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Abstract: A novel intensity measure (IM), dimensionless floor displacement, is presented for evalu-
ating the seismic fragility of freestanding rigid blocks subjected to one-sine acceleration pulses in
this paper. The rocking responses of rigid blocks are simulated using an equivalent single-degree-
of-freedom (SDOF) model with a bespoke discrete damper to account for energy dissipation. The
performance of various IMs is compared using simulation results for four different block models
under different excitation conditions. In comparison to some well-known IMs, the proposed IM,
determined by excitation magnitude and frequency as well as block geometry parameters, displays
a considerably stronger correlation with the peak rotation of the rocking block. The comparative
results show that effective IMs should consider not only the excitation characteristics but also the
block geometric parameters. Finally, the fragility curve generated by the proposed IM performs best
by significantly reducing the dispersion.

Keywords: rigid blocks; rocking rotation; fragility curves; intensity measure; regression analysis;
dispersion

1. Introduction

After an earthquake, it may be prohibitively costly to restore the functionality of a
building with severe content damage [1], thus calling for the evaluation of building content
damage [2]. An inhibition of evaluating the seismic damage of building contents is that
predicting the response of such objects is extremely difficult. Unanchored contents in
buildings, typically considered as freestanding rigid blocks, may undergo complex motions
during earthquake events, including sliding, twisting, rocking, impacting neighboring
walls or other objects, and even overturning due to floor movement. Within these complex
dominating modes of motion, rocking and sliding are deemed to be of the most importance.
Since Shenton [3] presented criteria for the initiation of the different response modes of an
unanchored rigid block, the sliding response, among one of the dominating modes, has
been addressed separately at great length [4–11]. This paper focuses on the freestanding
rigid blocks dominated only by rocking motion, which features a partial uplift from its base
and a change in rotation center, and overturning may occur when the rocking rotation is
large enough.

As a very early study in this area, Housner [12] proposed a seminal framework to
evaluate the seismic response of a solitary rigid block placed on a rigid base. Follow-
ing this pioneering work, investigators over the world have endeavored to evaluate the
rocking response of freestanding blocks, including experimental [13–24] and numerical
approaches [25–39]. Early researchers have observed that a rocking motion has extremely
complex dynamic characteristics and is barely “nonrepeatable” [40–43]. Even small changes
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in size, slenderness, or the details of ground motion might result in significant distinc-
tion in the rocking response. The reason for this phenomenon can be mainly attributed
to the negative stiffness of rocking oscillators [44] and the complex variability in energy
dissipation and transfer [45]. In this context, Yim [41] observed that systematic trends
emerge when the rocking response is studied from a probabilistic point of view, with the
excitation modeled as a random process [43]. Following the same idea, many investigators
assessed the seismic performance of rigid blocks (e.g., rocking columns [46], bridges [47],
and hospital contents [48]) via fragility analysis, a widely used method in earthquake
engineering [49]. The rocking fragility is represented by a conditional probability that the
damage measure (DM) will exceed a certain capacity limit state, given an IM value.

As the nonlinearity of the rocking oscillator is complex, widely used intensity mea-
sures proposed for elastic or elastoplastic oscillators are impracticable. Accordingly, many
researchers have proposed various IMs for the fragility analysis of rocking blocks. Dim-
itrakopoulos and Paraskeva [50] explored different intensity measures in rocking and
overturning fragility analysis. The results indicated that bivariate IMs provide superior
estimations of the fragility to those adopting univariate ones, and dimensionless IMs are
recommended for providing an approximate universal description of the rocking behavior.
Petrone et al. [51] evaluated the efficiency of different IMs in predicting the probability that
rigid blocks reach a specific damage state. In their research, dimensionless peak ground
acceleration is demonstrated to be the most effective IM for small rigid blocks, whereas
dimensionless peak ground velocity is the most effective one for large rigid blocks. Based
on the dimensionless peak velocity, Sieber et al. [52] proposed a new IM considering the
coefficient of restitution [12] of rigid blocks and obtained more universal results. However,
the existing IMs present insufficiently strong correlations to the rocking response, thus
causing large dispersion of the fragility curves.

To extend these studies, this paper presents a rigorous probabilistic investigation
of the rocking response and assesses various IMs on their capability of describing the
rocking response. The rocking responses of rigid blocks have been simulated with a reliable
numerical model [53]. The motivation of this work is to propose a novel IM that considers
not only the excitation characteristics but also the block geometric parameters, to gain a
stronger correlation with the rocking response and less dispersion of the fragility curve.
Consequently, the new IM, based on dimensionless floor displacement, is then proposed in
this paper and evaluated through statistical analysis. The proposed IM exhibits a much
stronger correlation with the dimensionless peak rotation of rocking blocks than the existing
ones, thus greatly reducing the dispersion of the rocking fragility functions.

The rest of this paper is organized as follows. In Section 2, the rocking seismic response
is simulated by adopting a discretely damped SDOF model, and the numerical model is
validated using the experimental results. In Section 3, a three-dimensional rocking spectrum
is derived as an extension of Zhang and Markris’s overturning acceleration spectrum [54].
In Section 4, we propose a new intensity measure and demonstrate its superiority by
comparing its performance in rocking fragility analysis with some widely used intensity
measures. Finally, in Section 5, some concluding remarks are drawn. The definitions of
symbols used in this paper are listed in Appendix A.

2. Rocking Seismic Response Analysis
2.1. Numerical Model of the Rocking Block

A homogenous freestanding rigid block with a width of 2b and a height of 2h is
illustrated in Figure 1. The base surface is assumed to be horizontal, rigid, and rough
enough so that rocking is the only dominating mode of motion. The total mass of the block
is m, and the center of mass (CM) is also its center of geometric. Equivalently, the geometry
of the block can be represented by a size parameter, R =

√
b2 + h2, which is the distance

from CM to the pivot point, and a slenderness parameter, α = atan(b/h). Its moment of
inertia about the pivot point O or O’ is IO = 4

3 mR2.
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Figure 1. The geometry of a rocking block.

The rocking motion of the block can be fully described by the rotation θ around the
pivot point. The moment equilibrium about the pivot point gives the equation of motion of
an undamped rocking block under a horizontal excitation

..
u0:

IO
..
θ −m

..
u0H(θ) + mgB(θ) = 0 (1)

where g is the gravity acceleration, H(θ) and B(θ) are the vertical and horizontal transient
distances between CM and the current pivot point, respectively (Equations (2) and (3)):

H(θ) = R · cos[α · sgn(θ)− θ] (2)

B(θ) = R · sin[α · sgn(θ)− θ] (3)

where sgn() is the sign function.
The block will uplift and commence rocking when the horizontal excitation accelera-

tion
..
u0 exceeds a minimum magnitude gtanα (Equation (4)). Once the rigid block starts to

rock from the initial position, the restoring moment M decreases monotonically with the
increase in the rotation θ, and reaches zero when θ = α, as shown by the light solid line in
Figure 2. The M-θ relationship can be expressed in Equation (5). The maximum restoring
moment at the initial position (θ = 0) is denoted as M0 (Equation (6)).

..
u0 ≥ gb/h = g · tan α (4)

M = mgR · sin[α · sgn(θ)− θ] (5)

M0 = mgh · tan α = mgR · sin α (6)
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When the rocking block switches pivot corners and impacts the floor, there is some
kinetic energy lost. The energy dissipation due to impact is commonly modeled by the
restitution coefficient e, which is the ratio of the relative velocity of the rocking objects
after and before the collision [55]. In this case, e =

.
θ2/

.
θ1, where

.
θ1 and

.
θ2 are the angular

velocities before and after the block impacts with the floor. Housner [12] derived a rigid-
body restitution coefficient eR, represented by the slenderness parameter α of the block
(Equation (7)), by conserving angular momentum before and immediately after the impact
when the pivot point shifts from O to O’. The restitution coefficient e of a real-world
collision also depends on the localized nonlinearity of the colliding materials and, therefore,
is usually smaller than eR [56].

eR =
IO − 2mR2 sin2 α

IO
= 1− 3

2
sin2 α (7)

In this paper, an equivalent lumped mass single-degree-of-freedom (SDOF) model is
adopted to simulate the rocking response of freestanding blocks [57]. The lumped mass is
modeled to be supported by a rigid link above the floor with a nonlinear elastic rotational
spring at the base (Figure 3).
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Figure 3. (a) Lumped mass representation of rigid block and (b) equivalent SDOF model of a rigid
rocking block.

Considering a typical rocking block with geometry as illustrated in Figure 3a, the
equation of motion of its equivalent SDOF oscillator (Figure 3b) subjected to a floor motion
..
u0 can be written as follows:

IO
..
θ + fd

( .
θ
)
+ k(θ) · θ = −IO

..
u0 cos α

R
(8)

where IO = 4
3 mR2 is the moment of inertia about the pivot point. fd is the damping force

to dissipate energy during rocking; k is the tangent stiffness to model the M-θ relationship
of the rocking block. Since the moment of inertia of the lumped mass m is only mR2, an
additional moment of inertia ICM = mR2

3 is added in the model so that the total moment of
inertia of the equivalent SDOF oscillator about the pivot point equals that of the original
rigid block. The nonlinear M-θ relationship of the rocking block is embedded in the zero-
length rotational spring at the bottom of the rigid link (Figure 3b). The nonlinear descending
branch of the M-θ relationship is simplified to a linear relationship in Equation (9) (dashed
line in Figure 2). Thus, the M-θ relationship embedded in the model is simplified as a
bilinear elastic relationship with an initial stiffness k0 within a small range, and a negative
stiffness kr beyond this range. k0 = n|kr| is used to approximate the infinite stiffness before
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the rigid block starts to rock, where n is a large number. The system is assumed to oscillate
linearly within the small range of±δα on both sides of the position θ = 0, where δ = 1/(n+1).

M = mgR sin α ·
(

1− θ

α

)
= M0

(
1− θ

α

)
(9)

k(θ) =
{

k0 = n|kr|, |θ|/α ≤ δ
kr = −M0/α, |θ|/α > δ

(10)

A damping force fd

( .
θ
)

is introduced to the simplified SDOF model to approximately
account for the energy dissipation during rocking. Unlike the continuous damping model
commonly used [44,58,59], a discrete damping model proposed by Liu et al. [53] is adopted
to correctly simulate the energy dissipation. In this model, a viscous damping force
fd = cD

.
θ applies only within the small range of ±δα on both sides of the original position

θ = 0; when θ goes out of this range, the damping force equals 0; thus, the energy is dissi-
pated if and only if the system passes its original position during rocking (Equation (11))

fd

(
θ,

.
θ
)
=

{
cD

.
θ, |θ|/α ≤ δ

0, |θ|/α > δ
(11)

where cD is the discrete viscous damping coefficient. The coefficient cD is not constant,
but proportional to the angular velocity before each impact (Figure 4), which is physically
associated with the restitution coefficient during impact by the conservation of angular
momentum

.
θ1 (Equation (12)). The restitution coefficient e = 0.95eR is adopted to consider

the energy dissipation of a real-world collision. The numerical simulation is performed in
OpenSees [60], and the technical details can be found in our former paper [53].

cD =
IO

2δα
(1− e)

∣∣∣ .
θ1

∣∣∣ (12)
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Figure 4. Hysteretic curves of a free-rocking SDOF system of α = 0.2 and R = 0.38 m: (a) total resisting
moment with discrete damping, (b) discrete damping force.

2.2. Experimental Verifications

To demonstrate the superior performance of the discrete damping model, the sim-
ulated results are compared with the experimental results from Nasi [61–63] (Figure 5).
Six selected runs of simulated response histories are compared with experimental results
in Figure 6. The accuracy and the applicability of this model have been demonstrated
by correctly approximating the maximum rotation angle and successfully estimating the
occurrence of overturning [53].
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Figure 6. Comparison of rotation histories of non-overturning (a–c) and overturned (d–f) runs by
SDOF models.

3. Rocking Spectra

Zhang and Makris [54] proposed an overturning acceleration spectrum for freestand-
ing rigid blocks subjected to one-sine acceleration pulses. The two axes of the spectrum
are dimensionless pulse frequency (ωP/P) and dimensionless peak pulse acceleration
(PFA/gtanα), where Tp and ωP = 2π/TP are the period and circular frequency of the
pulse excitation, respectively. PFA is peak floor acceleration, and P =

√
3g/4R is the

frequency parameter of the rigid block proposed by Housner [12]. Although the coordinate
plane in the literature [54] is divided into three zones of overturning, without impact,
overturning with impact, and no overturning, to focus on overturning probability, the
overturning acceleration spectrum in this study is divided simply into the overturning
zone and safe zone.

purdue.edu
purdue.edu
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The overturning acceleration spectrum is evaluated by simulating the overturning
responses of the four rigid block models (Figure 7) by the simplified SDOF model with
discrete damping. The geometry parameters of the four models are listed in Table 1,
which are common sizes of objects around us. With each model excited by 100 pulses,
400 uniformly distributed cases are obtained in an overturning acceleration spectrum by
adjusting the PFA and ωP of one-sine pulse motions (Figure 8a). There is a clear boundary
between the overturning zone and the safe zone in the overturning acceleration spectrum
obtained from one-sine pulse motions (Figure 8b), which is also in line with the results of
Zhang and Makris [54].
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Table 1. Geometry parameters of rigid block models.

2b (m) 2h (m) R (m) α P

Model 1 0.3785 0.9462 0.5095 0.3805 3.7981
Model 2 0.1999 0.9993 0.5095 0.1974 3.7981
Model 3 0.6971 1.7427 0.9385 0.3805 2.7986
Model 4 0.3681 1.8405 0.9385 0.1974 2.7986
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Figure 8. (a) Model distribution and (b) seismic responses of blocks subjected to one-sine pulse.

Three-dimensional rocking rotation spectrum can be obtained by extending the over-
turning acceleration spectrum with the third axe being the normalized peak rocking rotation
|θmax|/α, as shown in Figure 9. It can be observed that the peak rocking rotation is not
only related to ωP/P but also PFA/gtanα, which are usually used as intensity measures.
However, it is obvious that either one is one-sided for rocking fragility analysis, which
leads to the superiority of bivariate IMs [50]. An IM, for rocking fragility analysis, should be
defined not only by the excitation characteristics (magnitude PFA, frequency ωP) but also
by the geometric parameters of the rigid block (size parameter R, slenderness parameter α).
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Figure 9. Three-dimensional rocking rotation spectrum.

4. Rocking Fragility Analysis

The rocking fragility of the freestanding rigid blocks can be expressed as the condi-
tional probability Pf that a damage measure (DM) will exceed a certain capacity limit state
(LS), given an IM value:

Pf = P(DM > LS|IM) (13)

The probability tree diagram that incorporates the peculiarities of the rocking response
and facilitates the calculation of conditional probability Pf is depicted in Figure 10. Pnr
denotes the probability that the rigid block will remain resting on the ground (non-rocking
response) throughout the excitation. This case corresponds to the fact that the block does not
rock unless the acceleration

..
u0 exceeds the minimum threshold in Equation (5). Pro denotes

the rocking–overturning probability. The probability Pf that the DM will exceed a certain
capacity limit LS given an IM value is derived by the union of two likelihoods (Figure 10),
namely, the probability Pro of overturning caused by rocking and the probability Pex that
the DM will exceed the threshold LS during rocking response without the occurrence
of overturning. This paper focuses on the calculation and analysis of the latter, i.e., the
probability Pex that the DM will exceed the threshold LS during rocking response without
overturning (safe rocking), and the performance of different IMs have been compared in
this analysis process.

Pf = Pro + (1− Pro)Pex(DM > LS|IM) (14)
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4.1. Damage Measure and Limit States

Dimensionless DM has been widely used because it is straightforward to evaluate the
degree of rocking response [50–52]. For the purposes of the subsequent fragility analysis,
the absolute peak rocking rotation |θmax| normalized by the slenderness angle α is used as
the DM in this paper (Equation (16)). This dimensionless DM highlights its clear physical
meaning: a larger-than-0 value corresponds to the rigid block commencing rocking, whereas
higher values indicate that the block experiences more severe rocking. Three apposite
performance levels are proposed to assess the vulnerability of a rocking block: LS1 = 0.1
marks observable rocking during seismic excitation, LS2 = 0.5 indicates moderate rocking
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response, and LS3 = 1.0 corresponds to extremely severe rocking. The dimensionless
absolute peak rocking rotation |θmax|/α is regularly used to judge whether the blocks are
overturned or not, with greater-than-1.0 values denoting overturning [52,64]. However,
this viewpoint is deemed to be controversial because a few studies have also pointed out
that it is still possible for |θmax| to exceed α without overturning [54]. Moreover, the
fragility analysis results obtained by the data of safe rocking are based on the premise
that no overturning occurs. That is to say, a high value of the DM (even DM >1.0) merely
means that the rigid block may rock violently, and it is very likely to return to its original
configuration eventually.

DM =
|θmax|

α
(15)

4.2. Intensity Measures

As stated above, discovering appropriate IMs for rocking fragility analysis has been a
pending challenge for a long time. A summary and examination of eight commonly used
dimensionless IMs are presented in this paper, along with a comparison with the proposed
IM. IM1, IM2, and IM3 are dimensionless floor motion frequency, dimensionless peak floor
acceleration, and dimensionless peak floor velocity, respectively:

IM1 =
ωP
P

, IM2 =
PFA

g tan α
, IM3 =

P · PFV
g tan α

(16)

where PFV is the peak velocity of the pulse and P =
√

3g/4R is the frequency param-
eter [12]. Then, IM4, IM5, IM6, and IM7 are the four bivariate IMs proposed by Dimi-
trakopoulos and Paraskeva [50], of which the first two are often used for rocking fragility
analysis and the last two for overturning fragility analysis:

IM4 = 1.484
(

PFA
g tan α

)1.644(ωP
P

)−2.013
(17)

IM5 = 0.063
(

PFA
g tan α

)2.954(ωP
P

)−0.942
(18)

IM6 =

(
PFA

g tan α

)0.52(ωP
P

)−0.48
(19)

IM7 =

(
PFA

g tan α

)0.6(ωP
P

)−0.4
(20)

IM8 is a newly proposed IM based on the dimensionless peak velocity that takes into
account the restitution coefficient eR (Equation (7)). This IM has been tested extensively
and has been shown to produce universal results in the literature [52].

IM8 =
eR

4 · P · PFV
g tan α

(21)

Following the same idea of dimensionless IM, we propose a new IM (i.e., IM9) in this
study. IM9 explicitly includes excitation characteristics (magnitude PFA and frequency ωP)
and geometric parameters of the rigid block (size parameter R and slenderness parameter
α). The proposed IM9, which can be regarded as a dimensionless displacement intensity
measure, has been compared with the eight IMs mentioned above in the subsequent rocking
fragility analysis.

IM9 =
PFA · TP

2

R tan α
(22)



Sustainability 2023, 15, 2418 10 of 16

4.3. Probability of Limit State Exceedance during Safe Rocking

Assuming that the DM and IM are random variables following lognormal distributions,
the conditional probability Pex that an excitation with IM = x will cause the damage
exceedance of a capacity limit LS during safe rocking can be written as follows:

Pex = Pex(DM > LS|IM = x) = 1−Φ
(

ln(LS)− µ(x)
β

)
(23)

where Φ is the standard (i.e., with mean 0 and standard deviation 1) normal cumulative
distribution function, µ is the median value of natural logarithm of x (lnx), and β is the
dispersion, or logarithmic standard deviation.

Assume there is a linear relationship between µ and ln(IM)

µ = a + b ln(IM) (24)

which is a typical trick that facilitates the estimation of parameters a and b through lin-
ear regression analysis (Figure 11). Additionally, the dispersion β can be obtained by
Equation (25). According to Equation (23), given a capacity limit LS, the corresponding
fragility curves of the freestanding rigid blocks during safe rocking can be obtained. A lower
value of β means less dispersion of the demand and, consequently, a more efficient IM.

β =

√
1

n− 1

n

∑
i=1

(ln DMi − µ(xi))
2 (25)

Figure 11 presents the linear regression results of the DM with respect to different IMs
in logarithmic space, considering only the cases of safe rocking. The fitting parameters a, b,
and dispersion β are shown in Table 2. The coefficient of determination R2, which is used to
evaluate the efficiency of the regression, is also included. A closer-to-1 R2 value indicated
better goodness of fit. Among the commonly used univariate IMs, dimensionless peak
floor velocity IM3 performs the best, with a smaller β and larger R2. This is consistent with
previous research results [22,51,64]. Compared with univariate IMs, the four bivariate IMs
proposed by Dimitrakopoulos and Paraskeva [50] generally produce better results overall,
with IM4 performing particularly well. The new IM9 proposed in this paper exhibits a much
stronger correlation with the DM in logarithmic space than all the existing IMs examined
in this paper, with the smallest β and the largest R2. Therefore, we recommend using IM9
as an intensity measure for rocking fragility analysis.

Table 2. Linear regression analysis parameters of different IMs.

IM a b β R2

IM1 1.1730 −1.0999 0.7083 0.1846
IM2 −2.1786 0.8195 0.5597 0.4908
IM3 −0.3761 1.1643 0.2569 0.8928
IM4 −0.1313 0.7151 0.1827 0.9457
IM5 −0.8771 0.3274 0.4765 0.6310
IM6 −0.5569 2.2191 0.2829 0.8699
IM7 −1.1339 1.8261 0.3689 0.7788
IM8 −0.0879 0.7671 0.3782 0.7675
IM9 −2.5232 1.0484 0.1113 0.9799

The rocking fragility curves obtained by various IMs according to the three perfor-
mance thresholds mentioned above are shown in Figure 12. The proposed IM9, with the
smallest dispersion β, consistently shows the steepest curve. The best-performing fragility
curves have been obtained with respect to the most effective IM9, which can conveniently
estimate the probability Pex that an excitation will cause the exceedance of a performance
limit during safe rocking.
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Figure 11. Linear regression analysis of the maximum normalized response with respect to different
IMs: (a–h) IM1–IM8; (i) the proposed IM9.
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Figure 12. Rocking fragility curves for different IMs: (a–h) IM1–IM8; (i) the proposed IM9.

5. Conclusions

This study examined the seismic behaviors of the freestanding rigid blocks subjected
to one-sine acceleration pulses. We simulated four blocks, in common sizes of objects
around us, under excitation with different amplitudes and different frequencies using
a reliable numerical model. The seismic rocking fragility has been assessed within a
probabilistic framework. Eight well-established intensity measures, along with a new
intensity measure proposed in this paper, were evaluated on their capability to describe
the excitation-induced peak rocking rotation. With the cases of safe rocking solely studied
here, the fragility curves were derived and approximated by fitting lognormal cumulative
distributions. The following conclusions can be drawn from the results:

1. An effective IM should take into account not only the excitation characteristics (mag-
nitude PFA, frequency ωP) but also the geometric parameters of the rigid blocks (size
parameter R, slenderness parameter α);

2. The dimensionless peak floor velocity performs better among the univariate IMs
commonly used in rocking fragility analysis. Bivariate IMs perform better overall, but
require more computation;

3. A novel IM explicitly including excitation characteristics and geometric parameters of
the rigid blocks is proposed in this paper. The proposed IM exhibits a much stronger
correlation with the DM in logarithmic space; consequently, the proposed IM yields
the smallest β in linear regression analysis, which results in the best-performing
fragility curves;

4. Future studies should aim at evaluating the overturning fragility, as well as the rocking
behavior subject to excitations in the real world.
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Appendix A

Table A1. Definition of symbols used in this paper.

Symbol Definition

2b Width
2h Height
R Size parameter
α Slenderness parameter
IO Moment of inertia

θ and
..
θ Rotation angle and rotational angular acceleration

..
u0 Horizontal excitation

H and B Vertical and horizontal transient distances
g Gravity acceleration
M Restoring moment
M0 Maximum restoring moment

.
θ1 and

.
θ2 Angular velocities before and after impacts

e Restitution coefficient
eR Rigid-body restitution coefficient
fd Damping force
k Tangent stiffness

ICM Additional moment of inertia
k0 Initial stiffness
kr Negative stiffness
n A large number
δα Small range around initial position
cD Discrete viscous damping coefficient

θmax Peak rocking rotation
T p Period of pulse excitation
ωP Circular frequency of pulse excitation
P Block frequency parameter

PFA Peak floor acceleration
PFV Peak floor velocity
IM Intensity measure
DM Damage measure
LS Limit state
Pf Conditional probability
Pro Overturning probability
Pex Probability for DM exceeding LS within safe rocking
x IM value
µ Median value of ln x

a and b Linear regression parameters
β Dispersion

R2 Coefficient of determination
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