Evolution of Electrochemical Impedance Spectra Characteristics of Cementitious Materials after Capturing Carbon Dioxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Specimen Preparation
2.2. Test Method
3. Results
3.1. Electrochemical Impedance Analysis
3.2. CO2 Absorption
3.3. MIP
3.4. X-ray Diffraction
4. Discussion
4.1. Selection of Equivalent Circuit Model
4.2. Analysis of Impedance Spectroscopy Parameters in Carbon Curing
4.3. Electrochemical Parameter Analysis of Carbonation and Hydration Curing
4.4. Relationship between Carbonation and Electrochemical Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Xiao, J.; Duan, Z. Strategies to accelerate CO2 sequestration of cement-based materials and their application prospects. Constr. Build. Mater. 2022, 314, 125646. [Google Scholar] [CrossRef]
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- Gao, H.; Liao, H.; Wang, M.; Cheng, F. Reinforcing the physicochemical properties of concrete through synergism of CO2 curing and Ca(OH)2 solution drenching. Constr. Build. Mater. 2021, 280, 122546. [Google Scholar] [CrossRef]
- Zhang, D.; Ghouleh, Z.; Shao, Y. Review on carbonation curing of cement-based materials. J. CO2 Util. 2017, 21, 119–131. [Google Scholar] [CrossRef]
- El-Hassan, H.; Shao, Y. Early carbonation curing of concrete masonry units with Portland limestone cement. Cem. Concr. Compos. 2015, 62, 168–177. [Google Scholar] [CrossRef]
- Chen, T.; Bai, M.; Gao, X. Carbonation curing of cement mortars incorporating carbonated fly ash for performance improvement and CO2 sequestration. J. CO2 Util. 2021, 51, 101633. [Google Scholar] [CrossRef]
- Ekolu, S.O. A review on effects of curing, sheltering and CO2 concentration upon natural carbonation of concrete. Constr. Build. Mater. 2016, 127, 306–320. [Google Scholar] [CrossRef]
- Zhan, B.J.; Xuan, D.X.; Poon, C.S.; Shi, C.J. Mechanism for rapid hardening of cement pastes under coupled CO2-water curing regime. Cem. Concr. Compos. 2019, 97, 78–88. [Google Scholar] [CrossRef]
- You, X.; Hu, X.; He, P.; Liu, J.; Shi, C. A review on the modelling of carbonation of hardened and fresh cement-based materials. Cem. Concr. Compos. 2022, 125, 104315. [Google Scholar] [CrossRef]
- Pan, X.; Shi, C.; Farzadnia, N.; Hu, X.; Zheng, J. Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing. Cem. Concr. Compos. 2019, 99, 89–99. [Google Scholar] [CrossRef]
- Klemm, W.A.; Berger, R.L. Accelerated curing of cementitious systems by carbon dioxide: Part, I. Portland cement. Cem. Concr. Res. 1972, 2, 567–576. [Google Scholar] [CrossRef]
- Berger, R.L.; Klemm, W.A. Accelerated curing of cementitious systems by carbon dioxide: Part II. Hydraulic calcium silicates and aluminates. Cem. Concr. Res. 1972, 2, 647–652. [Google Scholar] [CrossRef]
- Tang, S.W.; Cai, X.H.; He, Z.; Zhou, W.; Shao, H.; Li, Z.; Wu, T.; Chen, E. The review of pore structure evaluation in cementitious materials by electrical methods. Constr. Build. Mater. 2016, 117, 273–284. [Google Scholar] [CrossRef]
- Huang, T.; Yuan, Q.; Zuo, S.; Li, B.; Wu, Q.; Xie, Y. Evaluation of microstructural changes in fresh cement paste using AC impedance spectroscopy vs. oscillation rheology and 1H NMR relaxometry. Cem. Concr. Res. 2021, 149, 106556. [Google Scholar] [CrossRef]
- Zhang, J.; Heath, A.; Abdalgadir, H.M.T.; Ball, R.J.; Paine, K. Electrical impedance behaviour of carbon fibre reinforced cement-based sensors at different moisture contents. Constr. Build. Mater. 2022, 353, 129049. [Google Scholar] [CrossRef]
- Basha, S.I.; Shah, S.S.; Ahmad, S.; Maslehuddin, M.; Al-Zahrani, M.M.; Aziz, M.A. Construction Building Materials as a Potential for Structural Supercapacitor Applications. Chem. Rec. 2022, 22, e202200134. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.A.; Shah, S.S.; Nayem, S.M.A.; Shaikh, M.N.; Hakeem, A.S.; Bakare, I.A. Peat soil-derived silica doped porous graphitic carbon with high yield for high-performance all-solid-state symmetric supercapacitors. J. Energy Storage 2022, 50, 104278. [Google Scholar] [CrossRef]
- Zajac, M.; Irbe, L.; Bullerjahn, F.; Hilbig, H.; Ben Haha, M. Mechanisms of carbonation hydration hardening in Portland cements. Cem. Concr. Res. 2022, 152, 106687. [Google Scholar] [CrossRef]
- Yu, J.; Sasamoto, A.; Iwata, M. Wenner method of impedance measurement for health evaluation of reinforced concrete structures. Constr. Build. Mater. 2019, 197, 576–586. [Google Scholar] [CrossRef]
- Qiu, Q. A state-of-the-art review on the carbonation process in cementitious materials: Fundamentals and characterization techniques. Constr. Build. Mater. 2020, 247, 118503. [Google Scholar] [CrossRef]
- Shi, T.; Zheng, L.; Xu, X. Evaluation of alkali reactivity of concrete aggregates via AC impedance spectroscopy. Constr. Build. Mater. 2017, 145, 548–554. [Google Scholar] [CrossRef]
- Zhong, S.; Shi, M.; Chen, Z. A study of polymer-modified mortars by the AC impedance technique. Cem. Concr. Res. 2002, 32, 979–982. [Google Scholar] [CrossRef]
- Shi, M.; Chen, Z.; Sun, J. An evaluation of the stability of concrete by Nyquist criterion. Cem. Concr. Res. 1999, 29, 1689–1692. [Google Scholar] [CrossRef]
- Tang, S.W.; Li, Z.J.; Chen, E.; Shao, H.Y. Impedance measurement to characterize the pore structure in Portland cement paste. Constr. Build. Mater. 2014, 51, 106–112. [Google Scholar] [CrossRef]
- Chinzorigt, G.; Lim, M.K.; Yu, M.; Lee, H.; Enkbold, O.; Choi, D. Strength, shrinkage and creep and durability aspects of concrete including CO2 treated recycled fine aggregate. Cem. Concr. Res. 2020, 136, 106062. [Google Scholar] [CrossRef]
- Huang, J.; Gao, Y.; Luo, J.; Wang, S.; Li, C.; Chen, S.; Zhang, J. Editors’ Choice—Review—Impedance Response of Porous Electrodes: Theoretical Framework, Physical Models and Applications. J. Electrochem. Soc. 2020, 167, 166503. [Google Scholar] [CrossRef]
- Hu, X.; Shi, C.; Liu, X.; Zhang, J.; de Schutter, G. A review on microstructural characterization of cement-based materials by AC impedance spectroscopy. Cem. Concr. Compos. 2019, 100, 1–14. [Google Scholar] [CrossRef]
- Allam, H.; Duplan, F.; Amziane, S.; Burtschell, Y. Assessment of manufacturing process efficiency in the dispersion of carbon fibers in smart concrete by measuring AC impedance. Cem. Concr. Compos. 2022, 127, 104394. [Google Scholar] [CrossRef]
- Dong, B.; Qiu, Q.; Xiang, J.; Huang, C.; Sun, H.; Xing, F.; Liu, W. Electrochemical impedance interpretation of the carbonation behavior for fly ash-slag-cement materials. Constr. Build. Mater. 2015, 93, 933–942. [Google Scholar] [CrossRef]
- Park, J.; Song, H.; Choi, H. Estimation of water-to-cement ratio in cementitious materials using electrochemical impedance spectroscopy and artificial neural networks. Constr. Build. Mater. 2022, 350, 128843. [Google Scholar] [CrossRef]
- He, F.; Wang, R.; Shi, C.; Chen, C.; Lin, L.; An, X. Error evaluation and correction of stray impedance during measurement and interpretation of AC impedance of cement-based materials. Cem. Concr. Compos. 2016, 72, 190–200. [Google Scholar] [CrossRef]
- Chi, L.; Wang, Z.; Lu, S.; Zhao, D.; Yao, Y. Development of mathematical models for predicting the compressive strength and hydration process using the EIS impedance of cementitious materials. Constr. Build. Mater. 2019, 208, 659–668. [Google Scholar] [CrossRef]
- Fang, Y.; Chang, J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation. Constr. Build. Mater. 2015, 76, 360–365. [Google Scholar] [CrossRef]
- Chu, D.C.; Kleib, J.; Amar, M.; Benzerzour, M.; Abriak, N.E. Determination of the degree of hydration of Portland cement using three different approaches: Scanning electron microscopy (SEM-BSE) and Thermogravimetric analysis (TGA). Case Stud. Constr. Mater. 2021, 15, e00754. [Google Scholar] [CrossRef]
- Deboucha, W.; Leklou, N.; Khelidj, A.; Oudjit, M.N. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Constr. Build. Mater. 2017, 146, 687–701. [Google Scholar] [CrossRef]
- Li, B.; Jiang, Z.; Jin, N.; Tian, Y.; Jin, X. Carbonation process simulation for cement-based materials based on microstructure by a cement hydration model. Constr. Build. Mater. 2020, 259, 120429. [Google Scholar] [CrossRef]
- Kumar, R.; Bhattacharjee, B. Porosity, pore size distribution and in situ strength of concrete. Cem. Concr. Res. 2003, 33, 155–164. [Google Scholar] [CrossRef]
- Muller, A.C.A.; Scrivener, K.L. A reassessment of mercury intrusion porosimetry by comparison with 1H NMR relaxometry. Cem. Concr. Res. 2017, 100, 350–360. [Google Scholar] [CrossRef]
- Arandigoyen, M.; Alvarez, J.I. Pore structure and mechanical properties of cement-lime mortars. Cem. Concr. Res. 2007, 37, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Poon, C.S.; Wong, Y.L.; Lam, L. The influence of different curing conditions on the pore structure and related properties of fly-ash cement pastes and mortars. Constr. Build. Mater. 1997, 11, 383–393. [Google Scholar] [CrossRef]
- Ngala, V.T.; Page, C.L. Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cem. Concr. Res. 1997, 27, 995–1007. [Google Scholar] [CrossRef]
- Hou, D.; Li, D.; Hua, P.; Jiang, J.; Zhang, G. Statistical modelling of compressive strength controlled by porosity and pore size distribution for cementitious materials. Cem. Concr. Compos. 2019, 96, 11–20. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, G.; van Breugel, K. Characterization of pore structure in cement-based materials using pressurization-depressurization cycling mercury intrusion porosimetry (PDC-MIP). Cem. Concr. Res. 2010, 40, 1120–1128. [Google Scholar] [CrossRef]
- Shi, C.; He, F.; Wu, Y. Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures. Constr. Build. Mater. 2012, 26, 257–267. [Google Scholar] [CrossRef]
- Morandeau, A.; Thiéry, M.; Dangla, P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Shi, C.; Yuan, Q.; de Schutter, G. AC impedance spectroscopy characteristics of chloride-exposed cement pastes. Constr. Build. Mater. 2020, 233, 117267. [Google Scholar] [CrossRef] [Green Version]
- Gu, P.; Xie, P.; Beaudoin, J.J. Microstructural characterization of the transition zone in cement systems by means of A.C. impedance spectroscopy. Cem. Concr. Res. 1993, 23, 581–591. [Google Scholar] [CrossRef]
- Dong, B.-Q.; Qiu, Q.-W.; Xiang, J.-Q.; Huang, C.-J.; Xing, F.; Han, N.-X.; Lu, Y.-Y. Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials. Constr. Build. Mater. 2014, 54, 558–565. [Google Scholar] [CrossRef]
- Song, G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem. Concr. Res. 2000, 30, 1723–1730. [Google Scholar] [CrossRef]
- Chi, L.; Du, T.; Lu, S.; Li, W.; Wang, M. Electrical Impedance Spectroscopy Monitoring of Hydration Behaviors of Cement with Na2Co3 Accelerator. Constr. Build. Mater. 2022, 357, 129374. [Google Scholar] [CrossRef]
- Song, H.-K.; Hwang, H.-Y.; Lee, K.-H.; Dao, L.H. The effect of pore size distribution on the frequency dispersion of porous electrodes. Electrochim. Acta. 2000, 45, 2241–2257. [Google Scholar] [CrossRef]
- Cabeza, M.; Merino, P.; Miranda, A.; Nóvoa, X.R.; Sanchez, I. Impedance spectroscopy study of hardened Portland cement paste. Cem. Concr. Res. 2002, 32, 881–891. [Google Scholar] [CrossRef]
CaO | SiO2 | MgO | SO3 | Al2O3 | K2O | Na2O | Fe2O3 | LOI |
---|---|---|---|---|---|---|---|---|
63.8 | 20.78 | 1.72 | 3.82 | 3.57 | 0.75 | 0.26 | 3.99 | 1.31 |
Specimen | Cement (g) | Sand (g) | Water (g) |
---|---|---|---|
C4 and W4 | 100 | 300 | 40 |
C5 and W5 | 100 | 300 | 50 |
C6 and W6 | 100 | 300 | 60 |
a | b | k | |
---|---|---|---|
0.4 | 3.528 | 3.393 | 0.201 |
0.5 | 5.152 | 5.004 | 0.357 |
0.6 | 5.562 | 5.194 | 0.259 |
w/c | Age | ρs (kΩ · cm) | C (kF · cm) | ρct1 (kΩ · cm) | CPE (kF · cm) | ρct2 (kΩ · cm) |
---|---|---|---|---|---|---|
0.4 | 1 d | 0.158 | 4.913 × 10−13 | 9.342 × 1015 | 7.939 × 10−8 | 2.913 |
3 d | 0.140 | 4.628 × 10−13 | 1.030 × 1016 | 7.790 × 10−8 | 2.112 | |
7 d | 0.199 | 2.455 × 10−13 | 1.273 × 1016 | 7.955 × 10−8 | 5.137 | |
14 d | 0.079 | 2.249 × 10−13 | 1.560 × 1016 | 1.032 × 10−7 | 4.852 | |
28 d | 0.036 | 3.914 × 10−13 | 5.553 × 1016 | 5.773 × 10−8 | 5.145 | |
56 d | 0.037 | 3.796 × 10−13 | 5.076 × 1016 | 3.620 × 10−8 | 8.120 | |
0.5 | 1 d | 0.101 | 1.686 × 10−13 | 5.264 × 1013 | 4.082 × 10−8 | 8.002 |
3 d | 0.133 | 1.776 × 10−13 | 1.527 × 1014 | 6.800 × 10−8 | 3.851 | |
7 d | 0.181 | 1.464 × 10−13 | 6.322 × 1014 | 4.930 × 10−8 | 8.332 | |
14 d | 0.081 | 1.297 × 10−13 | 2.088 × 1014 | 3.749 × 10−8 | 8.440 | |
28 d | 0.058 | 1.804 × 10−13 | 4.895 × 1015 | 3.361 × 10−8 | 10.174 | |
56 d | 0.043 | 2.083 × 10−13 | 1.806 × 1016 | 3.500 × 10−8 | 13.340 | |
0.6 | 1 d | 0.122 | 5.767 × 10−13 | 2.185 × 1014 | 8.792 × 10−8 | 2.967 |
3 d | 0.094 | 5.515 × 10−13 | 2.101 × 1014 | 8.210 × 10−8 | 2.394 | |
7 d | 0.060 | 3.682 × 10−13 | 4.550 × 1011 | 6.415 × 10−8 | 5.339 | |
14 d | 0.053 | 3.449 × 10−13 | 5.679 × 1015 | 5.343 × 10−8 | 5.696 | |
28 d | 0.134 | 2.748 × 10−13 | 6.616 × 108 | 4.801 × 10−8 | 5.157 | |
56 d | 0.079 | 4.854 × 10−13 | 1.129 × 1016 | 1.608 × 10−8 | 6.171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Tang, H.; Chi, L.; Chen, K.; Zhang, L.; Lu, C. Evolution of Electrochemical Impedance Spectra Characteristics of Cementitious Materials after Capturing Carbon Dioxide. Sustainability 2023, 15, 2460. https://doi.org/10.3390/su15032460
Liu Q, Tang H, Chi L, Chen K, Zhang L, Lu C. Evolution of Electrochemical Impedance Spectra Characteristics of Cementitious Materials after Capturing Carbon Dioxide. Sustainability. 2023; 15(3):2460. https://doi.org/10.3390/su15032460
Chicago/Turabian StyleLiu, Qiong, Huilin Tang, Lin Chi, Kailun Chen, Lei Zhang, and Chaoxiong Lu. 2023. "Evolution of Electrochemical Impedance Spectra Characteristics of Cementitious Materials after Capturing Carbon Dioxide" Sustainability 15, no. 3: 2460. https://doi.org/10.3390/su15032460
APA StyleLiu, Q., Tang, H., Chi, L., Chen, K., Zhang, L., & Lu, C. (2023). Evolution of Electrochemical Impedance Spectra Characteristics of Cementitious Materials after Capturing Carbon Dioxide. Sustainability, 15(3), 2460. https://doi.org/10.3390/su15032460