
Citation: Jiang, Z.; Mensi, W.; Yoon,

S.-M. Risks in Major Cryptocurrency

Markets: Modeling the Dual Long

Memory Property and Structural

Breaks. Sustainability 2023, 15, 2193.

https://doi.org/10.3390/su15032193

Academic Editor: Sajid Anwar

Received: 11 December 2022

Revised: 31 December 2022

Accepted: 19 January 2023

Published: 24 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Risks in Major Cryptocurrency Markets: Modeling the Dual
Long Memory Property and Structural Breaks
Zhuhua Jiang 1, Walid Mensi 2,3 and Seong-Min Yoon 4,*

1 Division of Chinese Foreign Affairs and Commerce, Hankuk University of Foreign Studies,
Seoul 02450, Republic of Korea

2 Department of Economics and Finance, College of Economics and Political Science, Sultan Qaboos University,
Muscat 123, Oman

3 Department of Finance and Accounting, University of Tunis El Manar and IFGT, Tunis 248, Tunisia
4 Department of Economics, Pusan National University, Busan 46241, Republic of Korea
* Correspondence: smyoon@pusan.ac.kr

Abstract: This study estimates the effects of the dual long memory property and structural breaks on
the persistence level of six major cryptocurrency markets. We apply the Bai and Perron structural
break test, Inclán and Tiao’s iterated cumulative sum of squares (ICSS) algorithm, and the fraction-
ally integrated generalized autoregressive conditional heteroscedasticity (FIGARCH) model, with
different distributions. The results show that long memory and structural breaks characterize the
conditional volatility of cryptocurrency markets, confirming our hypothesis that ignoring structural
breaks leads to an underestimation of the persistence of volatility modeling. The ARFIMA-FIGARCH
model, with structural breaks and a skewed Student−t distribution, fits the cryptocurrency market’s
price dynamics well.

Keywords: cryptocurrency; dual long memory (LM); structural breaks (SBs); efficient market hypothesis;
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1. Introduction

If a certain financial market is not sufficiently efficient, prices do not accurately reflect
information in that financial market, and the market function of resource allocation cannot
be exercised. If a market does not develop in a more efficient way, it may not be sustainable
in the long run.

The cryptocurrency market is relatively new and thus, has attracted much attention
since its creation in 2008 [1]. The growing literature has addressed the stylized facts and
efficiency hypothesis of this digital currency market. Urquhart [2] showed that the Bitcoin
market has tended to be increasingly efficient since August 2013. Tiwari et al. [3] confirmed
Urquhart’s [2] findings, and Nadarajah and Chu [4] and Bariviera [5] revealed evidence of
the efficiency of the Bitcoin market. Katsiampa [6] discovered that the AR (autoregressive)-
CGARCH (component generalized autoregressive conditional heteroscedasticity) model
is a suitable model to examine the volatility of the Bitcoin market. Takaishi [7] examined
the multi-fractal properties of Bitcoin using intra-day data and the MF-DFA approach and
found evidence of multi-fractality. Sensoy [8] found that the Bitcoin market is an efficient
market in its weak-form version, adding that liquidity positively affects the information
efficiency level, while volatility decreases this level. Vidal-Tomás and Ibañez [9] explored
the semi-strong efficiency of Bitcoin. Using detrended fluctuation analysis and the Hurst
exponent, Alvarez-Ramirez et al. [10] found evidence of asymmetric correlations in the
Bitcoin market. Dyhrberg [11] used GARCH models to analyze the volatility of Bitcoin,
gold, and the U.S. dollar and found that the models are crucial tools for portfolio risk
management. Alvarez-Ramirez and Rodriguez [12] suggested that the cryptocurrency
markets are informationally efficient during most of the sample period. Duan et al. [13]
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showed that Bitcoin markets are close to an efficient market, although the efficiency varies
over time. López-Martín et al. [14] revealed that the efficiency degree in six cryptocurrency
markets increased over time. Kakinaka and Umeno [15] revealed that the cryptocurrency
markets became more inefficient in the short-term, but not in the long-term during the
COVID-19 pandemic. Phiri [16] tested random walk behavior in Bitcoin return dynamics
in time-frequency space and determined that Bitcoin returns are the most predictable or
the least weak-form market efficient. In the meantime, Aggarwal et al. [17], Lamoureux
and Lastrapes [18], and Lastrapes [19] showed that not monitoring the structural breaks
(SBs) when investigating a long memory (LM) process may result in a spurious estimation
of the volatility persistence. In this regard, some studies on stock and commodity markets
incorporated LM and SB together in their volatility modeling [20–23].

The above literature has ignored the modeling of dual LM property that may exist in
both the conditional mean and conditional variance time series movements, along with
SBs, which are major stylized facts in the volatility model of cryptocurrencies. LM and
SBs have significant implications for asset allocations and portfolio management because
they are related to market efficiency. In fact, the determination of the optimal investment
strategies requires accurate modeling of the LM and SBs. The presence of LM rejects the
market efficiency hypothesis. The evidence of the LM feature in volatility reveals volatility
persistence, indicating that uncertainty is a key factor for a cryptocurrency market, and
it should be managed. Thus, understanding the dual LM in cryptocurrency markets is
essential for crypto investors and forecasters. In addition, the previous literature has
focused only on Bitcoin, ignoring the rest of the major cryptocurrencies, such as Ethereum,
which is the second-most important cryptocurrency in terms of market size. Modeling
the dual LM and SBs in returns and volatility is hence an appealing topic of study on
cryptocurrency markets.

This paper differs from, and adds to, the existing literature on cryptocurrency markets
in at least two ways. First, this paper contributes to the related empirical studies by
examining the presence of dual LM (in the mean and the variance) in six major digital
currencies (Bitcoin, Dash, Ethereum, Litecoin, Monero, and Ripple). Second, we analyze
the impacts of the SBs and LM on the variance persistence level. To the best of our
knowledge, these two objectives have not yet been examined in cryptocurrency markets.
Empirically, we consider ARFIMA-FIGARCH models with different residual distributions.
These models have a particularity that allows them to assess the LM coefficients of the
conditional mean and variance simultaneously. These models are widely employed in
the empirical literature [24–33]. Third, not accounting for these two stylized facts can
bring about sizeable upward biases in the degree of volatility persistence [34] because
GARCH models do not consider SB variables. These variables have important implications
regarding the expected changes and arbitrage activities, as well as on forecasting portfolio
risk. The marginalization of the SBs and LM leads to the underestimation or overestimation
of volatility for long stretches, leading to spurious portfolio risk assessments. To avoid
the misestimation of the persistence and the distortion of information inflows, we apply
Inclán and Tiao’s [35] ICSS algorithm and identify multiple SBs for the markets to include
receiving input of SBs in their GARCH volatility model.

The results provide evidence that the cryptocurrency markets are characterized by
the presence of SBs and LM in their price dynamics, particularly during volatility. More-
over, the SB variables affect the conditional mean dynamics in the Ripple market and
the conditional variances for all markets. In addition, the LM property characterizes the
cryptocurrency markets. Fourth, the persistence in the variance coefficient values increases
for all cryptocurrencies and differs in magnitude across the markets. Lastly, the ARFIMA-
FIGARCH model, with SBs and a skewed Student−t distribution, is the best model, since
it improves the accuracy of estimating the volatility of the cryptocurrency markets. The
presence of LM and SBs in the variance model are crucial aspects for allocating assets and
forecasting prices.
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The remainder of this paper is organized as follows. Section 2 discusses the methodol-
ogy. Section 3 describes the data and conducts a preliminary analysis. Section 4 discusses
the empirical results. Section 5 provides the concluding remarks.

2. Dual Long Memory Models with Structural Breaks

We assume that the returns for the cryptocurrency at time t, rt can be described using
the ARMA (m, n) model with SBs, which is written as follows:

rt = µ + ∑m
k=1 ψkrt−k + ∑n

h=1 θhεt−h + ∑l φldumml + εt, (1)

εt = ztσt, (2)

where dumm is the dummy variable to consider the possible sudden changes in the condi-
tional mean process, which are captured by the Bai and Perron [36] test; εt is the indepen-
dently distributed error, with zero mean and variance σ2

t , and zt is random innovation.
This model can be extended to the ARFIMA-FIGARCH model, which allows for a

dual LM feature in conditional mean and conditional variance.
The ARFIMA (m, ξ, n) model can be written as follows:

ψ(L)(1− L)ξ
(

rt −∑l φldumml

)
= θ(L)εt, (3)

where ξ is the LM parameter in the above conditional mean equation; L denotes the lag or
backshift operator; and ψ(L) = 1− ψ1L− ψ2L2 . . .− ψmLm and θ(L) = 1+ θ1L + θ2L2 . . . +
θnLn are the autoregressive (AR) and the moving-average (MA) polynomials, respectively.

The ARFIMA process is non-stationary when ξ ≤ −0.5 or ξ ≥ 0.5. The process
exhibits anti-persistency for −0.5 < ξ < 0 and LM for 0 < ξ < 0.5. The process shows
short memory for ξ = 0.

The FIGARCH (p, d, q) model introduced by Baillie et al. [37] can be represented
as follows:

α(L)(1− L)dε2
t = ω + [1− β(L)]vt + ∑i δidumvi, (4)

where vt = ε2
t − σ2

t , α(L) = α1L + . . . + αqLq and β(L) = β1L + . . . + βpLp, and (1− L)d

denotes the fractional differencing operator. dumv is the dummy variable that considers
possible SBs in the conditional variance process, which can be captured by the ICSS
algorithm of Inclán and Tiao [35]. We have a stationary LM process when 0 < d < 1. The
FIGARCH (p, d, q) process exhibits anti-persistency in the volatility for 0 < d < 0.5 and
LM in the volatility for 0.5 < d < 1. The process shows short memory in the volatility for
d = 0.5.

Chung [38] suggested a slightly different process to include LM features in the condi-
tional variance as:

σ2
t = σ2 +

{
1− [1− β(L)]−1∅(L)(1− L)d

}(
ε2

t − σ2
)

, (5)

where σ2 is the unconditional variance of εt.
The idea of fractional integration has been applied to other types of GARCH models,

including the fractionally integrated exponential GARCH (FIEGARCH) of Bollerslev and
Mikkelsen [39] and the fractionally integrated asymmetric power ARCH (FIAPARCH) of
Tse [40].

Similar to the GARCH (p, q) process, the FIEGARCH (p, d, q) is specified as follows:

log
(

σ2
t

)
= ω +∅(L)−1(1− L)−d[1 + α(L)]g(zt−1), (6)

where function g(zt) = θ1zt + θ2(|zt| − E|zt|) [41].
In the model, the parameters θ1 and θ2 depict the sign effect and the magnitude effect,

respectively. More specifically, good news has (θ1 + θ2) impact on volatility, while bad



Sustainability 2023, 15, 2193 4 of 15

news has a (θ1 − θ2) impact on volatility. For θ1 > 0 and θ2 > 0, positive return shocks will
have a greater influence on volatility than negative return shocks; for θ1 < 0 and θ2 > 0,
negative return shocks cause greater volatility changes than positive return shocks. As for
the FIGARCH specification, the FIEGARCH model nests the conventional EGARCH model
for d = 0, and the IEGARCH model for d = 1.

The FIAPARCH (p, d, q) model is specified as follows:

σδ
t = ω +

{
1− [1− β(L)]−1∅(L)(1− L)d

}
(|εt| − γεt)

δ, (7)

where δ > 0 and −1 < γ < 1. When γ > 0, negative shocks have more impact on volatility
than positive shocks, and the inverse is also true. The conditional variance has the LM
property if 0 < d < 1. The FIAPARCH model also nests the FIGARCH model when δ = 2
and γ = 0. Thus, the FIAPARCH model is superior to the FIGARCH model, since the
former model allows for asymmetric LM features in the conditional variance.

Davidson [42] suggested the hyperbolic GARCH (HYGARCH) model, which is an
extended model of the FIGARCH process, with hyperbolic convergence rates. The HY-
GARCH (p, d, q) model is represented as follows:

σ2
t = ω[1− β(L)]−1 +

{
1− [1− β(L)]−1∅(L)(1 + k)

[
(1− L)d − 1

]}
ε2

t , (8)

where k ≥ 0 and d ≥ 0. HYGARCH nests the FIGARCH model with k = 1 and the GARCH
model with k = 0. The process is stationary for 0 < k < 1, but nonstationary for k > 1.

zt is an innovation process. A common choice for the density of this process is an
independent and identical normal distribution, zt ∼ N(0, 1). The log-likelihood function
for the normal innovation is expressed as follows:

Lnorm = −1
2

T

∑
t=1

[
ln(2π) + ln(ht) + z2

t

]
. (9)

However, we assume that zt follows the skewed Student-t distribution to catch the
skewness and kurtosis features in a return series process. The log-likelihood function for
the skewed Student-t innovation is expressed as follows:

Lnorm = ln
[
Γ
(

ν+1
2

)]
− ln

[
Γ
(

ν
2
)]
− 1

2 ln[π(ν− 2)] + ln
(

2
λ+1/λ

)
+ ln(s)

− 1
2 ∑T

t=1
[
ln(ht) + (1 + ν)ln

(
1 + szt+m

ν−2 λ−It
)]

,
(10)

where It = 1 if zt ≥ −m
s and It = −1 if zt < −m

s .
The constants m = m(λ, ν) and s =

√
s2(λ, ν) are the mean and standard deviations

of the skewed Student-t distribution, respectively, and are as follows:

m(λ, ν) =
Γ
(

ν−1
2

)√
ν− 2

√
πΓ
(

ν
2
) (

λ− 1
λ

)
, s2(λ, ν) =

(
λ2 +

1
λ2 − 1

)
−m2, (11)

where λ and ν identify the skewness and kurtosis of this innovation distribution, respec-
tively. The symmetry of the distribution increases as λ→ 0 , and the thickness of the tails
decreases as ν→ ∞ .

3. Data and Preliminary Statistics

For the empirical analysis, we collected daily closing price data for six popular cryp-
tocurrencies: Bitcoin (BTC), Dash (DASH), Ethereum (ETH), Litecoin (LTC), Monero (XMR),
and Ripple (XRP). The sample period spans from 29 April 2013–29 October 2020 for BTC,
14 February 2014–29 October 2020 for Dash (DASH), 9 August 2015–29 October 2020 for
ETH, 29 April 2013–29 October 2020 for LTC, 21 May 2014–29 October 2020 for XMR, and 4
August 2013–29 October 2020 for XRP. The data were sourced from Cryptocurrency Mar-
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ket Capitalizations (https://coinmarketcap.com, accessed on 30 October 2020). Figure 1
displays the logarithmic price dynamics of each cryptocurrency, which show significant
upwards movements, particularly in 2016 and 2017. The return dynamics of each cryptocur-
rency market are plotted in Figure 2, showing evidence of volatility clustering and fat tails.
Figure 2 plots the presence of at least three SB events in the return series for all markets.
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Table 1 shows that the average returns for all cryptocurrencies are positive. Dash is the
most volatile market, while Bitcoin is the least volatile. All return series exhibit asymmetry
and fat tails. The Jarque–Bera test results reject the null hypothesis of normal distributions
for all return series, which are stationary according to the conventional unit root tests
results. Serial correlations of the squared returns and ARCH effects have been found in all
cryptocurrencies, implying that the GARCH-class models could fit our return series well.
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Table 1. Descriptive statistics, results of the unit root tests, and statistical properties.

BTC DASH ETH LTC XMR XRP

A. Descriptive statistics

Mean 0.1635 0.2117 0.2584 0.0921 0.1848 0.1406
Maximum 35.7451 127.0565 41.2337 82.8968 58.4637 102.7356
Minimum −46.4729 −46.7565 −130.2105 −51.3925 −49.4208 −61.6273
Std. Dev 4.2497 7.4348 6.8929 6.3026 6.8015 6.9866
Kurtosis 12.2749 45.1602 71.8075 25.9537 7.8084 31.6827

Skewness −0.5889 2.8712 −3.4718 1.5024 0.4495 2.0074
Jarque–Bera 17,366 *** 211,559 *** 414,411 *** 77,961.5 *** 6059.6 *** 112,360 ***

B. Results of the unit root tests for the logarithmic prices

ADF −1.12 −2.21 −2.05 −1.29 −0.70 −1.45
PP −0.81 −2.22 −1.45 −1.11 −0.70 −1.13

KPSS 0.47 *** 0.92 *** 1.09 *** 0.55 *** 0.87 *** 0.57 ***

C. Results of the unit root tests for the returns

ADF −10.63 *** −49.67 *** −7.69 *** −17.24 *** −12.79 *** −14.19 ***
PP −53.14 *** −49.71 *** −42.30 *** −51.88 *** −49.07 *** −49.45 ***

KPSS 0.08 0.34 0.26 0.09 0.16 0.08

D. Statistical properties

Q(12) 34.59 *** 31.9 *** 28.3 * 36.4 *** 30.5 ** 62.9 ***
QS(12) 304.7 *** 293.7 *** 126.0 *** 488.4 *** 350.5 *** 391.3 ***

ARCH(12) 16.3 *** 31.8 *** 9.5 *** 32.3 *** 16.1 *** 24.1 ***
Notes: ADF, PP, and KPSS are the augmented Dickey–Fuller unit root test statistic, the Phillips–Perron unit root
test statistic, and the Kwiatkowski–Phillips–Schmidt–Shin stationarity test statistic, respectively. Q(20) and QS(20)
denote the Box–Pierce Q tests, with 20 lags for no serial correlation of returns and squared returns, respectively.
ARCH (10) denotes the ARCH LM test, with 10 lags for homoscedasticity. ***, **, and * denote the rejection of the
null hypothesis at the 1%, 5%, and 10% significance levels, respectively.

4. Empirical Results
4.1. Estimation Results, with and without Structural Breaks

We have estimated various GARCH-type models using the OxMetrics ver. 8 and deter-
mined that the ARFIMA (m, ξ, n)-FIGARCH (p, d, q) model is the best model, according to
the information criteria. The estimation results of the ARFIMA (m, ξ, n)-FIGARCH (p, d, q)
model reported in Table 2 show significant evidence of the anti-persistency in the condi-
tional mean in some cryptocurrency markets (DASH, LTC, XMR, and XRP). Regarding the
variance equation, we found significant evidence of LM in the conditional variance in all
cryptocurrency markets, and that LTC is the market with the highest persistence, followed
by BTC and XMR. For the remaining markets, the persistence level ranged from 0.5227 to
0.5345. Overall, the results reveal that the cryptocurrency markets exhibit LM behavior in
their variances, and a lack of LM features in their return dynamics. These results indicate
a non-linear dependence on the conditional variance and also disconfirm the weak-form
efficiency hypothesis, which has implications in terms of asset allocation and efficiency
levels. The short-term ARCH coefficient is statistically significant for the series, except for
DASH and ETH. The long-term GARCH coefficient is statistically significant at the 10%
level in all cryptocurrency markets. The diagnostic test results (see Panel C) demonstrate
that there is no evidence of misspecification.

To avoid the underestimation of the persistence, we consider the SB variables in both
the mean and the variance models. We employ the Bai and Perron [36] test to capture the
SBs for the conditional mean dynamics and the ICSS algorithm of Inclán and Tiao [35]
to identify the SBs for the conditional variance dynamics. This ICSS model is used to
identify multiple sudden jumps in the unconditional volatility in a series of independent
observations. For detailed information on these tests, see Bai and Peron [36] and Inclán and
Tiao [35].
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Table 2. Estimation results of the ARFIMA-FIGARCH model.

BTC DASH ETH LTC XMR XRP

A. Conditional mean equation

µ
0.1039 **
(0.0447)

0.0238
(0.0705)

0.1868 *
(0.0977)

−0.0334
(0.0357)

0.1432 **
(0.0713)

−0.1408 ***
(0.0419)

ξ
−0.0048
(0.0150)

−0.0275 *
(0.0144)

−0.0116
(0.0154)

−0.0607 ***
(0.0125)

−0.0492 ***
(0.0145)

−0.0505 ***
(0.0134)

B. Conditional variation equation

ω
102.83 *
(53.063)

330.11 ***
(13.694)

232.60 ***
(14.771)

117.80 *
(60.299)

683.23 ***
(24.150)

48.932 ***
(14.858)

d 0.6978 ***
(0.0650)

0.5345 ***
(0.0396)

0.5052 ***
(0.0465)

0.7212 ***
(0.0679)

0.6344 ***
(0.0314)

0.5227 ***
(0.0560)

α1
0.2517 ***
(0.0524)

0.1813
(0.2120)

0.0893
(0.1297)

0.2950 ***
(0.0567)

0.1679 **
(0.0775)

0.1738 ***
(0.0667)

β1
0.7364 ***
(0.0607)

0.4101 *
(0.2478)

0.3654 ***
(0.1324)

0.7919 ***
(0.0518)

0.4635 ***
(0.0843)

0.6029 ***
(0.0666)

Asymmetry −0.0380 *
(0.0205)

0.0781 ***
(0.0237)

0.0646 **
(0.0258)

0.0274
(0.0208)

0.0581 **
(0.0292)

0.0562 **
(0.0269)

Tail 3.2116 ***
(0.1170)

3.2621 ***
(0.1582)

3.0608 ***
(0.1646)

2.9527 ***
(0.0819)

3.6222 ***
(0.2208)

3.5099 ***
(0.2094)

C. Diagnostic checking

logL −7018.98 −7463.62 −5783.06 −7785.53 −5868.94 −7374.36
BIC 5.1446 6.1182 6.0872 5.7060 6.1739 6.2944
Q(20) 58.64 *** 51.87 *** 4.49 ** 54.95 *** 56.44 *** 53.34 ***
QS(20) 5.97 5.81 0.36 2.62 17.38 16.89
ARCH(10) 0.34 0.34 1.19 0.09 1.20 1.17

Notes: Q(20) and QS(20) denote the Box–Pierce Q tests, with 20 lags for no serial correlation of returns and
squared returns, respectively. ARCH (10) denotes the ARCH test, with 10 lags for homoscedasticity. See also the
note for Table 1. *, ** and *** denote the rejection of the null hypothesis at the 1%, 5%, and 10% significance levels,
respectively.

The results of the SB identification are reported in Tables 3 and 4. As shown in Table 3,
we identify evidence of SBs in the conditional mean equation only for the DASH cryp-
tocurrency market dynamics, while we determine strong evidence of SBs in the conditional
variances for all cryptocurrencies, as shown Table 4. These results confirm that economic
and financial shocks affect the volatility of cryptocurrencies. The dates for each SB of
each market are reported in Table 4. These SB variables are explanatory variables and are
included in both the mean and variance equations of the GARCH models for most accuracy
estimations.

Table 3. Structural breaks in the conditional mean detected by the Bai and Perron test.

Cryptocurrency Conditional Mean Time Period

BTC 0.1654 30 April 2013~29 October 2020

DASH 0.5925 15 February 2014~20 December 2017
−0.3010 21 December 2017~29 October 2020

ETH 0.2584 10 August 2015~29 October 2020

LTC 0.0922 30 April 2013~29 October 2020

XMR 0.1849 22 May 2014~29 October 2020

XRP 0.1406 5 August 2013~29 October 2020
Note: The SBs for the conditional mean are identified using the Bai and Perron [36] test.

Table 5 shows that the SBs insignificantly affect the conditional mean of the DASH
market. In addition, we find evidence of the anti-persistency in the mean for four out
of the six markets (DASH, LTC, XMR and XRP), which is similar to the results shown in
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Table 2. Interestingly, we find that the LM coefficient (d) is significant for all cases, and
it increases significantly for four out of the six markets, with the exception of BTC and
LTC, indicating higher predictability. For example, by comparing Tables 2 and 5, we find
that DASH’s LM coefficient increases from 0.5345 to 0.6207 and that of ETH increases from
0.5052 to 0.5970. These results confirm our hypothesis that ignoring SB variables causes an
underestimation of the persistence of the variance modeling. These results indicate that the
cryptocurrency markets respond progressively to information flows. Past prices can be used
to predict future prices in these cryptocurrency markets, disconfirming the random walk
hypothesis and signaling an inefficient market. A plausible explanation for these results
can be attributed to the relatively small size of the total cryptocurrency market compared
to classical financial markets. Cryptocurrency markets have fewer regulations and deserve
financial reforms. In addition, cryptocurrency prices are not backed by commodities, as is
the case with stock prices [43].

Table 4. Structural breaks in volatility detected by the ICSS algorithm.

Cryptocurrency Standard Deviation Time Period

BTC 6.4391 30 April 2013~14 April 2014
3.1868 16 April 2014~5 May 2017
5.5929 6 May 2017~24 April 2018
3.6916 25 April 2018~29 October 2020

DASH 17.6279 15 February 2014~19 August 2014
5.3276 20 August 2014~31 December 2016
7.8378 1 January 2017~12 February 2018
5.2387 13 February 2018~29 October 2020

ETH 8.5226 10 August 2015~7 February 2018
4.9148 8 February 2018~29 October 2020

LTC 5.3273 30 April 2013~15 November 2013
14.0939 16 November 2013~13 April 2014
5.5548 14 April 2014~29 October 2020

XMR 15.3774 22 May 2014~23 July 2014
7.2966 24 July 2014~12 March 2018
4.8902 13 March 2018~29 October 2020

XRP 10.9748 5 August 2013~28 May 2014
4.4208 29 May 2014~20 March 2017
12.5448 21 March 2017~12 February 2018
4.6843 13 February 2018~29 October 2020

Note: The structural break points for the conditional variance are identified using the ICSS algorithm of Inclán
and Tiao [35].

Note that the misspecification of the volatility model affects the asset allocation and
portfolio risk design. The ARCH effect decreased significantly after accounting for the SB
variables, while the coefficient of the GARCH effect increased with the presence of the SB
variables. Again, this result shows the importance of these variables when modeling the
persistence of cryptocurrencies.

More importantly, we find a significant tail for all markets, indicating that the ARFIMA
(0, ξ, 0)-FIGARCH (1, d, 1) model, with SBs and a skewed Student−t distribution, is the
better model because it outperforms the ARFIMA (0, ξ, 0)-FIGARCH (1, d, 1) model with-
out SB variance and with a normal distribution. This result is confirmed by the Bayesian
information criterion (BIC) and log likelihood values, suggesting that considering the LM
properties and SBs can enhance the estimation of the conditional mean and conditional
variance. The estimation results of the ARFIMA-HYGARCH and ARFIMA-FIAPARCH
models, with structural breaks and a skewed Student−t distribution, are summarized in
Tables A1 and A2.
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Table 5. Estimation results of the ARFIMA-FIGARCH model, with structural breaks and a skewed
Student−t distribution.

BTC DASH ETH LTC XMR XRP

A. Conditional mean equation

µ
0.0937 **
(0.0440)

0.0938
(0.0929)

0.2136 **
(0.0990)

−0.0319
(0.0349)

0.1454 **
(0.0713)

−0.1652 ***
(0.0573)

dum_m - −0.1526
(0.1194) - - - -

ξ
−0.0077
(0.0143)

−0.0324 **
(0.0149)

−0.0104
(0.0157)

−0.0607 ***
(0.0125)

−0.0494 ***
(0.0145)

−0.0256 *
(0.0132)

B. Conditional variation equation

ω
132.34 ***
(14.012)

933.77 ***
(140.81)

441.10 ***
(17.116)

62.953
(38.906)

830.21 ***
(134.47)

735.43 *
(423.29)

dum_v1
−42.464 ***

(12.923)
−285.41 ***

(47.521)
123.17 ***
(21.982)

−11.456
(20.308)

−41.883
(128.53)

−78.947
(84.269)

dum_v2
135.64 ***
(11.104)

−29.852
(134.33) - −82.862 ***

(25.994)
2.5130

(28.504)
572.12

(413.70)

dum_v3
126.63 ***
(12.202)

87.502
(142.55) - - - 664.26

(465.98)

d 0.6591 ***
(0.0486)

0.6207 ***
(0.0409)

0.5970 ***
(0.0366)

0.4587 ***
(0.0648)

0.6536 ***
(0.0344)

0.6589 ***
(0.0619)

α1
0.2626 ***
(0.0638)

0.1805
(0.1843)

0.0914
(0.1093)

0.3868 ***
(0.0876)

0.1689 **
(0.0691)

0.2684 ***
(0.0909)

β1
0.6919 ***
(0.0710)

0.4708 **
(0.2029)

0.4469 ***
(0.1023)

0.6459 ***
(0.0797)

0.6138 ***
(0.0654)

0.4536 ***
(0.1001)

Asymmetry −0.0434 **
(0.0211)

0.0771 ***
(0.0247)

0.0759 ***
(0.0264)

0.0305
(0.0210)

0.0577 **
(0.0270)

0.0202
(0.0244)

Tail 3.0250 ***
(0.1074)

3.1176 ***
(0.1536)

3.0441 ***
(0.1616)

3.0322 ***
(0.1025)

3.4819 ***
(0.2061)

2.9105 ***
(0.1072)

C. Diagnostic checking

logL −7001.55 −7451.21 −5766.36 −7777.29 −7373.98 −7588.03
BIC 5.1424 6.1233 6.0737 5.7057 6.3007 5.7748
Q(20) 58.91 *** 43.92 *** 50.22 *** 56.02 *** 53.31 *** 38.78 ***
QS(20) 6.28 7.58 15.99 2.89 16.60 2.66
ARCH(10) 0.39 0.47 1.19 0.06 0.08 0.15

Notes: See the notes of Table 2. dum_m in the conditional mean equation is the dummy variable that considers the
SB for Period_1 in Table 3. Similarly, dum_v1, dum_v2, and dum_v3 in the conditional variance equation are the
dummy variables that consider the SBs for Period_1, Period_2, and Period_3 in Table 4, respectively. The dummy
variable for Period_0 is not included in the conditional mean and variance equations to avoid the multi-collinearity
problem. *, ** and *** denote the rejection of the null hypothesis at the 1%, 5%, and 10% significance levels,
respectively.

4.2. Evaluation of Forecasting Accuracy and Diebold and Mariano (DM) Test

We checked whether the inclusion of SBs in the mean and conditional variance model
can enhance the forecasting accuracy of the model. To quantify forecasting accuracy,
we measured the mean of absolute errors (MAE) and the mean squared errors (MSE),
as follows:

MAE =
1
T ∑T

i=1

∣∣∣σ2
f ,t − σ2

a,t

∣∣∣, (12)

MSE =
1
T ∑T

i=1

(
σ2

f ,t − σ2
a,t

)2
, (13)

where T denotes the number of forecasting data points and σ2
f ,t is the volatility forecast

for day t, whereas σ2
a,t denotes actual volatility on day t. In accordance with the relevant

literature [44–46], daily ex post actual volatility was calculated by the squared returns
as follows:

σ2
t = r2

t (14)



Sustainability 2023, 15, 2193 11 of 15

We also performed the DM test (Diebold and Mariano, 2002) to compare the 1-day-
ahead predictive accuracy between each of considered models and the benchmark model
(the standard GARCH model, in our analysis). Specifically, the DM test identifies whether
the two forecasts are equally good. A rejection of the null hypothesis determines that there
is a significant difference between the forecasts. Each panel of Table 6 displays the results
of the DM test based on the MSE and MAE loss functions. A positive value for the DM test
statistics means that the forecasting results from the compared model are more accurate
that those from the benchmark model.

Table 6. Forecast evaluation and DM test using the recent 100 one-step-ahead forecasts.

BTC DASH ETH LTC XMR XRP

(A) Standard GARCH model without structural break dummies

MAE 15.2040 28.5379 29.4993 49.2557 21.5686 27.7451
MSE 497.11 2702.96 1484.65 4433.68 1018.60 1464.10

(B) ARFIMA-FIGARCH model without structural break dummies

MAE 8.7251 22.4812 22.8393 21.8084 19.2678 13.0244
DM test 8.36 *** 7.24 *** 6.15 *** 8.43 *** 5.64 *** 6.98 ***

MSE 317.93 2391.58 1135.21 2035.86 950.62 440.12
DM test 4.51 *** 3.03 *** 2.26 *** 3.73 *** 2.39 *** 3.36 ***

(C) ARFIMA-FIGARCH model with structural break dummies

MAE 9.6617 23.9853 23.3647 21.2344 19.4171 14.7833
DM test 8.06 *** 6.29 *** 6.38 *** 8.36 *** 5.56 *** 7.36 ***

MSE 323.72 2449.47 1158.05 2003.24 954.80 494.91
DM test 4.94 *** 2.89 *** 2.40 *** 3.70 *** 2.40 *** 3.62 ***

Notes: This table is created from the out-of-sample results of the one-step-ahead forecasting for robustness checks.
See also the note of Table 1. *** denote the rejection of the null hypothesis at the 10% significance levels.

We evaluated the forecasting accuracy of the recent 100 one-step-ahead forecasts
generated from the ARFIMA-FIGARCH model, with and without SBs. The results are
reported in Table 6. Smaller forecasting error statistics imply the superior forecasting ability
of a given model. An overall evaluation demonstrates that all the dual LM models with SB
dummies provide relatively good forecasts of the volatility of six cryptocurrency markets,
whereas those models which do not consider LM features and do not include SB dummies
seem to be a poor alternative. Thus, the results of one-step-ahead forecasting analysis
indicate that the volatility models with SBs and dual LM parameters produce excellent
out-of-sample predictability.

5. Conclusions

This paper is the first to estimate the effects of the dual LM features in the mean and
variance and SBs on the persistence levels of the Bitcoin (BTC), Dash (DASH), Ethereum
(ETH), Litecoin (LTC), Monero (XMR), and Ripple (XRP) cryptocurrency markets. These are
interesting findings that can improve investors’ decision making. First, the cryptocurrency
markets exhibit SBs and LM features in their price dynamics (particularly in volatility).
Litecoin is the market with the highest persistence, followed by Bitcoin and Monero. Second,
SBs affect the conditional mean dynamics in the Dash market. Third, evidence of LM in
the mean dynamics is found in the Dash, Litecoin, Monero, and Ripple cryptocurrency
markets after accounting for the SBs. Fourth, there are persistent increases in the variance
coefficient values for all cryptocurrencies and different magnitudes across the markets.
Fifth, the cryptocurrency markets exhibit LM behavior in their variances and a lack of
LM in their returns. The presence of LM reflects the inefficiency of the cryptocurrency
markets. Lastly, we show that the ARFIMA (0, ξ, 0)-FIGARCH (1, d, 1) model, with SBs
and a skewed Student−t distribution, is a very good model since it improves the accuracy
of the estimations of the volatility of the cryptocurrency markets. The presence of LM in
the variance shows that consideration of the LM feature is important in measuring risk
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(uncertainty), and that it is a key factor in the dynamics of cryptocurrency prices. The
obtained results bolster the existing literature [17–19]. These results can assist investors and
portfolio managers in terms of their decision-making processes. In practice, ignoring the SBs
and LM features in the volatility model leads to spurious results for the persistence level and
incorrect inferences regarding the efficiency hypothesis, thus affecting asset allocation, price
prediction, and portfolio risk. The cryptocurrency market is widely affected by information
flow. Investors should be cautious in the presence of SBs that affect the price dynamics and
market volatility. As an example, favorable news increases cryptocurrency prices, which
then induce speculation in these markets. The price dynamics of the cryptocurrency market
are highly volatile, and market conditions change frequently. Therefore, it is necessary to
continuously search for the most suitable model that can explain cryptocurrency market
fluctuations.
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Appendix A

Table A1. Estimation results of the ARFIMA (m, ξ, n)-HYGARCH (p, d, q) model, with structural
breaks and a skewed Student−t distribution.

BTC DASH ETH LTC XMR XRP

A. Conditional mean equation

µ
0.0730

(0.0455)
0.1010

(0.0958)
0.1961 **
(0.0991)

−0.0295
(0.0353)

0.1273 *
(0.0722)

−0.1678 ***
(0.0546)

dum_m - −0.1695
(0.1225) - - - -

ξ
−0.0102
(0.0138)

−0.0318 **
(0.0149)

−0.0113
(0.0155)

−0.0644 ***
(0.0118)

−0.0466 ***
(0.0146)

−0.0277 **
(0.0133)

B. Conditional variation equation

ω
2.6424 *
(1.3817)

18.155
(14.606)

3.5248
(2.5354)

3.4735
(2.2756)

60.753 ***
(22.070)

14.127
(15.236)

dum_v1
−2.4547 *
(1.3651)

−15.358
(13.832)

−0.3786
(1.9222)

−1.0387
(5.5905)

−56.585 ***
(21.776)

−14.353
(15.269)

dum_v2
5.2440 *
(2.8119)

−8.6414
(11.425) - −3.5754

(2.3052)
−58.460 ***

(21.881)
−3.1874
(10.132)

dum_v3
−2.1341 *
(1.2693)

−14.767
(13.432) - - - −11.901

(13.249)

d 0.6940 ***
(0.1562)

0.6257 ***
(0.1988)

0.5933 ***
(0.1489)

0.6212 ***
(0.0944)

0.6189 ***
(0.1247)

0.4328 ***
(0.0592)

α1
0.3453 ***
(0.1054)

0.2790 *
(0.1649)

0.1017
(0.1316)

0.5388 ***
(0.1285)

0.1935 **
(0.0816)

0.3413
(0.6512)

β1
0.7659 ***
(0.0819)

0.5465 **
(0.2563)

0.4982 ***
(0.1380)

0.8345 ***
(0.0504)

0.5934 ***
(0.0810)

0.3000
(0.6510)

https://coinmarketcap.com
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Table A1. Cont.

BTC DASH ETH LTC XMR XRP

B. Conditional variation equation

Asymmetry −0.0501 **
(0.0220)

0.0760 ***
(0.0245)

0.0693 ***
(0.0269)

0.0271
(0.0205)

0.0469 *
(0.0269)

0.0156
(0.0239)

Tail 2.4971 ***
(0.1345)

3.1631 ***
(0.2170)

2.7898 ***
(0.2124)

2.2380 ***
(0.0947)

3.6152 ***
(0.2791)

2.4985 ***
(0.1588)

Log α (HY) 0.2053 *
(0.1222)

−0.0189
(0.0772)

0.1744
(0.1322)

0.5508 **
(0.2627)

−0.0308
(0.0564)

0.6386 **
(0.2563)

C. Diagnostic checking

logL −6983.22 −7452.73 −5767.67 −7762.52 −7374.35 −7579.83
BIC 5.1319 6.1278 6.0790 5.6979 6.3043 5.7716
Q(20) 63.43 *** 42.32 *** 52.16 *** 51.13 *** 52.32 *** 35.07 ***
QS(20) 6.35 5.80 11.58 4.37 16.60 1.14
ARCH(10) 0.43 0.35 1.01 0.07 1.21 0.06

Notes: See the notes for Table 2. dum_m in the conditional mean equation is the dummy variable that considers
the structural break for Period_1 in Table 3. Similarly, dum_v1, dum_v2, and dum_v3 in the conditional variance
equation are the dummy variables that consider the SBs for Period_1, Period_2, and Period_3 in Table 4, respec-
tively. The dummy variable for Period_0 is not included in the conditional mean and variance equations to avoid
the multi-collinearity problem. *, ** and *** denote the rejection of the null hypothesis at the 1%, 5%, and 10%
significance levels, respectively.

Table A2. Estimation results of the ARFIMA (m, ξ, n)-FIAPARCH (p, d, q) model, with structural
breaks and a skewed Student−t distribution.

BTC DASH ETH LTC XMR XRP

A. Conditional mean equation

µ
0.0987 **
(0.0427)

0.0853
(0.0892)

0.2253 **
(0.0990)

−0.0351
(0.0354)

0.1878 **
(0.0766)

−0.1255 **
(0.0530)

dum_m - −0.1502
(0.1146) - - - -

ξ
−0.0127
(0.0153)

−0.0373 ***
(0.0139)

−0.0116
(0.0158)

−0.0636 ***
(0.0122)

−0.0478 ***
(0.0142)

−0.0269 *
(0.0155)

B. Conditional variation equation

ω
127.58 ***
(13.697)

95.258 ***
(35.191)

248.27
(673.67)

167.92 ***
(16.933)

304.58 ***
(103.76)

86.419 ***
(26.356)

dum_v1
−42.149 **

(20.290)
−14.238
(10.453)

67.692
(247.51)

−24.909
(18.485)

−19.594
(135.00)

−2.1122
(6.8424)

dum_v2
128.42 ***
(8.5360)

16.185
(28.737) - −267.27 ***

(27.069)
8.0732

(218.50)
49.194 **
(22.530)

dum_v3
119.02 ***
(11.214)

23.391
(33.446) - - - 54.502 **

(22.185)

d 0.6631 ***
(0.0492)

0.5065 ***
(0.0548)

0.5621 **
(0.2224)

0.4116 ***
(0.0684)

0.6007 ***
(0.1003)

0.5227 ***
(0.0335)

α1
0.2668 ***
(0.0697)

0.1265
(0.1491)

0.1049
(0.1082)

0.4331 ***
(0.1408)

0.1930 ***
(0.0749)

0.2881 *
(0.1610)

β1
0.7037 ***
(0.0737)

0.3715 **
(0.1734)

0.4453 ***
(0.1643)

0.6113 ***
(0.1412)

0.6103 ***
(0.0604)

0.3973 **
(0.1883)

APARCH (γ)
−0.0741
(0.0570)

0.0253
(0.0685)

−0.0580
(0.0681)

−0.1761 ***
(0.0529)

−0.2238 ***
(0.0604)

−0.1120 *
(0.0615)

APARCH (δ)
1.9995 ***
(0.1631)

1.2106 ***
(0.1589)

1.8034 **
(0.7282)

2.3373 ***
(0.0577)

1.680 1***
(0.1793)

1.0804 ***
(0.0971)

Asymmetry −0.0438 **
(0.0212)

0.0771 ***
(0.0242)

0.0767 ***
(0.0265)

0.0233
(0.0214)

0.0613 **
(0.0290)

0.0299
(0.0228)

Tail 3.0358 ***
(0.1063)

3.3493 ***
(0.2109)

3.0959 ***
(0.4091)

2.7428 ***
(0.0706)

3.6221 ***
(0.2920)

2.8861 ***
(0.1458)
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Table A2. Cont.

BTC DASH ETH LTC XMR XRP

C. Diagnostic checking

logL −7000.46 −7446.49 −5765.72 −7765.63 −7366.23 −7581.62
BIC 5.1474 6.1259 6.0809 5.7030 6.3007 5.7759
Q(20) 59.43 *** 47.08 *** 50.19 *** 51.82 *** 49.49 *** 39.01 ***
QS(20) 5.92 9.85 15.02 8.51 13.32 2.28
ARCH(10) 0.38 0.67 1.14 0.06 1.05 0.10

Notes: See the notes for Table A1. *, ** and *** denote the rejection of the null hypothesis at the 1%, 5%, and 10%
significance levels, respectively.
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