
Citation: Lotfi Akbarabadi, M.;

Sirjani, R. Achieving Sustainability

and Cost-Effectiveness in Power

Generation: Multi-Objective Dispatch

of Solar, Wind, and Hydro Units.

Sustainability 2023, 15, 2407.

https://doi.org/10.3390/su15032407

Academic Editors: Andreas

Theocharis, Panos Kotsampopoulos

and Grigorios L. Kyriakopoulos

Received: 31 October 2022

Revised: 13 January 2023

Accepted: 20 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Achieving Sustainability and Cost-Effectiveness in Power
Generation: Multi-Objective Dispatch of Solar, Wind, and
Hydro Units
Mohammad Lotfi Akbarabadi 1 and Reza Sirjani 2,*

1 Department of Electrical and Electronic Engineering, Eastern Mediterranean University,
Gazimagusa 99628, Turkey

2 Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden
* Correspondence: reza.sirjani@kau.se

Abstract: In the power system, economic power dispatch is a popular and fundamental optimization
problem. In its classical form, this problem only considers thermal generators and does not take
into account network security constraints. However, other forms of the problem, such as economic
emission dispatch (EED), are becoming increasingly important due to the emphasis on minimizing
emissions for environmental purposes. The integration of renewable sources, such as solar, wind,
and hydro units, is an important aspect of EED, but it can be challenging due to the stochastic nature
of these sources. In this study, a multi-objective algorithm is developed to address the problem of
economic emission power dispatch with the inclusion of these renewable sources. To account for the
intermittent behavior of solar, wind, and hydro power, the algorithm uses Lognormal, Weibull, and
Gumbel distributions, respectively. The algorithm also considers voltage limitations, transmission
line capacities, prohibited areas of operation for thermal generator plants, and system restrictions.
The multi-objective real coded non-dominated sorting genetic algorithm II (R-NSGA-II) is applied to
the problem and includes a procedure for handling system restrictions to meet system limitations.
Results are extracted using fuzzy decision-making and are analyzed and discussed. The proposed
method is compared to other newer techniques from another study to demonstrate its robustness.
The results show that the proposed method despite being older is cost-significant while maintaining
the same or lower emissions. These results were observed consistently and did not happen by chance,
detailed explanation of why and how is discussed.

Keywords: economic environmental dispatch; multi-objective optimization; renewable energy
sources; stochastic modeling; fuzzy decision making; electrical power systems

1. Introduction

Environmental concerns like global warming are becoming more eminent each day.
Means of diminishing carbon emissions are the objectives of industries and governments,
as they are trying to find techniques for solving this problem. Coal-powered units or
central steam are getting old since distributed generation is the trend and motivation
towards it is increasing. Penetration of different renewable sources can be enabled by
a distributed generation where the location of consumers is closer to these sources of
renewable energy [1]. Nevertheless, implementing renewable generation has its downsides
and comes with different challenges.

Lasseter [2] introduced the microgrids concept as a way of implementing dispersed
energy resources in a supervised and safe manner. A group of interlinked distributed energy
resources and loads within distinctly established electrical borderlines that performs as an
individual tractable unit vis-a-vis the grid is often defined as a microgrid. Operation of a
microgrid can have two cases of grid-connected or islanded-mode since they can connect to
the grid or disconnect from it to enable this feature. High penetration of different renewable
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energy sources adds to the instability of the system because of the stochastic nature of them.
Having implemented more than one class of renewable energy source like wind, solar or
hydro will increase the uncertainty of the system even more. Since prediction error is the
main relation of these uncertainties, reducing the instability of the network is important
and can be achieved by studying different scenarios for each renewable type that exists
within the system.

Economic Dispatch (ED) is the determination of the minimum possible cost for the
required power from each committed power plant. In ED, there is usually one objective to
be focused on: cost. The main objective in optimizing an ED problem is to reduce the total
cost of generation as much as possible, to have an economic dispatch as the name suggests.
In economic emission dispatch (EED), the main objective is to minimize the total price of
generation as well as the emission degree. In both ED and EED, fulfilling electricity demand
from the power units must be satisfied. Usually, the difference between ED and EED is that
the former is a single-objective problem while the latter is a multi-objective problem. In
EED one objective is to reduce emissions, and climatic contamination is mostly caused by
thermal power units which produce Sulphur dioxide, a toxic gas, represented by SO2, and
other similar gases like Nitrogen oxide and Carbon dioxide represented by NOx and CO2,
respectively [3]. There can be three different ways of solving EED according to Refs. [3–5].
Firstly, the problem is considered to be a single objective, only containing emissions, since
in many countries environmental laws impose a carbon tax, hence practicing emission
control is of more importance. This approach of reducing emissions at any cost is not
an ideal solution and it should not be called EED anymore since there would not be a
concern to reduce cost. The second way is to mix emission and cost into a single objective
optimization and reduce them at the same time by considering different weights, and
thirdly, with multi-objective optimization which has different and separate functions, in
this case, cost and emission.

A solution to the EED problem falls into the two parts of economic dispatch and
emission optimization. In the first part, optimal scheduling of generator units is performed
to reduce electricity demand while in the second part, the same task is performed to
diminish the number of harmful gases. Furthermore, an optimization method is needed to
compute the optimal output for EED since there can be too many numbers of generation
units in the system to be enumerated one by one. Diminishing cost or emission alone is
also a single objective problem but reducing both of them at the same time, makes the
problem very non-convex. Hence, there is more than one solution to the problem and
specific methods must be used to extract those answers for a trade-off between emission
and cost. This means that by reducing emissions, the cost will increase and vice versa.
In the following paragraphs, previous studies that solved ED and EED problems will be
mentioned. Their optimization technique will be reviewed and we will point out what
renewable energy source was incorporated and what consideration has been taken into
account for system limitations.

Adarsh et al. [6] solved ED by chaotic bat algorithm, a variant of swarm intelligence
technique combined with chaotic sequences for tuning and controlling the parameters
resulting in convergence and diversity enhancement. Jayabarathi et al. [7] implemented
the hybrid gray wolf algorithm to solve the ED problem. They acquired genetic operators
(crossover and mutation) for enhancing the algorithms’ performance and they also consid-
ered prohibited operating zones (POZs), and valve point effect, but they did not consider
a multi-fuel option. The introduction of the multi-fuel option was performed in Ref. [8],
and they used crisscross optimization to solve the ED problem but without considering
POZs. Delshad et al. [9] utilized a backtracking search algorithm (BSA) containing various
feed options and valve-point effects. They added more complexity to the ED problem by
considering POZs, and generators ramp-up and ramp-down since BSA is promoted to
solve very non-convex functions. Even though their formulation for the ED problem was
good, it lacked consideration of reducing emissions.
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Implementing emission into the formula requires multi-objective optimization. Di
Somma et al. [10] used a stochastic multi-objective optimization to reduce the cost and emis-
sion and prioritized environmental aspects with a focus on optimal scheduling. Secui [11]
used an approach known as the weighted sum, with a newly altered artificial bee colony
algorithm to approach the ED problem. Aside from the valve-point effect, other restrictions
like transmission losses, POZ, and ramp-rate boundaries have been considered to improve
the mathematical model. However, no renewable energy sources were considered in the
formulation of the problem. Ghasemi et al. [12] considered wind units in their formulation
and they implemented a 2m-point practical model for the uncertainty in wind power. This
was a multi-objective economic emission dispatch (MOEED) problem and they solved it by
using the honey bee mating optimization technique. However, they compared the results
with very old optimization methods that have poor constraint-handling techniques. Qu
et al. [13] used the summation-based differential evolution technique in a multi-objective
form and considered the uncertainty of wind to be a limitation of the system while applying
the superiority of a feasible solution as a constraint-handling method. Only the imple-
mentation of the wind plant was considered up to this point. Khan et al. [14] solved EED
with thermal and solar power by applying the particle swarm method while converting
the multi-objective function to a single-objective function. This can hurt the performance
of the optimization since a trade-off must happen between cost and emission. Kheshti
et al. [15] introduced Lightning Flash Algorithm. A new evolutionary algorithm for solving
non-convex large-scale EED problems considering valve-point effects and multiple fuel
options. However, they did not consider any wind plant in their problem formulation. Not
too much literature can be traced regarding the model of solar, thermal, and wind plant in
power systems and this is true for a combination of wind and hydro energy sources. Hence,
more research is required.

Reddy et al. [16] considered wind, thermal and solar power in the system and ap-
proached the scheduling problem with the best-fit evaluation of participation factors.
However, they performed single objective optimization of the system and did not consider
emission reduction. Reddy [17] executed optimal scheduling of a hybrid system (wind-
solar-thermal) together by using a two-point estimate method and genetic algorithm. To
consider emission reduction, battery storage was proposed but this still is a single objective
problem. Biswas et al. [18] used the success history-based adaptation technique to solve
the optimal flow problem incorporated with solar and wind plants. However, the problem
formulation was a single objective problem but they used separate probability density
functions to estimate the stochastic behavior of renewable energy sources as well as the
underestimation and overestimation price of them. Liu et al. [19] integrated the improved
gradient descent with an evolutionary algorithm to solve the dynamic economic dispatch
problem containing small hydro and wind energy sources. Gumbel and Weibull probability
density functions were used to represent the random behavior of the mentioned energy
sources, respectively. Up to here, no multi-objective optimization was performed for EED.

Salkuti [20] computed single and multi-objective EED problems by adding thermal-
wind-solar power in the system and implemented prohibited operating zones and valve
point loading effect but he did not use a proper constrain handling technique and the
optimization algorithm (particle swarm optimization) was too old. Yalcinoz et al. [21] used
improved particle swarm optimization to solve the MOEED problem while implementing
wind energy in the system and considering generator limitations, valve point effect, ramp
restrictions, transmission losses, and prohibited operating zones. Nevertheless, they did not
consider a proper constraint-handling method nor an appropriate decision-making solution
for optimization results. When the problem requires multi-objective optimization, a method
of extracting compromised solutions is needed. It is important to take into account how
the decision-making of extracting results is going to take place. Decision-making methods
that can consider multiple objectives at the same time are needed in order to create energy
planning scenarios that take into account social, economic, environmental, and technical
aspects related to human development [22].
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Renewable energy sources like wind and solar can fluctuate randomly, which makes it
risky for a single unit to participate in the energy market. If the unit is unable to produce
power, purchasing power at a high price from the balancing markets is needed [23], and
this shows the importance of implementing different renewable energy units in the system.
Until here, a combination of wind, small-hydro, solar, and thermal power plants has not
been mentioned and many of these articles did not consider a proper constraint handling
technique nor a proper technique to extract the compromised solution. To the best of our
knowledge combination of these energy sources altogether, considering different aspects
of system limitations while taking into account different probability density functions for
predicting the stochastic behavior of renewables has been demonstrated only in Ref. [24].

In this study, we considered many system limitations such as generator limits, POZs,
valve point effects, network security, etc. while performing MOEED with thermal genera-
tors, the solar, wind, and hydro renewable sources. In this approach, we also considered a
proper constraint-handling method and emphasized the importance of carefully selecting
different optimization parameters. This study aims to:

1. Contemplate forecasting of renewable energy sources of different types and their
implementation in the system.

2. Formulate and demonstrate a solution to MOEED that is a very non-convex and
non-linear problem.

3. Give in-depth knowledge of optimization since developing an algorithm that is
reliable, fast, robust, and able to handle multi-objective optimization requires a deep
understanding of the underlying principles and techniques.

4. Satisfy many system constraints and network securities that go beyond the classical
approach by using a proper constraint-handling method.

5. Analyze the results in detail and compare them with previous studies to assess the
robustness, stability, and quality of this strategy.

This paper is categorized in the following manner. In Section 1, we begin with an
introduction to the problem and its significance, highlighting the research background
and outlining the main objectives of this study. We then delve deeper into the topic
with a thorough literature review, discussing the latest developments and trends in this
area. Different methods of optimization are reviewed and key concepts and ideas behind
the problem formulation are stated. The limitations of previous articles are mentioned.
Section 2 formally presents the detailed methodology that is practiced in this study. It states
the proposed R-NSGA-II and its elitist characteristics alongside the genetic operators that
are carefully selected and incorporated within. It also includes an explanation of different
methods which are used to forecast renewable energy sources and their implementation
in the modified IEEE 30 bus system. Furthermore, it provides methods of extracting the
best-compromised solution integrated with the algorithm. It talks about a proper and
strong constraint-handling technique. Section 3 presents the outcomes of the simulation for
the developed algorithm on the modified IEEE 30 bus network combined with renewable
energy sources. It also shows the compared results with two other algorithms (which are
newer and supposed to be better) to assess the accomplishments of the suggested approach.
Section 4 summarizes and concludes the presented study. It suggests possible future work
that can be implemented and studied, and the limitations of this study.

2. Materials and Methods
2.1. Specification of the System

The main characteristics of the adjusted IEEE 30-bus network [24] can be seen in
Table 1. The revised network’s illustration can be seen in Figure 1. The system has 30 buses
and 41 branches. Three thermal generators are connected to the system, one generator at
bus number 1, another generator at bus 2, and the last generator at bus 8. A wind generator
is supplying bus 5. A solar photovoltaic (SPV) plant is at bus 11. A solar unit combined
with a small-hydro plant is at bus 13. We have 11 control variables (inputs) in the system.
The scheduled real power of five generators is indicated by TG2, TG3, WG, PV, and PVH; bus
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voltage of all six plants. All these 11 control variables should be optimized thus maintaining
the economical and efficient operation of the system.

Table 1. Essential features of the revised IEEE 30-bus system [24].

Specific Characteristics Amount Details

Corresponding load (P and Q) - 283.4 MW, 126.2 MVAr
Acceptable load bus voltage range 24 0.95–1.10 (p.u.)
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Figure 1. The revised IEEE structure with 30 buses having solar, small hydro, and wind plants [24].

A run-of-river small-hydro power unit is considered so that there would be no need for
storage in most cases. A small-hydro has the potential of giving a few megawatts as output
power at best [25]. There comes the SPV unit, which is integrated with the small-hydro
unit supplying bus 13 to improve the total output power. It is obvious that the outputs of a
solar plant, wind, and small-hydro units are variable dependent and any amount of output
shortage from them must be diminished by the spinning reserve.

2.2. Thermal Generator Cost

Fuel price (in $/h) for the thermal plant complies with a quadratic curve that can be
expressed as [18]:

CT0(PTG) =
NTG

∑
i=1

ai + biPTGi + ciP2
TGi (1)

where ai, bi, and ci show the price coefficients of the ith thermal plant PTGi. NTG is the
entire number of thermal plants in the system. The cost function for a generator is not
smooth due to the valve point loading effect [26]. By considering the valve-point loading
effect, due to the presence of stacking impacts of the valve point, the generation fuel cost
function grows into non-convex with so many curls and it can be seen in Figure 2. To be
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more accurate, the increased charge due to the effects of steam, i.e., valve-point is treated
as [18]:

CT(PTG) =
NTG

∑
i=1

ai + biPTGi + ciP2
TGi +

∣∣∣di × sin
(

ei × (Pmin
TGi − PTGi)

) ∣∣∣ (2)

where ei and di are for considering the price coefficients of the valve-point effect. The lowest
output of the ith thermal plant when it is operating is Pmin

TGi . The price coefficients of thermal
generator plants are provided in Table 2. The explanation for some symbols can be found
in Equation (12).
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Table 2. Coefficients of thermal generators for cost and emission [24].

TG1 TG2 TG3

Bus 1 Bus 2 Bus 8
Ψ = −0.05554 (t/p.u.MWh) Ψ = −0.06047 (t/p.u.MWh) Ψ = −0.0355 (t/p.u.MWh)

Φ = 0.04091 (t/h) Φ = 0.02543 (t/h) Φ = 0.05326 (t/h)
ζ = 6.667 (p.u.MW−1) ζ = 3.333 (p.u.MW−1) ζ = 2 (p.u.MW−1)
τ = 0.0002 (t/h) τ = 0.0005 (t/h) τ = 0.002 (t/h)

ω = 0.0649 (t/p.u.MW2h) ω = 0.05638 (t/p.u.MW2h) ω = 0.0338 (t/p.u.MW2h)
a = 30 ($/h) a = 25 ($/h) a = 20 ($/h)

b = 2 ($/MWh) b = 1.75 ($/MWh) b = 3.25 ($/MWh)
c = 0.00375 ($/MW2h) c = 0.0175 ($/MW2h) c = 0.00834 ($/MW2h)

d = 18 ($/h) d = 16 ($/h) d = 12 ($/h)
e = 0.037 (rad/MW) e = 0.038 (rad/MW) e = 0.045 (rad/MW)

2.3. Price of Periodic and Stochastic Renewable Energy Plants

Integration of renewable plants into the power grid is difficult due to the periodic and
stochastic characteristics of nature. Generally, PV farms, wind farms, etc. are inherited
by non-public organizations which endure a buy consensus with the independent system
operator (ISO) for a specific volume of scheduled power. The ISO is responsible for
diminishing the shortage amount of the scheduled power if these renewable sources are
insufficient or non-available. Thus, the spinning reserve must be kept if there is a demand.
This situation is termed as an overestimation of renewable sources like windfarm and
solar-farm and it adds extra cost for the ISO. Conversely, a condition may occur when
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these renewable sources generate more power than the scheduled power which is called
underestimation. In this case, the extra generated power can be wasted due to the non-
utilization. So, the ISO must endure the penalty fee. Hence every cost for these renewable
energy plants contains direct cost parallel to the scheduled power, an overestimation fee on
account of the spinning reserve, and penalty prices owing to the underestimation.

The direct fee of the windfarm as an objective of the scheduled power can be shown
as [24]:

(Pws) = gwPws (3)

where gw specifies the direct fee coefficient of the wind plant. Pws designates the scheduled
power of the same unit.

Likewise, for the solar power unit, the direct fee related to the solar unit is [24]:

(Pss) = hsPss (4)

where hs indicates the direct price coefficient of the solar PV unit and Pss specifies the
scheduled power of the same unit.

There is a third hybrid power plant considered in this case study which is owned by a
single non-public operator that contains a small-hydro power unit and a solar PV plant. The
direct price coefficients for these plants are non-identical. The output of the small-hydro
power plant differs in line with the movement speed of the river [27]. Nevertheless, because
the volume of the small-hydro power unit is trivial in comparison with the requested load
of the network, this source generally operates at maximum.

Direct price linked with the hybrid unit calculated as [24]:

Csh(Pssh) = Csh(Pssh,s + Pssh,h) = hsPssh,s + mhPssh,h (5)

where Pssh indicates the scheduled output power from the hybrid plant, Pssh,s is the influ-
ence of the solar unit, and Pssh,h is the influence of the small-hydro unit. The coefficient
of direct price for the solar plant is hs like the previous, and for the small-hydro unit, the
coefficient is mh.

2.3.1. Computing Price of Stochastic Wind Power

As discussed previously, owing to the stochastic essence of wind energy, the power
output can be insufficient compared to the scheduled amount. If such a case occurs, ISO
must have enough operating reserve to diminish the demand. The price of operating
reserve for the wind plant can be computed as [18]:

CRw(Pws − Pwav) = KRw(Pws − Pwav) = KRw

Pws∫
0

(Pws − pw) fw(pw)dpw (6)

where the reserve price coefficient KRw is for the wind unit and the real power available
from the same unit is Pwav. The probability density function (PDF) for the wind unit is
represented by fw(pw). This is due to the changes in wind speed which can be seen in
Equation (34).

If underestimation happened in any case, the output power from the wind unit could
be wasted due to the non-utilization. To utilize it, the output power of the normal generators
must be reduced. A penalty price cost must be paid by the ISO if such a case arises. Charge
of the penalty for the wind plant is formulated as [18]:

CPw(Pwav − Pws) = KPw(Pwav − Pws) = KPw

Pwr∫
Pws

(pw − Pws) fw(pw)dpw (7)
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where the penalty fee coefficient KPw is for the wind unit and the calculated output power
of the same unit is Pwr.

2.3.2. Computing Price of Stochastic Solar Power

The method for calculating the over and underestimation of solar power is similar
to the windfarm. Although, in windfarm, a well-known Weibull PDF is drawn, for solar
radiation, lognormal PDF is mostly used [16,28]. For ease of calculation, like the idea which
is explained in [18,29], penalty and reserve fees are formulated accordingly. The reserve
price of the PV unit for overestimation is formulated as [18]:

CRs(Pss − Psav) = KRs(Pss − Psav) = KRs ∗ fs(Psav < Pss) ∗ [Pss − E(Psav < Pss)] (8)

where KRs is the coefficient of the reserve fee related to the solar power unit and Psav is the
actual accessible power for the same unit. The possibility of a solar output deficit event
is represented by fs(Psav < Pss) and E(Psav < Pss) is the prediction of solar output power
beneath Pss.

For the opposite case of overestimating the solar unit cost, the penalty fee for underes-
timation is formulated as [18]:

CPs(Psav − Pss) = KPs(Psav − Pss) = KPs ∗ fs(Psav > Pss) ∗ [E(Psav > Pss)− Pss] (9)

where KPs is the coefficient of the penalty fee for the solar unit. The likelihood of solar
power surplus is represented by fs(Psav > Pss) and the possibility of PV power exceeding
Pss is E(Psav > Pss).

2.3.3. Computing Price of Stochastic Hybrid Unit

Massive facilities of hydro power have enormous pools, making them suitable sources
of spinning reserve. However, because the capacity of small-hydro is tiny in comparison
to network production and consumption, the operating reserve size of it may not matter
to the ISO. In actuality, penalty or reserve fees may not apply to the non-public agents
of small-hydro plants at all. The 3rd production unit in our instance is a hybrid system.
It consists of a solar PV plant mixed with a small hydro plant. The small hydro plant’s
output is determined by the flow rate of the river, which is notorious to follow the Gumbel
distribution [30,31]. The PV power plant is now eligible for penalty and reserve costs,
similar to the one described previously. We include penalty fees for underestimated and
reserved fees for overestimated entire quantities of power output from the hybrid unit, for
calculation purposes. This is because the small hydro contributes around 10–20% only.

Subsequent Equation (10), the overestimation reserve fee of the power from the hybrid
unit is [24]:

CRsh(Pssh − Pshav) = KRsh(Pssh − Pshav) = KRsh ∗ fsh(Pshav < Pssh) ∗ [Pssh − E(Pshav < Pssh)] (10)

where the coefficient KRsh is for the reserve price of the hybrid plant, and the real available
output power of the same plant is shown as Pshav. The possibility of the power shortage
event of this hybrid unit is fsh(Pshav < Pssh) and E(Pshav < Pssh) is the prediction of hybrid
unit output power lower than Pssh.

Following Equation (11), the underestimation penalty fee of the hybrid power output
is [24]:

CPsh(Pshav − Pssh) = KPsh(Pshav − Pssh) = KPsh ∗ fsh(Pshav > Pssh) ∗ [E(Pshav > Pssh)− Pssh] (11)

where the coefficient of penalty fee concerning the hybrid unit is KPsh, the possibility of
the hybrid unit power surplus is given by fsh(Pshav > Pssh). The prediction of hybrid unit
output power exceeding Pssh is E(Pshav > Pssh).
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2.3.4. Emission

Both the atmosphere and environment are filled with noxious gases that are released
from fossil-fueled thermal generators. These gases are air pollutants and harmful. The
quantity of noxious gas emissions, like NOx as well as SOx, etc., fluctuates with the amount
of production power generated, coming from Equation (12). Emission (t/h) can be shown
as [18]:

Emission, ETot =
NTG

∑
i=1

[
(ϕi +ψiPTGi +ωiP2

TGi)× 0.01 + τie(ζi PTGi)
]

(12)

where ϕi, ψi,ωi, τi and ζi are coefficients of emission related to the ith thermal plant. All of
the mentioned coefficients can be seen in Table 2.

2.4. Objectives of Optimization

To calculate the total price of generation, the cost of the thermal generators, as well as
the direct price of the renewable power along with their reserve and penalty price, must be
summed. Hence, the total price of 3 thermal generators, 1 wind generator, 1 solar generator,
and 1 hybrid generator which is a combination of a small-hydro and a PV can be specified
as the summation of Equations (2)–(11) [24]:

CTot = CT(PTG) + [Cw(Pws) + CRw(Pws − Pwav) + CPw(Pwav − Pws)]
+[Cs(Pss) + CRs(Pss − Psav) + CPs(Psav − Pss)]
+[Csh(Pssh) + CRsh(Pssh − Pshav) + CPsh(Pshav − Pssh)]

(13)

The objective function of multi-objective optimization [24]:

min F(x) = [CTot, ETot, Error] (14)

where CTot is the total cost, ETot is the total emission, and Error is referred to the system
restrictions. The process is to minimize cost and emission at the same time, finding a
balance between economic efficiency and environmental sustainability while not violating
any system restrictions. There exist many inequality and equality restrictions in the EED
problem. Those restrictions will be explained in the coming sections in more detail.

2.5. Equality Limitations

For immediate power balancing, equality constraints require that the generated real
and reactive power be equal to all of the network’s corresponding demands and losses [18].

PGi − PDi −Vi

NB

∑
i=1

Vj[Gij cos(δij) + Bij sin(δij)] = 0 ∀i ∈ NB (15)

QGi −QDi −Vi

NB

∑
j=1

Vj[Gij sin(δij)− Bij cos(δij)] = 0 ∀i ∈ NB (16)

where δij = δi − δj, represents the distinction in voltage gradient of bus i as well as bus
j. Real load demand related to the bus i is PDi and reactive load demand for the same
bus is QDi while for the same bus, PGi and QGi are real and reactive power generation,
respectively, from a conventional or renewable source. NB indicates overall buses in the
system. The conductance being Gij between bus i and j, and the susceptance being Bij
between bus i and j.

2.6. Inequality Limitations

In the EED problem, the inequality limitations consist of prohibited/forbidden operating
zones (POZ) for thermal generators, operational limitation range of all generators in the system,
and security limitations for buses as well as the transmission lines. In Equations (17)–(20)
limitations for the actual power production of the thermal unit, wind plant, solar generator,
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and hybrid unit are given, respectively, while Equations (21)–(24) specify the imaginary
power limitations of the same generators with the same order.

Generator constraints for operational limitation range [24]:

Pmin
TGi ≤ PTGi ≤ Pmax

TGi ∀i ∈ NTG (17)

Pmin
ws ≤ Pws ≤ Pmax

ws (18)

Pmin
ss ≤ Pss ≤ Pmax

ss (19)

Pmin
ssh ≤ Pssh ≤ Pmax

ssh (20)

Qmin
TGi ≤ QTGi ≤ Qmax

TGi ∀i ∈ NTG (21)

Qmin
ws ≤ Qws ≤ Qmax

ws (22)

Qmin
ss ≤ Qss ≤ Qmax

ss (23)

Qmin
ssh ≤ Qssh ≤ Qmax

ssh (24)

Prohibited operating zones (POZ) are introduced to avoid discontinuity of the cost
curve of thermal generators. Sometimes thermal generators cannot operate in the whole
range and this happens because of different reasons like shaft bare quivering, a flaw in the
generator itself, or its attachments like boilers, pumps, etc [32]. POZs can be represented
as [24]:

Pminpoz,j
TGi < POZj

TGi < Pmaxpoz,j
TGi (25)

where the lower bound and upper bound of the jth POZ are Pminpoz,j
TGi and Pmaxpoz,j

TGi , respec-
tively, for the ith thermal unit.

System security constraints can be shown as [24]:

Vmin
Gi ≤ VGi ≤ Vmax

Gi ∀i ∈ NG (26)

Vmin
Lp ≤ VLp ≤ Vmax

Lp ∀p ∈ NL (27)

Slq ≤ Smax
lq ∀q ∈ nl (28)

Limitations of the voltage for the generator buses are shown in Equation (26) and NG
is the number of generators whether it is renewable or generator bus. Voltage limitations
for the load buses are represented in Equation (27) while limitations of the line are specified
in Equation (28). NL is the number of load buses in the system while nl is the value of
transmission lines inside the system.

Out of the abovementioned different limitations, equality boundaries of balancing
power are satisfied by default, when the convergence of power flow happens. MAT-
POWER [33] is used with applying the Newton-Raphson method for performing and
calculating the power flow.

Generator bus voltages and generator real power (excluding slack bus) are automati-
cally handled for their inequality constraints. Within their specified range, the optimization
algorithm selects a feasible solution that contains sets of control variables. If a generator is
within the POZs, the algorithm must not select that value for decision variables. In other
words, the algorithm is only allowed to select the values which are not in the range of POZs.
An appropriate handling technique for remaining inequality boundaries is a must so that
their limitations are all held correctly.

Some parameters like power loss of the system shown in Equation (29) and voltage
deviation (VD) shown in Equation (30), which shows that the quality of voltage in the
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system is considered. VD can be calculated by summing voltage deviations for all load
buses in the system [34].

Ploss =
nl

∑
q=1

Gq(ij)

[
V2

i + V2
j − 2ViVj cos(δij)

]
(29)

where, δij = δi − δj, represents the voltage angle difference of buses i and j and Gq(ij) is the
transfer conductance related to branch q which connects bus i and bus j.

VD =
NL

∑
p=1

∣∣VLp − 1
∣∣ (30)

2.7. Computing Uncertain Production of Renewable Power Sources
2.7.1. Distribution Probability of Power for Renewable Sources

For representing wind speed, Weibull PDF is mainly used [18]. The speed of the wind
(v) m/s possibility is formulated as [18]:

fv(v) =
(
β

α

)( v
α

)(β−1)
e−(v/α)β f or 0 < v < ∞ (31)

where α is the scale parameter and β is the shape of Weibull characteristics, respectively.
Values for all PDF parameters can be seen in Table 3. These values are selected rationally
with consideration of the capacity installed for power generation sources and most of them
are the same as in Ref. [18]. In buses 5 and 11, a Monte-Carlo simulation of 8000 sample size
was obtained from ref [24] for wind speed and solar irradiance distribution, respectively.
The same goes for bus 13 which has a solar and small hydro plant. Hence, Weibull,
Lognormal, and Gumbel fitting were applied according to the values of Table 3.

Table 3. All parameters of PDF for probability modeling of renewable energy [24].

Bus 5 Bus 11 Bus 13 Bus 13

Wind Plant Solar Plant Solar Plant Hydro Plant
α = 9,β = 2 µ = 5.2, σ = 0.6 µ = 5.2, σ = 0.6 λ = 15, γ = 1.2

75 MW 50 MW 45 MW 5 MW

For solar insolation distribution (Gs), lognormal PDF is used and it can specify the
possibility of it as [18]:

fG(Gs) =
1

Gsσ
√

2π
exp

{
−(ln Gs − µ)2

2σ2

}
f or Gs > 0 (32)

where µ is the mean and σ is the standard deviation of the lognormal PDF.
Distribution of Gumbel can represent the flow rate of the river as [24]:

fQ(Qh) =
1
γ

exp
(

Qh − λ

γ

)
exp

[
− exp

(
Qh − λ

γ

)]
(33)

where λ is the location parameter, γ is the scale, and Qh is the flow rate of the river.

2.7.2. Production Power of PV, Small-Hydro and Wind Plants

At bus 5 there are 25 turbines and each of them has a 3 MW capacity, making the
capacity of the wind farm 75 MW in total. The output power of the turbines is non-identical
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due to the different wind speeds they face. The output power of the wind plant associated
with wind speed can be designated as [18]:

pw(v) =


0, f or v < vin and v > vout

pwr

(
v−vin
vr−vin

)
f or vin ≤ v ≤ vr

pwr f or vr < v ≤ vout

(34)

where the evaluated output of a wind plant is pwr. Cut-in speed, cut-off speed, and rated
speed of a wind plant are vin, vr and vout, respectively. Enercon E82-E4 wind turbine has
been considered in this case study which has a vin of 3m/s , vr of 16m/s , and vout of 25m/s.

Energy transformation of the PV concerning solar insolation is [18]:

Ps(Gs) =

 Psr

(
G2

s
GstdRc

)
f or 0 < Gs < Rc

Psr

(
Gs

Gstd

)
f or Gs ≥ Rc

(35)

where in a normal environment, Gstd is the solar insolation and set to 1000 W/m2. The
specific insolation point is shown by Rc and set to 120 W/m2. The evaluated output power
of the solar unit is shown by Psr and all these values are true for both of the PVs connected
to buses 11 and 13.

The output power of the small-hydro unit is mathematically calculated as [27]:

PH(Qh) = ηρgQh Hhyd (36)

where Qh is the flow rate of the water,Hhyd is the productive pressure head, the effectiveness
of turbine-generator joining is η, the water density is shown with ρ and gravity acceleration
is g. These values are set as Hhyd = 25 m , η = 0.85, ρ = 1000 kg/m3 and g = 9.81 m/s2.

2.7.3. Computation of Probabilities of Wind Power

In zones beneath the cut-in speed or beyond the cut-off speed, the output production
of the wind turbine is zero. When the wind speed is in the zone between rated and cut-off
speed, the output power of the turbine is pwr. The possibility of wind power output for
these separate zones can be calculated as [35]:

fw(pw){pw = 0} = 1− exp
[
−
(vin
α

)β]
+ exp

[
−
(vout

α

)β]
(37)

fw(pw){pw = pwr} = exp
[
−
(vr

α

)β]
− exp

[
−
(vout

α

)β]
(38)

where wind speed is shown with v, cut-in speed is vin, cut-off speed is vout, and evalu-
ated/rated wind speed is vr.

When the speed of the wind is in the zone between cut-in and rated speed, wind
output power probability which is continuous can be formulated as [18]:

fw(pw) =
β(vr − vin)

αβ ∗ pwr

[
vin +

pw

pwr
(vr − vin)

]β−1
exp

−(vin +
pw
pwr

(vr − vin)

α

)β
 (39)

2.7.4. Computing over and Underestimation Price of Production for PV Unit

Acquiring all of the available power of a PV plant may not be possible due to the
limited capacity of the plant and its accessories. Furthermore, the non-public owner of the
PV unit may not be eligible to pay the penalty fee above the evaluated capacity of the unit.
The actual power of the PV unit that can be carried out can be represented by a scheduled
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power. Scheduled power is the quantity that is commonly accepted between the non-public
operator and ISO. The overestimation price in Equation (8) can be achieved with [18]:

CRs(Pss − Psav) = KRs(Pss − Psav) = KRs

N−b

∑
n=1

[Pss − Psn−] ∗ fsn− (40)

where the accessible power is shown with Psn− and Pss is the scheduled power. fsn− is
the comparative frequency of Psn− and the number of PDF duos (Psn−, fsn−) generated
is specified with N−b . According to Ref [24], a bigger number of portions (bins) does not
significantly make the outcome better. Hence, to be practical, an overall number of 30 bins
are chosen for Nb.

ISO must endure a defined penalty price of underestimation for the power of the solar
plant. The penalty price stated in Equation (9) is formulated as [18]:

CPs(Psav − Pss) = KPs(Psav − Pss) = KPs

N+
b

∑
n=1

[Psn+ − Pss] ∗ fsn+ (41)

where the accessible power is shown with Psn+. fsn+ is the comparative frequency of Psn+
and the number of PDF duos (Psn+, fsn+) generated is specified with N+

b .

2.7.5. Computing over and Underestimation Price of Production for Hybrid Unit

Calculation of this price was obtained from the same case study in Ref [24]. The
chosen hydro plants connected to bus number 13, have greater evaluated power compared
to available hydro-power computed from the stochastic flow rate of the river. Output
power from the two plants is summed and then combined. As previously stated, the
small-hydro plant may not be eligible for the penalty or reserve cost. Nevertheless, since
the contribution of this unit is trivial compared to the total power, the penalty and reserve
price are computed by counting the hydroplant out for ease.

Similar to Equation (40), the overestimation price for the combined network can be
shown with [24]:

CRsh(Pssh − Pshav) = KRsh(Pssh − Pshav) = KRsh

N−b

∑
n=1

[Pssh − Pshn−] ∗ fshn− (42)

where the accessible power is shown with Pshn− and Pssh is the scheduled power. fshn− is
the comparative frequency of Pshn− and the number of PDF duos (Pshn−, fshn−) generated
is specified with N−b . Succeeding Equation (41), the underestimation price cost of the mixed
system can be formulated as [24]:

CPsh(Pshav − Pssh) = KPsh(Pshav − Pssh) = KPsh

N+
b

∑
n=1

[Pshn+ − Pssh] ∗ fshn+ (43)

where the accessible power is shown with Pshn+ and Pssh is the scheduled power. fshn+ is
the comparative frequency of Pshn+ and the number of PDF duos (Pshn+, fshn+) generated
is specified with N+

b .
Table 4 [24] shows the evaluated direct, reserve, and penalty price coefficients of

uncertain solar, small hydro, and wind power, respectively. As it can be seen, it is decided
that the highest direct price coefficient belongs to wind energy and then solar energy and
after that, hydro power. The reserve price coefficient is more than the corresponding direct
price coefficient to maintain the spinning reserve, but the penalty price is less than the
direct price for not using the accessible power.
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Table 4. Fee ($/MW) coefficients for the uncertain source of renewable plants.

Bus 5 Bus 11 Bus 13

Wind Solar Solar and Hydro
gw = 1.7 hw = 1.6 mw = 1.5
KRw = 3 KRs = 3 KRsh = 3

KPw = 1.4 KPs = 1.4 KPsh = 1.4

2.8. Multi-Objective Optimization
2.8.1. Constraint Handling Technique (CH)

The first introduction of CH to deal with infeasible solutions is presented in [36]. Later
on, Deb [37] introduced a tolerance parameter to handle constraints by first converting
equality constraints into inequality constraints. Modifying the tournament selection of
the solution is one way to deal with constraints, where initially two random solutions
are chosen from the population and the first-rated solution is selected from that two.
Hence, there can be three different cases at maximum: In case (1), both solutions are
viable. In case (2), one solution is viable and the other one is not, and in case (3) both are
infeasible solutions. However, in this study, a slightly different method is used and named
‘constrained domination’ [38]. The ‘constrained domination’ definition for two solutions xi
and xj happens when xi dominate xj with any of the subsequent rules to be true:

1. The solution xi is viable whereas xj is not feasible.
2. Both solutions xi and xj are infeasible except xi has lesser overall boundaries violation

and it can be calculated by normalizing all constraint violations and summing them
together [38]:

CV(x) =
J

∑
j=1

〈
gj(x)

〉
+

K

∑
k=1

abs
(

hk(x)
)

(44)

where the expected value 〈α〉 is −α, if α < 0, otherwise it is zero. gj(x) is the
inequality constraint and hk(x) is the equality constraint. The normalization process
can be achieved by:

gj(x) =
(〈

gj(x)
〉
−
〈

gj
〉

min

)
/
(〈

gj
〉

max −
〈

gj
〉

min

)
(45)

where
〈

gj
〉

min and
〈

gj
〉

max are minimum and maximum population constraint viola-
tions, respectively.

3. Both solutions xi and xj are viable and the first solution is superior to the latter by the
following rules to be both true:

• The solution xi is not inferior to the solution xj in any aspect.
• The solution xi is surely superior to the solution xj in at least one aspect.

2.8.2. Crossover

Crossover is one of the genetic operators that support the blend of the genetic com-
ponent of two or higher solutions [39]. It can be said that applying crossover is one of the
major differentiating characteristics of a genetic algorithm [40]. Some examples of crossover
methods for mixing the parent solution and producing offspring (child) are [41]:

1. partially-mapped crossover (PMX)
2. cycle crossover (CX)
3. order crossover operator one (OX)
4. order crossover operator two (OX2)
5. position-based crossover operator (POS)

It is very important to select a suitable crossover method since a specific crossover
technique works best for a specific problem, for instance, edge recombination operator
(ERO) [42] which was proven to work best for the Traveling Salesman Problems, or, the
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enhanced version of it in [43] which further improved the performance of the mentioned
ERO. Thus, in this study, Simulated Binary Crossover (SBX) [44] is used due to the fact that
any solution can be created in the initialization phase and during the convergence phase,
the focus of the search can be increased. In the SBX, to produce offspring c1 and c2 from
parents y1 and y2, first an accidental value u is constructed in the range between 0 and 1.
Secondly, by using a polynomial probability distribution [44], the parameter βq would be
computed as [45]:

βq =


(uα)

1
ηc+1 if u ≤ 1

α(
1

2−uα

) 1
ηc+1

otherwise
(46)

where α = 2− β−(ηc+1) and β is computed as [45]:

β = 1 +
2

y2 − y1
min[(y1 − yl), (yu − y2)] (47)

The range of the parameter y is [yl , yu] and the distribution index of SBX is shown by
ηc which can have any non-negative quantity. Changing ηc to a smaller quantity grants
offspring to be created far away from parents while a larger quantity allows it to be created
near the parents.

Offspring can be computed as [45]:

c1 = 0.5
[
(y1 + y2)− βq|y2 − y1|

]
(48)

c2 = 0.5
[
(y1 + y2) + βq|y2 − y1|

]
(49)

where y1 < y2 but modification can be made for y1 > y2.

2.8.3. Mutation

After the crossover, the next protagonist in GA is the mutation operator [39]. Since the
mutation operator disturbs the solutions based on accidental changes, choosing the correct
method is crucial. Constraints narrow the entire solution space into a feasible subspace.
Hence, it is sometimes difficult to reach all points inside the solution space and because of
that, a correct technique can lead to finding the optimum but an improper one can give
bias advantage [39]. Not all mutation operators can ensure the action of finding the global
optimum. In fact, some of them work best for one specific problem while for other problems
they are not promising. Some known mutation operators are:

1. displacement mutation operator (DM)
2. exchange mutation operator (EM)
3. scramble mutation operator (SM)
4. inversion mutation operator (IVM)
5. insertion mutation operator (ISM)

In this study, a parameter-based mutation known as polynomial mutation [44] is used.
Figure 3 shows a sample code of this operator. The procedure is as follows.

Every control variable has a probability pm to be disrupted. A random number t
between 1 and the value of control variables (V) is calculated for every decision variable. If
t < pm then the following procedure is applied to mutate the variables.
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First, a random number u is created in the range between 0 and 1, and the parameter
δq is calculated as [45]:

δq =


[
2u + (1− 2u)(1− δ)ηm+1

] 1
ηm+1 − 1 if u ≤ 0.5

1−
[
2(1− u) + 2(u− 0.5)(1− δ)ηm+1

] 1
ηm+1 otherwise

(50)

where the distribution index of mutation is shown with ηm and can have any non-negative
quantity. A larger quantity of ηm gives a stronger possibility of establishing offspring within
the neighborhood of the parent and a tiny value allows a further solution to be established.
For y ∈ [yl , yu] the parameter δ is formulated as [45]:

δ = min[(y− yl), (yu − y)]/(yu − yl) (51)

where y is the parent solution and the mutated offspring is computed as [45]:

c = y + δq(yu − yl) (52)

Mutation probability (pm) for this study is considered to be 1/V where V is the
number of decision variables, 11 in this study.

2.8.4. Real Coded NSGA-II

In 1995, a non-dominated sorting genetic algorithm (NSGA) was presented by Srinivas
and Deb [46] to solve problems of multi-objective optimization. The idea is based on
a suggestion given by Goldberg in 1989 [47] and follows an even earlier application of
GA introduced in 1984 by Schaffer [48] known as the VEGA algorithm, which opened
new doors in the field of multi-objective optimization. Although this algorithm, VEGA,
gave promising results at first, later on it encountered bias approaching some of the pareto
optimal solutions. Like VEGA, NSGA had some of its problems over the years, such as the
excessive computational difficulty of non-dominated sorting, the absence of elitism, and the
necessity of defining a sharing parameter [49]. Deb, later on, enhanced his NSGA algorithm
to address the above-mentioned issues, the one that is now called NSGA-II or Elitist
Non-dominated Sorting Genetic Algorithm. In NSGA-II, there are three characteristics:
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1. The elitist concept is used in the algorithm.
2. The algorithm uses a clear technique to preserve diversity.
3. Non-dominated solutions are highlighted in the algorithm.

Each concept will be summarized. Detailed descriptions and definitions are provided
in [49].

2.8.5. Quick Non-Dominated Sorting Procedure

To determine if the answers of the first non-dominated front are dominated by one
another, the simplest way is to compare all of the solutions with each other one by one.
Completing this procedure for the first non-dominated front would result in the overall
complexity of O(MN2) where O is the ‘Bachmann–Landau’ notation (big O notation), M is
the number of objectives, and N is the population magnitude. Finding individuals in the
second non-dominated level can be achieved by repeating the same procedure only without
considering the answers of the first non-dominated front. Again, the same complexity of
O(MN2) is needed and this fact is true for the third and fourth and all other non-dominated
levels. Thus, a total complexity of O(MN3) is necessary for the worst-case scenario in
which there exists only a single solution at each level, for N number of fronts.

Figure 4 shows a quicker method with the overall complexity of O(MN2). np means
how many times the solution p is dominated, and Sp is a group of solutions dominated by
p. It is worth mentioning that, even though the simplest approach has higher overall com-
plexity, it only requires O(MN) storage, whereas the quicker approach has less complexity
but it requires O(MN2) storage.
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For the quicker approach, in the first non-dominated front, np for all of the solutions
are set to zero. Next, for all those solutions with np as zero, every representative q of its set
Sp is inspected, and its domination magnitude is shortened by one. Afterward, any member
q reaching the domination count of zero is placed into another category Q and forms the
second non-dominated front. Now, the above-mentioned technique is practiced to the
members of Q to form the third non-dominated front and this operation goes on till every
front is established. To compute the complexity of this method, in the first inner loop of
Figure 5 (for each p ∈ Fi), since each entity can be part of a maximum of one front, the loop
is performed N times exactly. As for the second inner loop (for each q ∈ Sp), each entity
can dominate other members N − 1 time at most, and checking dominated individuals
needs no more than M comparisons. Hence, the total complexity of O(MN2) [49].
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2.8.6. Main Loop of NSGA-II

Firstly, an accidental parent population is generated which is called P0. Population
sorting is built on non-domination. Every answer is given a rank corresponding to its non-
domination position where rank 1 is the finest level, the best one afterward is rank 2, and
the best one after that is rank 3, and it continues. Hence, minimizing the rank is expected.
By using normal genetic operators like binary tournament selection, recombining, and
mutating, the offspring Q0 with a population of N is created. At this point, elitism is ready
to be applied but first, a description of the tth generation is necessary. The sample code of
the tth generation, by combining Pt and Qt, a new population of size 2N is generated which
is shown with Rt. Then, non-dominated sorting is enforced by blending the population
with points of non-dominated fronts. Filling the population begins with selecting the points
from the non-dominated front that has the highest rank (level 1 or F1) and it continues with
selecting the points of the non-dominated front with the second-best rank (level 2 or F2)
and so on. Because the capacity of Rt is limited to 2N, there will be some fronts remaining.
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The remaining fronts that cannot be accommodated, are removed. There also may be a
situation when selecting points of the last front like F3 in Figure 5, which are more than
the needed slots for the new population. In this case, the points that add more diversity
to the population are chosen. Here is one of the differences between NSGA-II and NSGA,
where in the latter, a sharing parameter like δ is required for niching during the tournament
selection and population reduction stage whereas in the former, a new method recognized
as ‘crowding distance’ is represented. To calculate the diversity factor, a ‘crowding distance’
function is used. di is called the crowding distance of the point i and it is calculated by
computing the objective space around the point i that is not inhabited by any other solution.
di can be acquired by obtaining the cuboid’s perimeter shown in Figure 6. This cuboid is
made with the assist of the closest neighbors of the point i. Now that the crowding distance
is established, the points with the highest crowding distance value are selected for the new
population until there is no slot left to fill and the remaining points are removed. Finally, a
new population of Pt+1 with the size of N is formed. In the next step, this population Pt+1
is used to select, recombine and mutate for generating a new population Qt+1 with the size
of N.
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The illustration in Figure 7 is showing how this new crowding distance function brings
a new feature for selecting the fronts to be well diverse as the algorithm selects different
solutions during the iteration.
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In Figure 8, the flowchart of how the algorithm works is represented. While hav-
ing multiple objective functions along with constraints, the first step is to find trade-off
solutions, meaning that one solution may not be absolutely better than the other one.
In the second step, a single solution based on a method of choice like fuzzy decision-
making [13,50], the same as in this study, will be extracted. An explanation of this method
will be given at the end of this section.
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2.9. Best Compromised Solution
2.9.1. Hypervolume Indicator

In a naive definition, a hypervolume indicator will consider the amount of area that is
accumulated under or above a pareto front set while considering a set of reference points
that is going to be needed for comparison. To make it simplified it can be said that the bigger
the area is, the better the indicator becomes. Thus, the biggest output of the hypervolume
indicator is the best [51,52]. A reference point is needed to measure the area under the
curve. In this study, a set of reference points which are [1,1] has been chosen.

2.9.2. Steps of Calculating Compromised Solution

The method of calculating the best pareto front is a delicate formula. As mentioned
before, there is no absolute best solution when comparing the results of multi-objective
optimization. One algorithm can provide results for the best cost or emission on a single
side of view, and it is easy to choose the best cost as an output target or the best emission for
that matter, among all the available outcomes. However, when it comes to considering both
cost and emission together, for instance, making cost better will result in making emission
worse or vice versa. To overcome that, two steps can be taken while deciding on choosing
the best result.
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The first step is to choose the best result among all the results of the trial runs. To do
that, a hypervolume indicator is used to determine which one of the pareto fronts is the best.
Now, after this step, the best cost or the best emission can be chosen for comparison.

2.9.3. Fuzzy Decision Making

The second step is to designate the best-compromised solution out of the best pareto
front. For that, fuzzy decision-making has been applied to obtain the best-compromised
solution out of all answers in the best pareto front. The reason for that name is because
while trying to make cost or emission better, the other objective would become worse in
the process, hence compromisation is needed. Comparing the compromised solution with
each other may not make sense since no algorithm will give the best emission and the best
cost at the same time. Thus, a technique must be used to extract the compromised results
and, in this study, a fuzzy decision-making technique has been used. Computing fuzzy
decision-making can be formulated as [24]:

ξk
m =


1 f or f k

m ≤ f min
m

f min
m − f k

m
f max
m − f min

m
f or f min

m < f k
m < f max

m

0 f or f k
m ≥ f max

m

(53)

where ξk
m defines the value of membership function for the mth objective of the kth non-

dominated solution. Mth objective fitness value for the kth non-dominated solution is
shown with f k

m, the maximum fitness number of the mth objective function between all of
the non-dominated answers is designated with f max

m and the minimum fitness value of the
same function is represented with f min

m .

3. Results and Discussion

Throughout this section, the outcome of the simulation practicing real coded NSGA-II
on the altered IEEE 30 bus case is examined and explained. The algorithm is described in
Section 2. The initializing parameters are carefully selected and used for the method. They
are listed below in Table 5.

Table 5. Defined parameters for real coded NSGA-II.

Parameter Value

Size of the population 200
Maximum iteration amount 650

Distribution index of crossover, ηc 20
Distribution index for mutation, ηm 100

Number of decision variables, V 11
Number of runs 21

Mutation probability, pm 1/11

3.1. Simulation Results of the Algorithms

The size parameter defined in Table 5 is a standard population size, although, the
maximum number of iterations is fine-tuned along with genetic operators of mutation and
crossover. Mutation probability is also fine-tuned to give the best results. Table 6 will show
the comparison of the hypervolume indicator. Decision variables are:

1. The actual power of the generator (excluding slack unit, PTG1)
2. Generator bus voltages from scheduled production of solar, wind, and hybrid (mixed

solar and hydro) plants (Pws, Pss, and Pssh, respectively)
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Table 6. Comparison of HV numbers of algorithms.

Algorithm Maximum Minimum Mean Std Deviation

MOEA/D-SF 0.8352 0.8337 0.8346 0.0004
SMODE-SF 0.8707 0.8635 0.8684 0.0026
R-NSGA-II 0.8842 0.8577 0.8679 0.0071

POZs are introduced for thermal generator TG2 to add discontinuity. The real power of
PTG1 and the imaginary power of all generators are variables that are considered restrictions
and should be satisfied by the algorithm. Accumulated voltage drops (VD) of load buses
are also provided. The contribution of the small-hydro plant is shown with Pssh,h.

We ran the simulations 21 times to observe the consistency and to be assured of the
accuracy of the results. This way, we know that results did not happen by chance and we
make sure they are consistent enough by measuring their standard deviations.

The hypervolume indicator has been calculated and compared. Table 6 shows a
comparison between hypervolume indicator results from the algorithm in this study as
well as two more algorithms from a previous study [24]. Min, max, and mean along with
the standard deviation of the hypervolume indicator are displayed and compared, and
R-NSGA-II has the highest hypervolume indicator with an acceptable standard deviation
of less than 1 percent.

It is worth mentioning that the results across all 21 runs of the simulation are found
to be consistent and it can be observed in Table 7 with a standard deviation of 0.0400. In
Table 7 only the best cost of all 21 runs is provided. It can be seen that the lowest cost
among the trial runs of the proposed algorithm is from run number 5, with a value of
892.7606 ($/h) and the highest cost result calculated by the R-NSGA-II is from trial run
number 11 with a value of 892.9335 ($/h), which interestingly has the highest hypervolume
indicator among all runs. This means that the results provided by the proposed R-NSGA-II
in its worst-case scenario are better than the results provided by the other two algorithms in
their best-case scenarios. Hence, the significance of the results and strength of the proposed
approach are seen.

Table 7. Results of the cost of the R-NSGA-II optimization in all 21 runs of the simulation.

Run Cost ($/h)

1 892.7732
2 892.7820
3 892.7993
4 892.7728
5 892.7606
6 892.8236
7 892.7960
8 892.7701
9 892.7789
10 892.7790
11 892.9335
12 892.7886
13 892.7919
14 892.8735
15 892.7777
16 892.7877
17 892.7910
18 892.7631
19 892.7889
20 892.7670
21 892.7843
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This is the starting point for showing the dominance of R-NSGA-II over the new
techniques (MOEA/D-SF and SMODE-SF).

Comprehensive details of results along with settings of decision variables are presented
in Table 8. The range of POZs is provided in Table 8. In Table 8, the best cost and the
best emission are picked up from 21 runs of the simulation. In the first column, “Total
fee” refers to CTot and “Emission” refers to ETot. Out of 21 runs, the one with the best
(highest) hypervolume indicator was picked and is shown in the column “Comp”. In the
fourth and fifth column, the best cost and the best emission is shown. They are the lowest
value observed during all 21 runs. In the coming tables, the results of R-NSGA-II with
two other algorithms will be compared in different scenarios to show the robustness of the
developed algorithm.

Table 8. Simulation results of the R-NSGA-II optimization.

Control
Variables Min Max Cost Emission Comp

PTG1 (MW) 50 140 139.365 50.031 113.435
PTG2 (MW)

POZ (for
TG2): from
[30,40] to

[55,65]

20 80 54.066 48.861 65

PTG3 (MW) 10 35 11.206 34.455 20.525
Pws (MW) 0 75 52.209 74.704 54.530
Pss (MW) 0 50 17.639 49.198 18.964

Pssh (MW) 0 50 15.445 28.572 16.444
V1(p.u.) 0.95 1.10 1.0790 1.0671 1.0832
V2(p.u.) 0.95 1.10 1.0645 1.0598 1.0691
V5(p.u.) 0.95 1.10 1.0423 1.0454 1.0485
V8(p.u.) 0.95 1.10 1.0397 1.0386 1.0367
V11(p.u.) 0.95 1.10 1.0877 1.0729 1.0350
V13(p.u.) 0.95 1.10 1.0608 1.0274 1.0386

QTG1(MVAr) −50 140 3.7384 10.021 13.474
QTG2(MVAr) −20 60 21.473 21.707 24.726
QTG3(MVAr) −15 40 39.771 33.554 38.055
Qws (MVAr) −30 35 26.316 25.922 31.426
Qss (MVAr) −20 25 24.997 24.436 9.3649
Qssh (MVAr) −20 25 20.570 10.359 15.708

Total fee
($/h) 892.760 1017.4 924.864

Emission
(t/h) 2.3231 0.0959 0.5111

VD (p.u.) 0.4524 0.4507 0.4753
Pssh,h (MW) 3.2648 3.0753 3.1518

The bolded area of Table 8, in the last column, shows the compromised solution that
was extracted based on the highest hypervolume indicator as mentioned previously. This
is highlighted to point out that the best-compromised result cannot be compared value
by value to the other methods. Instead, the highest hypervolume indicator shows which
algorithm has the best-compromised solution.

In Table 9, the results of two previously used methods along with the proposed method
are provided. SMODE-SF, as well as MOEA/D-SF, are both performed in Ref. [24] with the
same configuration.
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Table 9. Comparison between R-NSGA-II and two previous algorithms in case of best pareto front
(highest hypervolume indicator).

MOEA/D-SF SMODE-SF R-NSGA-II

Control
Variables Best Cost Best Emission Best Cost Best Emission Best Cost Best Emission

PTG1 (MW) 139.297 62.280 139.112 50.072 139.731 50.005
PTG2 (MW) 55 70.051 55 52.627 55 52.228
PTG3 (MW) 10.622 35 10 34.919 10.490 34.823

Pws (MW) 52.380 68.682 53.714 71.168 52.227 74.917
Pss (MW) 17.348 31.034 16.167 29.555 17.614 49.686

Pssh (MW) 15.328 19.509 16.057 48.254 14.965 24.513
V1(p.u.) 1.0806 1.0690 1.0825 1.0732 1.0813 1.0805
V2(p.u.) 1.0659 1.0653 1.0646 1.0572 1.0693 1.0689
V5(p.u.) 1.0384 1.0473 1.0387 1.0076 1.0459 1.0448
V8(p.u.) 1.0376 1.0420 1.0316 1.0302 1.0375 1.0370
V11(p.u.) 1.0866 1.0681 1.0696 1.0691 1.0771 1.0046
V13(p.u.) 1.0615 1.0582 1.0633 1.0160 1.0423 1.0271

QTG1(MVAr) 5.317 −0.89 13.849 32.209 0.8551 24.718
QTG2(MVAr) 26.047 27.845 21.72 29.609 33.465 29.655
QTG3(MVAr) 37.51 34.543 32.692 36.783 37.359 34.835
Qws (MVAr) 22.139 25.022 24.920 −5.19 28.204 21.447
Qss (MVAr) 24.903 18.508 20.113 24.951 22.563 3.1901
Qssh (MVAr) 21.131 20.416 23.70 8.624 14.565 13.571

Total fee ($/h) 893.003 989.276 893.503 1018.786 892.933 1016.371
Emission (t/h) 2.3134 0.1091 2.2868 0.0961 2.3774 0.0961

VD (p.u.) 0.4464 0.4382 0.4304 0.5388 0.4305 0.5827
Pssh,h (MW) 3.50 3.20 3.131 3.254 3.2839 3.1603

Results of Table 9 are taken from the best pareto front of the best run among all 21 runs.
Then, the ones with the lowest cost and emission are selected separately to be represented in
the table as the best results of the cost and emission. It must be noted again, that these results
are chosen according to the best hypervolume indicator of each optimization technique
and they are not the absolute best cost/emission. It can be seen from the results that
R-NSGA-II has the best cost among all the algorithms. As for the emission, it outperforms
the MOEA/D-SF and gives the same emission value as SMODE-SF. It is fair to say that
in the overall comparison, R-NSGA-II is superior to the other two algorithms despite the
fact that R-NSGA-II is older and is supposed to perform worse. Further in this section, a
detailed explanation regarding the superiority of R-NGSA-II will be given.

Comparison of the compromised solution with other methods
Table 10 represents the comparison between the discussed algorithms, solely based on

their single objective value which is picked from one of the 21 runs of the simulation and
gives the absolute best value for the cost and emission. The best-compromised solution
was first picked from the run having the highest hypervolume indicator value and then
extracted via the fuzzy decision-making method.

3.2. Detailed Analysis

To understand more about the superiority of the R-NSGA-II compared to the other
two above-mentioned algorithms, analysis and explanation are provided in the next para-
graphs. Take note that Table 10 has the absolute best value in case of cost, emission, and
compromised solution.
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Table 10. Comparison between R-NSGA-II and two previous methods in the case of best objectives.

MOEA/D-
SF

SMODE-
SF

Real
Coded
NSGA-

II

Control
Vari-
ables

Min Max Best
Comp

Best
Cost

Best
Emission

Best
Comp

Best
Cost

Best
Emission

Best
Comp

Best
Cost

Best
Emission

PTG1
(MW) 50 140 117.118 139.048 60.003 111.91 139.848 50.047 113.435 139.365 50.031

PTG2
(MW) 20 80 65 53.763 65 65 55 47.535 65 54.066 48.861

PTG3
(MW) 10 35 18.403 11.558 34.890 23.555 10 35 20.525 11.206 34.455

Pws
(MW) 0 75 55.447 52.616 74.290 54.058 53.391 74.282 54.530 52.209 74.704

Pss
(MW) 0 50 17.649 17.593 28.529 18.436 16.818 50 18.964 17.639 49.198

Pssh
(MW) 0 50 15.326 15.319 23.755 15.755 14.989 29.336 16.444 15.445 28.572

V1(p.u.) 0.95 1.10 1.076 1.0785 1.0545 1.0761 1.0823 1.0738 1.0832 1.0790 1.0671
V2(p.u.) 0.95 1.10 1.0648 1.0644 1.0465 1.0662 1.0672 1.0596 1.0691 1.0645 1.0598
V5(p.u.) 0.95 1.10 1.0444 1.0436 1.0277 1.0362 1.0406 1.0393 1.0485 1.0423 1.0454
V8(p.u.) 0.95 1.10 1.0402 1.0398 1.0232 1.0362 1.0345 1.0196 1.0367 1.0397 1.0386
V11(p.u.) 0.95 1.10 1.0878 1.0876 1.0619 1.0778 1.0743 1.0576 1.0350 1.0877 1.0729
V13(p.u.) 0.95 1.10 1.0602 1.0622 1.0457 1.0432 1.0668 1.0481 1.0386 1.0608 1.0274
QTG1(MVAr) −50 140 2.128 2.736 8.771 2.788 7.191 28.944 13.474 3.7384 10.021
QTG2(MVAr) −20 60 21.410 21.153 19.405 34.504 27.547 21.749 24.726 21.473 21.707
QTG3(MVAr) −15 40 37.727 39.396 31.835 36.169 33.207 9.100 38.055 39.771 33.554

Qws
(MVAr) −30 35 27.102 27.549 22.165 20.376 24.238 25.342 31.426 26.316 25.922

Qss
(MVAr) −20 25 24.911 24.836 22.017 23.410 20.801 21.241 9.3649 24.997 24.436

Qssh
(MVAr) −20 25 20.328 21.071 21.514 15.620 24.052 20.950 15.708 20.570 10.359

Total fee
($/h) 919.040 892.954 994.342 927.049 893.314 1020.490 924.864 892.760 1017.4

Emission
(t/h) 0.6221 2.2772 0.1052 0.4721 2.3950 0.0959 0.5111 2.3231 0.0959

VD
(p.u.) 0.4530 0.4567 0.4542 0.4215 0.4369 0.468 0.4753 0.4524 0.4507

Pssh,h
(MW) 3.50 3.50 3.135 3.296 3.163 3.183 3.1518 3.2648 3.0753

3.2.1. Superiority of the Proposed Method

When choosing the parameters of an optimization method, it is crucial to select the
parameters that are best suited for the problem subjectively. As discussed before, SBX and
polynomial mutation are best suited for this problem, hence making this approach provide
better results even though this algorithm is older.

Comparing the total annual fee of the network is one way of showing robustness since
the central objective of economic dispatch is to bring down the price. For that purpose,
in the case that the best pareto front (highest hypervolume indicator) is selected, from
Table 9, R-NSGA-II can save $613.2 in a year compared to MOEA/D-SF and it can save
$4993.2 yearly compared to SMODE-SF. In another case where only the best individual
cost is selected (out of 21 runs), from Table 10, R-NSGA-II saves $1699.44 compared to
the MOEA/D-SF method in a year, and it can save $4853.04 each year compared to the
SMODE-SF technique. R-NSGA-II also outperforms MOEA/D-SF in a single objective
comparison of emission in Table 10. In the same table, although it gives the same emission
as SMODE-SF, it can save $27,068.4 yearly. In the case of a compromised solution, the best
results (highest hypervolume indicator) belong to R-NSGA-II according to Table 6. Thus,
R-NSGA-II is superior to the other algorithms in any measured aspect.

Table 11 illustrates the worst pareto front (lowest hypervolume indicator) among all
21 runs. Comparing the results of Table 10 with the results of Table 9 (best pareto front
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of MOEDA/D-SF and SMODE-SF in this case), it can be observed that the R-NSGA-II
dominates the MOEA/D-SF algorithm in the best cost section, meaning that the value of
total cost ($/h) and emission (t/h) provided by R-NSGA-II are lower and also in the best
emission section, the value of emission (t/h) provided by R-NSGA-II is lower as well. When
comparing the worst pareto front of R-NSGA-II with the best pareto front of SMODE-SF also,
in the best cost section, R-NSGA-II is superior and in the best emission section, R-NSGA-II is
not far behind.

Table 11. Worst pareto front (lowest hypervolume indicator) of the R-NSGA-II.

Control
Variables Min Max Cost Emission Comp

PTG1 (MW) 50 140 139.201 50.008 114.154
PTG2 (MW) 20 80 54.236 65 65
PTG3 (MW) 10 35 11.254 34.881 20.911

Pws (MW) 0 75 52.220 74.231 55.205
Pss (MW) 0 50 17.575 29.350 17.935

Pssh (MW) 0 50 15.441 32.629 15.580
V1(p.u.) 0.95 1.10 1.0801 1.0657 1.0760
V2(p.u.) 0.95 1.10 1.0651 1.0615 1.0659
V5(p.u.) 0.95 1.10 1.0423 1.0476 1.0420
V8(p.u.) 0.95 1.10 1.0394 1.0411 1.0393
V11(p.u.) 0.95 1.10 1.0866 1.0834 1.0817
V13(p.u.) 0.95 1.10 1.0551 1.0663 1.0624

QTG1(MVAr ) −50 140 5.5975 1.5613 0.9469
QTG2(MVAr ) −20 60 21.707 19.965 26.886
QTG3(MVAr ) −15 40 39.755 30.905 36.273
Qws (MVAr ) −30 35 26.188 25.549 24.388
Qss (MVAr ) −20 25 24.990 23.353 22.870
Qssh (MVAr ) −20 25 18.600 22.310 21.581
Total fee ($/h ) 892.767 1006.8 923.28
Emission (t/h ) 2.2993 0.0983 0.5030

VD (p.u. ) 0.4387 0.4784 0.4469
Pssh,h (MW ) 3.3403 2.9464 2.9494

3.2.2. Configuration and Characteristics of the Algorithm

Figure 9 displays the range of solutions provided by the R-NSGA-II and it is obtained
from the best individual cases of cost and emission throughout the 21 runs. Figure 10
compares the best as well as the worst pareto front (highest and lowest hypervolume
indicator) of the same method. The algorithm is well-diverse and the difference between the
worst and best pareto fronts is trivial. In terms of convergence, the difference is negligible
as well. The average time of calculation is 387.38 s for each trial. The R-NSGA-II is
developed/coded using MATLAB and simulations are executed on a PC with an Intel Core
i3 10th generation CPU @3.5 GHz and 8GB of RAM.

3.2.3. Critical Analysis

Voltage drop (VD) is an important factor to consider when designing electrical systems,
as it can affect the performance of the circuit and the devices connected to it. Figure 11
displays all VD values for 21 runs of the simulation. It is desired to minimize voltage drop
in order to maximize the efficiency and reliability of the system. Consistency of the VD
values is shown in the same Figure 11 with 0.4165 as the minimum (the best) VD and 0.4607
being the maximum value (the worst) with a very good standard deviation of 0.0119 among
all cases.
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In a previous study [24], the worst (highest) VD value provided by MOEA/D-SF
among all 21 runs is reported to be 0.5704 p.u. and the same VD value for SMODE-SF is
reported to be 0.6201 p.u. while the worst VD value provided by R-NSGA-II is 0.4607 p.u.
and it means that R-NSGA-II not only can provide better cost and emission but also better
reliability of the system. High voltage drop in an electrical system can cause a variety
of problems:

• Reduced power quality: Electrical voltage fluctuations brought on by high voltage
drops might result in reduced power quality.

• A rise in energy losses: As electricity travels through a conductor, heat is produced as
a result of resistance. High voltage drops can result in significant energy losses, which
lower system efficiency.

• Reduced system capacity: A system’s capacity to transfer electrical power may be
reduced if the voltage drop inside the system is too great. This may lower the system’s
ability to satisfy electricity demand.

• Increased operating costs: High voltage drops can result in greater energy losses and
decreased system capacity, which can raise the system’s running expenses.

It is crucial to keep an eye on voltage drops in electrical systems and take action to fix
any issues that could be to blame.

Knowing that some of the generators are working near the limitation range of their
reactive power, it is essential to have a practical constraint handling method like “constraint
domination” which is used in this study. This will assure that while choosing the best
solutions, critical points will not be thrown away with methods like the penalty factor.
Figure 12 shows the reactive power schedule of generators for R-NSGA-II. It can be seen
from the charts that some of the generators are working very close to their limits and do
not have any violations. This is due to choosing a proper constraint handling method to
ensure optimum performance while satisfying the system limitations.
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We proved that R-NSGA-II is gaining better results but it is interesting to observe how
different the operation of some generators is. R-NSGA-II has a value of 0.87 MVAr for the
TG1 generator in terms of best cost (Figure 12). Comparing the results of this study with the
previous study [24], we can see that the TG1 generators in MOEA/D-SF and SMODE-SF
methods are using approximately 5 to 17 times more power than R-NSGA-II, respectively,
while other generators have the same mean value. It can be observed why R-NSGA-II is
dominant, especially in terms of the best cost.

4. Conclusions

In this study, the MOEED (multi-objective economic and emission dispatch) which is a
non-convex and non-linear problem was solved using the R-NSGA-II (real non-dominated
sorting algorithm II), which was modified to include a better constraint handling method
called “constraint domination”, and more suitable genetic operators: a mutation operator
called “polynomial mutation”, and a crossover operator called simulated binary crossover
(SBX). We used a standard IEEE 30-bus system and modified it to be incorporated with
different renewable energy sources such as stochastic solar, small hydro, and wind units.
With increasing concerns about clean energy and the policies of companies and govern-
ments, it is important to consider renewable energy sources in energy systems. To forecast
the stochastic behavior of these sources, we used suitable probability density functions. We
also embodied prohibited operating zones, valve point effect, and generator limitation in
the design of a thermal unit. Network security was considered. MOEED was calculated
by applying R-NSGA-II and results were compared to two previously studied algorithms:
SMODE-SF and MOEA/D-SF. Even though R-NSGA-II is older than MOEA/D-SF and
SMODE-SF, the results showed that R-NSGA-II outperforms the other two algorithms in
terms of cost and emission, and this superiority was consistently observed in 21 runs of the
algorithm and did not happen by chance. Not only that, R-NSGA-II also provided more
security, stability, and quality of the system. This superiority was due to careful study of
the subject matter, and selection of the genetic operators and constraint handling technique.

This study is beneficial in the energy sector since there is a limited number of articles
that studied the process of optimizing MOEED in depth. Going emission-free is a serious
issue and it is the goal of many countries and governments. The authors plan to continue
studying MOEED in future works, possibly using newer approaches such as NSGA-III, etc.
As smart grids become more prevalent, it is important to expand the literature on MOEED
and its potential for emulating the behavior of energy systems, by using new technologies
like digital twins.



Sustainability 2023, 15, 2407 30 of 33

Some limitations of this approach can be enhanced in future studies. These limita-
tions/suggestions are: Taking into account life cycle cost analysis of renewable sources as
part of the objective function since maintenance and disposal costs can impact the overall
optimization process. It can be a good idea to consider electrical vehicles and battery
systems for energy flexibility [53], this can be beneficial for MOEED and future smart
grids. Decision-makers must also know the overall impact to see whether an investment in
renewable units is beneficial/feasible or not, or how many renewables of different types
must be considered to make the project feasible. A better policy for decision-making must
be considered since policymakers need to pay attention to the lack of precise and certain
data and the presence of conflicting goals when evaluating investments [22]. This again, can
impact the overall process of calculation, optimization, and investment and consequently
reduce emission and saving costs.
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Nomenclatures

fG(Gs). Probability of solar irradiance Gs
fq(Qw) Probability of river flow rate Qw
fv(v) Probability of wind speed (v)
Gs Solar irradiance
gw Direct fee coefficient related to the wind plant
hs Direct fee coefficient related to the solar unit
KPs Penalty cost coefficient related to the solar plant underestimation
KPsh Penalty cost coefficient regarded with the hybrid plant
KPw Penalty fee coefficient related to the wind plant underestimation power
KRs Reserve cost coefficient related to the solar plant overestimation
KRsh Reserve cost coefficient related to the hybrid plant
KRw Reserve fee coefficient related to the wind plant overestimation power
mh Direct fee coefficient related to the hybrid unit
ms Mutation probability
Phr Graded output power related to the small hydro plant
Ploss Actual power loss in the system
Psav Actual accessible power related to the solar unit
Pshav Actual accessible power related to the hybrid unit
Psr Graded output power of the solar unit
Pss Scheduled power related to the solar unit
Pssh Scheduled power related to the hybrid unit
PTGi Power output from the ith thermal plant
Pwav Actual accessible power related to the wind unit
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pwr Graded output power of a wind plant
Pws Scheduled power related to the wind unit
Qw River flow rate
SF Superiority of feasible answers
SPH Combination of a solar and a small hydro plant
TG/TG Thermal power plant/generator
WG/WG Wind plant/generator
α,β Weibull PDF’s scale parameter and shape parameter respectively
λ, γ Gumbel PDF’s location specification and scale value respectively
µ, δ Lognormal PDF’s mean parameter and standard deviation respectively
CH Constraint handling technique
ED Economic dispatch
EED Economic-environmental/emission dispatch
HV Hypervolume indicator
ISO Independent system agent/operator
MOEA/D Decomposition-based method for multi-objective evolutionary algorithm
MOEED Multi-objective economic emission dispatch
PDF Probability density function
POZ Prohibited/forbidden operating zone
PV Photovoltaic
R-NSGA-II Real coded non-dominated sorting genetic algorithm II
SBX Simulated binary crossover
SMODE Summation-based method for multi-objective differential evolution technique
VD Voltage deviation aggregation of load buses in the system
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