
Objective Function

The dispatching optimization model selects 24 h as the dispatching scale, takes the
maximization of the VPP’s daily net revenue as the objective function, includes the net
revenue of each unit, and considers the cost of the signing medium and long-term contracts
between VPP and thermal power.

J» = max(Profitypp(p)) (10)

Profitypp(p)y = Profitee,(,) + Profityg(y) + Profitgs, —C;Zi?;)hy (11)

The net income of thermal power unit can be expressed as:

Profitee, y) Z P(t ») (ovpp — Pgen) (12)

The net income of new energy units can be expressed as:

Profitng(,) = Z PZ;E(I lTload) (ovpp — PNE) (13)
tp

t=

The net income of the energy storage unit can be expressed as:

N N o
Profitps(yy = (1D X ) e Y P = ) x (ovpp — pEs) (14)
=1 =1

The cost of VPP signing a medium- and long-term contract with thermal power can be
expressed as:

s tan dby

gen(p) X (ps tandby — Pgen) (15)

where py pp is the on-grid price of VPP, and pe.n, pNE, and pgs are the cost per kilowatt-hour
of th(.a‘rmal power units, new energy units, and energy sto.rage, respectively. Prof itgm(. p)”
Profitng(p), Profitps(,), and Profitypp(,) are the net profits of the thermal power units,

new energy units, energy storage units, and VPP under the condition of subsequence p,

respectively. Cs fan n( d)b Y is the cost generated by the medium- and long-term contract signed

between the VPP and the thermal power unit under the condition of subsequence p to
ensure the energy consumption of the system. In the formula, 2 is multiplied to represent
the increase and decrease of the reserve cost, respectively. psangpy is the electricity price
of the medium- and long-term contract signed between the VPP and the thermal power
unit. P&p) is the output of the thermal power unit at time t of the p subsequence, and
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PI\T]E(i,iyéload)

L (tp)

is the actual output of the ith uncontrollable member excluding the load at

time t under the condition of subsequence p.

Constraints

(1) Controllable member model

The thermal power unit scheduling constraints:

PG < P(Gt,p) < PnGlax (16)

min
—RE <p(<jp)—pG < RSG (17)

min — (t—=1,p) max

The SOC constraint of the energy storage unit is:

ESmin < ES({®* < ESmax (18)
Estorg . Echarge AT N Pdischarge AT N 1 Pcharge . 19
B = By T ODX WDE"(W xPpy o —ATX t;( = X(tp)) ¥ P, +ip (19)

where P(Cth;;ge and P(dti;)h "8 are the charge and discharge power of the energy storage at
time # of the p subsequence, respectively; x(; ) is the 0-1 variable that controls the energy
storage not to be charged and discharged at the same time; and #p is the charge and

discharge efficiency of the energy storage.

(2) Uncontrollable member constraint

0< vf X PNi(i)

(tp)

load
0 < Pl 1)

< 0F X Prax (20)

where Pnz\{fx(i) is the maximum installed capacity of the ith new energy unit and Péf’;d) is the

load at time ¢ under the subsequence p.

(3) Power balance constraint

load _ pG discharge  pcharge . i NE(i)
Plip) = Pl +110 X Py = By = 10 sum() x P ) (22)

Optimization Variables

The lower layer selects the output P(Ct; ) of the thermal power unit, the charge and

discharge power P&h;;ge, P(dtlif)harge of the energy storage, and the risk aversion coefficient A

as the optimization variables.

4. System Solution Method
4.1. Latin Hypercube Scenario Generation and Reduction

A multi-scenario approach is used to describe the uncertainty of the load and the
output of the uncontrollable members. The scene generated according to ordered clustering
is not as representative as a traditional typical curve such as the typical seasonal load curve,
so this paper used the LHS method to generate the scene [24]. The LHS method was used
to generate 1000 load scenarios and uncontrollable member output scenarios, and then the
scenario reduction method considering the Kantorovich distance was used to reduce the
scenarios to 10, and the two were randomly matched [25].

10

j=1
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where P; is the probability of the scenario, and Profitypp(p ;) is the net profit of VPP in the
jth scenario under the condition of subsequence p.

4.2. MILP Algorithm to Solve the Lower Scheduling Optimization Problem

MILP is a kind of important mathematical programming problem that is used to solve
the scheduling problem at the lower level of the model. The difference between MILP and
the general programming problem is that the mathematical model of this kind of problem
can be expressed by a linear relationship. A complete mathematical description of a mixed
integer linear programming problem including a linear objective function for solving a
maximum or minimum, a system of simultaneous linear equations, and constraints on the
optimization variables is as follows:

min(cx)

s.t.Bx

IN IV
SH

(24)

Xmin < X < Xmax
Xj S (0,1)

where cx is the objective function; B is the coefficient matrix of the simultaneous linear
equations; b is the value of the simultaneous linear equations; x; and x; are continuous
variables and shaped variables, respectively.

5. Example Analysis
5.1. Results of Data Preprocessing

The annual load data of a region in 2021 were selected, the data time interval was 1
h, the capacity of three wind turbines was 20 MW, 30 MW, and 40 MW, respectively, and
the capacity of the three photovoltaic units was 20 MW, 30 MW, and 40 MW, respectively.
Formulas (1) and (2) were used to calculate the contour coefficient and find the segmentation
point. The contour coefficient calculation results are shown in Table 1.

Table 1. The contour coefficient calculation results.

Number of Split Points (p) Contour Factor (c)

2 0.545

0.2936
0.3284
0.2801
0.2702
0.2316
0.2027
0.1801

O 0 N O U1 W

As shown in Figure 5 and Table 2, the red part of the figure is the expectation of each
subsequence, and the clustering results show that the differences between the subsequences
are obvious and cannot simply be distinguished by seasons. The results of the contour
coefficient calculation are shown in Table 3.

Table 2. Load sequence segmentation.

Subsequence Number Time/h

1-742
742-5326
5326-6870
6870-7591
7591-8760

Ul W N =
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Figure 5. Load data and ordered clustering results.

5000 6000 7000
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Table 3. Member selection scheme based on order-bilevel optimization.

Member Selection

VPP Proportion of
Subsequence A Revenue Energy =~ Thermal Ny Energy
(RMB) Windl Wind2 Wind3 PV1 PV2 PV3 Storage Power Generation
(MWh) (MWh)
1 0.2 481,720 0 1 1 1 0 1 8 108 27.57%
2 0.1 534,550 0 1 1 1 1 1 12 81 33.40%
3 0.1 523,580 1 1 1 0 1 1 17 67 43.54%
4 0.1 563,410 1 1 1 1 1 1 20 83 37.20%
5 0.1 593,910 1 1 1 1 1 1 20 102 37.72%
5.2. Comparison of Member Selection Schemes of Two Calculation Methods
Table 3 shows the member selection scheme obtained by using the method in this
paper to evaluate each member.
Table 4 shows the results of member selection by using the MILP method to maximize
the total revenue of VPP after ordered clustering.
Table 4. Member selection scheme based on the ORDING-MILP method.
VPP
Subsequence Revenue Member Selection
(RMB) Proportion of
New Energy
Energy  Thermal Generation
Windl Wind2 Wind3 PV1 PV2 PV3  Storage Power
(MWh) (MWh)
1 548,290 0 0 1 1 1 1 20 110 30.38%
2 502,560 0 1 1 1 1 1 20 110 33.40%
3 473,820 1 1 1 1 1 0 20 110 45.90%
4 516,450 0 1 1 1 1 1 20 110 33.36%
5 592,020 0 1 1 1 1 1 20 110 33.04%
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Compared with the member selection of the two groups, it can be found that under the
condition of sufficient consumption capacity, the bi-level optimization method proposed in
this paper tended to select more clean energy unit output, which takes into account both the
clean energy consumption and environmental benefits while pursuing the maximization of
the VPP economic benefits. Comparing the VPP benefits of the two groups, it can be found
that, except for subsequence 1, the benefits of the bi-level optimization method were higher,
because this method optimized the capacity allocation of controllable members, indirectly
reduced the operation and maintenance costs of thermal power and energy storage units,
and increased the benefits of VPP. From the perspective of the proportion of new energy
generation, comparing the two groups of subsequence 2, it can be found that when the
selection scheme of uncontrollable members was the same, the proportion of new energy
generation did not change significantly, which shows that the method proposed in this
paper is reasonable for the capacity allocation of controllable members, and saves the
operation and maintenance costs for virtual power plants while ensuring the new energy
consumption capacity. Comparing subsequences 4 and 5 of the two groups, it can be found
that when the uncontrollable members chose to increase one group, the method proposed
in this paper could improve the overall revenue of VPP while increasing the proportion of
new energy generation.

Taking subsequence 1 as an example, Figure 6 shows the 10 groups of the load subse-
quence generated by the LHS method, Figures 7 and 8 show the output subsequence of
uncontrollable members of the LHS method, and the dashed line in the figure shows the
load in subsequence 1 and the output expectation of the uncontrollable members. It can be
found that the peak value of the output of new energy units generally decreased between
10 o’clock and 15 o’clock. Figures 9 and 10 are the output results of typical days under
the two optimization methods, respectively. The red part is the thermal power output. It
can be found that the output of thermal power units was smoother between 10 o’clock
and 15 o’clock. This shows that the output of the uncontrollable member optimized by the
bi-level optimization model proposed in this paper was smoother, which is convenient for
VPP coordination.

120 : : : :

116

1101

105 |

100

load/MW

\

85 «

. 4
| NN

75 v 4

?D 1 1 1 1
0 5 10 15 20 25

time/h

Figure 6. LHS randomly generated load data.
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Figure 7. The uncontrollable member effort of the order-MILP method.
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Figure 8. Uncontrollable member effort of the order-bilevel optimization method.
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120 (7

power/mW

Figure 9. Scheduling results of the order-MILP method.

time/n

Figure 10. Scheduling results of the order-bilevel optimization method.

6. Conclusions

With the excess power supply on the supply side, the assembled thermal power
units cannot be retired immediately. By taking advantage of the output characteristics
of different members of VPP, the existing power plants can choose members that can
easily meet the dispatching requirements. First, the load timing was utilized to solve the
problem that the load curve in some areas does not change obviously with the season.
It is more reliable to divide the load curve into different subsequences by using ordered
clustering. Second, the utility function of uncontrollable members was proposed to describe
the risks and benefits of the uncontrollable members in VPP. It provides a basis for the
capacity configuration of controllable members in VPP, reflects the value of controllable
members to maintain the reliability of the VPP output, and provides a basis for the signing
of medium- and long-term standby contract between the VPP and controllable members.
The double-layer optimization scheme proposed by this model was compared with the
method considering only the economic benefits of VPP. The average daily income of VPP
was increased by RMB 12,806, and the proportion of new energy generation was increased
by 1.8% on average, which verified the correctness of the proposed method. It can be found
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that the economic benefit, environmental benefit, and scheduling reliability are a pair of
contradictory objectives. The optimization results show that there is a strong coupling
relationship between the capacity of each equipment. The method proposed in this paper is
suitable for the future situation of abundant data and abundant power generation resources,
and provides a new idea for the VPP capacity configuration problem. It should be pointed
out that this method relies on accurate prediction of the output of uncontrollable members.
With the development of prediction technology, the improvement in the output prediction
accuracy of new energy units is a direct optimization of this method.
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