Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review
Abstract
:1. Introduction
2. The Circular Economy to Improve Mining Waste Management
3. Treatment Options Analysis
3.1. Reclamation
3.2. The Mine Wastewater and Treatment Options
3.3. Different Treatment Options
3.4. Acid or Coal Mine Drainage Control and Treatment
3.5. Tailings Disposal and Treatment Options
4. Products Recovery, Recycling, and Reuse Options
4.1. Construction Materials
4.2. The Mine Tailing-Based Geopolymers
4.3. Backfilling Mine Cavities
4.4. Mining Rock Waste
5. Health Implications in the Recycled Construction Materials from Mine Waste
6. Future Possibilities Benefiting the Circular Economy within the Mining Sector
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. Heavy Met. 2018, 10, 115–132. [Google Scholar]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Zhang, Z.; Malik, M.Z.; Khan, A.; Ali, N.; Malik, S.; Bilal, M. Environmental impacts of hazardous waste, and management strategies to reconcile circular economy and eco-sustainability. Sci. Total Environ. 2022, 807, 150856. [Google Scholar] [CrossRef] [PubMed]
- Ndlovu, S.; Simate, G.S.; Matinde, E. Waste Production and Utilization in the Metal Extraction Industry; C.R.C. Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Branca, T.A.; Colla, V.; Algermissen, D.; Granbom, H.; Martini, U.; Morillon, A.; Pietruck, R.; Rosendahl, S. Reuse and recycling of byproducts in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in Europe. Metals 2020, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-thinking mining waste through an integrative approach led by circular economy aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Berseneva, M.L.; Vasilovskaya, G.V.; Klindukh, N.Y.; Terekhova, I.I.; Gumennaya, E.Y. Metallurgical Waste in Construction Industry. Key Eng. Mater. 2020, 839, 155–159. [Google Scholar] [CrossRef]
- Suvorova, O.V.; Selevanova, E.A.; Mikhailova, J.A.; Masloboev, V.A.; Makarov, D.V. Ceramic products from mining and metallurgical waste. Appl. Sci. 2020, 10, 3515. [Google Scholar] [CrossRef]
- Roithner, C.; Rechberger, H. Implementing the dimension of quality into the conventional quantitative definition of recycling rates. Waste Manag. 2020, 105, 586–593. [Google Scholar] [CrossRef]
- Saleem, S.; Hu, G.; Li, J.; Hewage, K.; Sadiq, R. Evaluation of offshore oil spill response waste management strategies: A lifecycle assessment-based framework. J. Hazard. Mater. 2022, 432, 128659. [Google Scholar] [CrossRef]
- Kumar, U.; Singh, D.N. E-Waste Management through Regulations. International. J. Eng. Invent. 2013, 3, 6–14. [Google Scholar]
- E.P.A. United States of America Environmental Protection Agency. Report on the 2015 U.S. Environmental Protection Agency (EPA) International Decontamination Research and Development Conference; EPA/600/R-15/283; U.S. Environmental Protection Agency: Washington, DC, USA, 2015. [Google Scholar]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Di Iorio, V.; Testa, F.; Korschun, D.; Iraldo, F.; Iovino, R. Curious about the circular economy? Internal and external influences on information search about the product lifecycle. Bus. Strategy Environ. 2022. [Google Scholar] [CrossRef]
- E.M.F. Towards the Circular Economy; E.M.F.: Isle Wight, UK, 2013; Volume 2, pp. 23–44. [Google Scholar]
- Stahel, W. The Performance Economy; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- McMichael, A.J.; Butler, C.D.; Folke, C. New visions for addressing sustainability. Science 2003, 302, 1919–1920. [Google Scholar] [CrossRef] [Green Version]
- E.M.F. Towards the Circular Economy; E.M.F.: Isle Wight, UK, 2014; p. 3. [Google Scholar]
- Matinde, E.; Simate, G.S.; Ndlovu, S. Mining and metallurgical wastes: A review of recycling and reuse practices. J. S. Afr. Inst. Min. Metall. 2018, 118, 825–844. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Cooke, S.J.; Lesser, P.; Macura, B.; Nilsson, A.E.; Taylor, J.J.; Raito, K. Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social–ecological systems in Arctic and boreal regions: A systematic map protocol. Environ. Evid. 2019, 8, 1–11. [Google Scholar] [CrossRef]
- Agboola, O.; Babatunde, D.E.; Fayomi, O.S.I.; Sadiku, E.R.; Popoola, P.; Moropeng, L.; Yahaya, A.; Mamudu, O.A. A review on the impact of mining operation: Monitoring, assessment and management. Results Eng. 2020, 8, 100181. [Google Scholar] [CrossRef]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef]
- Emmanuel, A.Y.; Jerry, C.S.; Dzigbodi, D.A. Review of environmental and health impacts of mining in Ghana. J. Health Pollut. 2018, 8, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, A.J.; Forbes, E.; Verster, I.; Jokovic, V.; Awatey, B.; Parbhakar-Fox, A. Review on advances in mineral processing technologies suitable for critical metal recovery from mining and processing wastes. Clean. Eng. Technol. 2022, 7, 100451. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Goodland, R. Responsible mining: The key to profitable resource development. Sustainability 2012, 4, 2099–2126. [Google Scholar] [CrossRef] [Green Version]
- Sonter, L.J.; Ali, S.H.; Watson, J.E.M. Mining and biodiversity: Key issues and research needs in conservation science. Proc. R. Soc. B 2018, 285, 20181926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luckeneder, S.; Giljum, S.; Schaffartzik, A.; Maus, V.; Tost, M. Surge in global metal mining threatens vulnerable ecosystems. Glob. Environ. Chang. 2021, 69, 102303. [Google Scholar] [CrossRef]
- Bonsu, J.; Van Dyk, W.; Franzidis, J.P.; Petersen, F.; Isafiade, A. A systemic study of mining accident causality: An analysis of 91 mining accidents from a platinum mine in South Africa. J. S. Afr. Inst. Min. Metall. 2017, 117, 59–66. [Google Scholar] [CrossRef]
- Stewart, A.G. Mining is bad for health: A voyage of discovery. Environ. Geochem. Health 2020, 42, 1153–1165. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.P. Mining industry and sustainable development: Time for change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Mpanza, M.; Adam, E.; Moolla, R. A critical review of the impact of South Africa’s mine closure policy and the winding-up process of mining companies. J. Transdiscipl. Res. S. Afr. 2021, 17, a985. [Google Scholar] [CrossRef]
- Retka, J.; Rzepa, G.; Bajda, T.; Drewniak, L. The use of mining waste materials for the treatment of acid and alkaline mine wastewater. Minerals 2020, 10, 1061. [Google Scholar] [CrossRef]
- Sánchez, F.; Hartlieb, P. Innovation in the mining industry: Technological trends and a case study of the challenges of disruptive innovation. Min. Metall. Explor. 2020, 37, 1385–1399. [Google Scholar] [CrossRef]
- Mhlongo, S.E.; Amponsah-Dacosta, F.; Gitari, W.M.; Muzerengi, C.; Momoh, A. The impact of artisanal mining on rehabilitation efforts of abandoned mine shafts in Sutherland goldfield, South Africa. Jàmbá J. Disaster Risk Stud. 2019, 11, 1–7. Available online: https://hdl.handle.net/10520/EJC-16ad7316c7 (accessed on 17 September 2022). [CrossRef] [PubMed]
- Mborah, C.; Bansah, K.J.; Boateng, M.K. Evaluating alternate post-mining land-uses: A review. Environ. Pollut. 2016, 5, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xu, Y.; Zhang, Z.; Zhang, Y. Acid Mine Drainage (AMD) in Abandoned Coal Mines of Shanxi, China. Water 2020, 13, 8. [Google Scholar] [CrossRef]
- Festin, E.S.; Tigabu, M.; Chileshe, M.N.; Syampungani, S.; Odén, P.C. Progresses in restoration of post-mining landscape in Africa. J. For. Res. 2019, 30, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Buta, M.; Blaga, G.; Paulette, L.; Pacurar, I.; Rosca, S.; Borsai, O.; Grecu, F.; Sinziana, P.E.; Negrusier, C. Soil reclamation of abandoned mine lands by revegetation in Northwestern part of Transylvania: A 40-Year retrospective study. Sustainability 2019, 11, 3393. [Google Scholar] [CrossRef] [Green Version]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Pietrzykowski, M. Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and eastern European experiences. Ecol. Eng. 2019, 142, 100012. [Google Scholar] [CrossRef]
- Kondratenko, L.; Gura, D.; Shaidullina, V.; Rogulin, R.; Kondrashev, S. Restoration of vegetation around mining enterprises. Saudi J. Biol. Sci. 2022, 29, 1881–1886. [Google Scholar] [CrossRef]
- Ameyu, T. A review on the potential effect of lime on soil properties and crop productivity improvements. J. Environ. Earth Sci. 2019, 9, 17–23. [Google Scholar]
- Msimbira, L.A.; Smith, D.L. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front. Sustain. Food Syst. 2020, 4, 106. [Google Scholar] [CrossRef]
- Van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Chaney, R.L.; Anderson, C.W.N.; Meech, J.A.; Erskine, P.D.; Simonnot, M.; Vaughan, J.; Morel, J.L.; et al. Agromining: Farming for Metals in the Future? ACS Publications: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Krishna, R.S.; Shaikh, F.; Mishra, J.; Lazorenko, G.; Kasprzhitskii, A. Mine tailings-based geopolymers: Properties, applications and industrial prospects. Ceram. Int. 2021, 47, 17826–17843. [Google Scholar] [CrossRef]
- Meißner, S. The Impact of Metal Mining on Global Water Stress and Regional Carrying Capacities—A GIS-Based Water Impact Assessment. Resources 2021, 10, 120. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Jiang, X.; Zhang, Q.; Liu, W. Analysis on the characteristics of water pollution caused by underground mining and research progress of treatment technology. Adv. Civ. Eng. 2021, 2021, 9984147. [Google Scholar] [CrossRef]
- Grewar, T. South Africa’s options for mine-impacted water reuse: A review. J. S. Afr. Inst. Min. Metall. 2019, 119, 321–331. [Google Scholar] [CrossRef]
- Kuyucak, N.; Akcil, A. Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner. Eng. 2013, 50, 13–29. [Google Scholar] [CrossRef]
- Gao, P.; Yu, W.; Zhang, Z.; Yi, C.; Liu, Z.; Zhang, D. The general methods of mine water treatment in China. Desalin. Water Treat. 2020, 202, 183–205. [Google Scholar] [CrossRef]
- Thisani, S.K.; Von Kallon, D.V.; Byrne, P. Review of remediation solutions for acid mine drainage using the modified hill framework. Sustainability 2021, 13, 8118. [Google Scholar] [CrossRef]
- Skousen, J.; Zipper, C.E.; Ziemkiewicz, P.F.; Nairn, R.; McDonald, L.M.; Kleinmann. Review of passive systems for acid mine drainage treatment. Mine Water Environ. 2017, 36, 133–153. [Google Scholar] [CrossRef] [Green Version]
- Ramla, B.; Sheridan, C. The potential utilisation of indigenous South African grasses for acid mine drainage remediation. Water SA 2015, 41, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Ojonimi, T.I.; Asuke, F.; Onimisi, M.A.; Onuh, C.Y. Acid Mine Drainage (AMD): An environmental concern generated by coal mining. J. Degrad. Min. Lands Manag. 2019, 6, 1875–1881. [Google Scholar] [CrossRef]
- Alvarenga, P.; Guerreiro, N.; Simões, I.; Imaginário, M.J.; Palma, P. Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators. Water 2021, 13, 1436. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T.; Albuquerque, T.; Henriques, R.; Flor-Arnau, N.; Pamplona, J.; Macias, F. Algae in acid mine drainage and relationships with pollutants in a degraded mining ecosystem. Minerals 2021, 11, 110. [Google Scholar] [CrossRef]
- Moreno-González, R.; Macías, F.; Olías, M.; Cánovas, C.R. Temporal evolution of acid mine drainage (AMD) leachates from the abandoned tharsis mine (Iberian Pyrite Belt, Spain). Environ. Pollut. 2022, 295, 118697. [Google Scholar] [CrossRef]
- Saha, S.; Sinha, A. A review on treatment of acid mine drainage with waste materials: A novel approach. Glob. NEST J. 2018, 20, 512–528. [Google Scholar] [CrossRef] [Green Version]
- RoyChowdhury, A.; Sarkar, A.D.; Datta, R. Remediation of acid mine drainage-impacted water. Curr. Pollut. Rep. 2015, 1, 131–141. [Google Scholar] [CrossRef]
- Feris, L.; Kotze, L.J. The regulation of acid mine drainage in South Africa: Law and governance perspectives. Potchefstroom Electron. Law J. 2014, 17, 2105–2163. [Google Scholar]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Araujo, F.S.M.; Taborda-Llano, I.; Nunes, E.B.; Santos, R.M. Recycling and Reuse of Mine Tailings: A Review of Advancements and Their Implications. Geosciences 2022, 12, 319. [Google Scholar] [CrossRef]
- de Lurdes Dinis, M.; Fiuza, A.; Futuro, A.; Leite, A.; Martins, D.; Figueiredo, J.; Gois, J.; Vila, M.C. Characterization of a mine legacy site: An approach for environmental management and metals recovery. Environ. Sci. Pollut. Res. 2020, 27, 10103–10114. [Google Scholar] [CrossRef] [Green Version]
- Lemos, M.; Valente, T.; Reis, P.M.; Fonseca, R.; Delbem, I.; Ventura, J.; Magalhaes, M. Mineralogical and geochemical characterization of gold mining tailings and their potential to generate acid mine drainage (Minas Gerais, Brazil). Minerals 2020, 11, 39. [Google Scholar] [CrossRef]
- Dixon-Hardy, D.W.; Engels, J.M. Methods for the disposal and storage of mine tailings. Land Contam. Reclam. 2007, 15, 301. [Google Scholar] [CrossRef]
- Bascetin, A.; Tuylu, S.; Adıguzel, D.; Ozdemir, O. New technologies on mine process tailing disposal. J. Geol. Resour. Eng. 2016, 2, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Kinnunen, P.; Obenaus-Emler, R.; Raatikainen, J.; Guignot, S.; Guimera, J.; Ciroth, A.; Heiskanen, K. Review of closed water loops with ore sorting and tailings valorisation for a more sustainable mining industry. J. Clean. Prod. 2021, 278, 123237. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, F.; Yang, J.; Li, X. Mining site reclamation planning based on land suitability analysis and ecosystem services evaluation: A case study in Liaoning province, China. Sustainability 2017, 9, 890. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Shao, Y.; Wu, A.; Wang, H.; Liu, X.; Wang, Y. A systematic review of paste technology in metal mines for cleaner production in China. J. Clean. Prod. 2020, 247, 119590. [Google Scholar] [CrossRef]
- Williams, D.J. Lessons from tailings dam failures—Where to go from here? Minerals 2021, 11, 853. [Google Scholar] [CrossRef]
- Nadeif, A.; Taha, Y.; Bouzahzah, H.; Hakkou, R.; Benzaazoua, M. Desulfurization of the old tailings at the Au-Ag-Cu tiouit mine (Anti-Atlas Morocco). Minerals 2019, 9, 401. [Google Scholar] [CrossRef]
- Gayana, B.C.; Ram Chandar, K. Sustainable Use of Mine Waste and Tailings with Suitable Admixture as Aggregates in Concrete Pavements-A Review. 2018. Available online: https://idr.nitk.ac.in/jspui/handle/123456789/13175 (accessed on 15 January 2023).
- Huang, B.; Feng, Q.; An, D.; Zhang, J. Use of mine tailings as precast construction materials through alkali activation. Min. Metall. Explor. 2020, 37, 251–265. [Google Scholar] [CrossRef]
- Kiventerä, J.; Perumal, P.; Yliniemi, J.; Illikainen, M. Mine tailings as a raw material in alkali activation: A review. Int. J. Miner. Metall. Mater. 2020, 27, 1009–1020. [Google Scholar] [CrossRef]
- Oluwasola, E.A.; Hainin, M.R.; Aziz, M.M.A.; Yaacob, H.; Warid, M.N.M. Potentials of steel slag and copper mine tailings as construction materials. Mater. Res. Innov. 2014, 18, S6-250. [Google Scholar] [CrossRef]
- Gou, M.; Zhou, L.; Then, N.W.Y. Utilization of tailings in cement and concrete: A review. Sci. Eng. Compos. Mater. 2019, 26, 449–464. [Google Scholar] [CrossRef]
- Martins, N.P.; Srivastava, S.; Simao, F.V.; Niu, H.; Perumal, P.; Snellings, R.; Illikainen, M.; Chambart, H.; Habert, G. Exploring the potential for utilization of medium and highly sulfidic mine tailings in construction materials: A review. Sustainability 2021, 13, 12150. [Google Scholar] [CrossRef]
- Ghazi, A.B.; Jamshidi-Zanjani, A.; Nejati, H. Utilization of copper mine tailings as a partial substitute for cement in concrete construction. Constr. Build. Mater. 2022, 317, 125921. [Google Scholar] [CrossRef]
- Taha, Y.; Benarchid, Y.; Benzaazoua, M. Environmental behavior of waste rocks based concrete: Leaching performance assessment. Resour. Policy 2021, 74, 101419. [Google Scholar] [CrossRef]
- Benarchid, Y.; Taha, Y.; Argane, R.; Benzaazoua, M. Application of Quebec recycling guidelines to assess the use feasibility of waste rocks as construction aggregates. Resour. Policy 2018, 59, 68–76. [Google Scholar] [CrossRef]
- Argane, R.; Benzaazoua, M.; Hakkou, R.; Bouamrane, A. Reuse of base-metal tailings as aggregates for rendering mortars: Assessment of immobilization performances and environmental behavior. Constr. Build. Mater. 2015, 96, 296–306. [Google Scholar] [CrossRef]
- Thomas, B.S.; Damare, A.; Gupta, R.C. Strength and durability characteristics of copper tailing concrete. Constr. Build. Mater. 2013, 48, 894–900. [Google Scholar] [CrossRef]
- Ince, C. Reusing gold-mine tailings in cement mortars: Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cyprus. J. Clean. Prod. 2019, 238, 117871. [Google Scholar] [CrossRef]
- El Machi, A.; Mabroum, S.; Taha, Y.; Tagnit-Hamou, A.; Benzaazoua, M.; Hakkou, R. Valorization of phosphate mine waste rocks as aggregates for concrete. Mater. Today Proc. 2021, 37, 3840–3846. [Google Scholar] [CrossRef]
- El Machi, A.; Mabroum, S.; Taha, Y.; Tagnit-Hamou, A.; Benzaazoua, M.; Hakkou, R. Use of flint from phosphate mine waste rocks as an alternative aggregate for concrete. Constr. Build. Mater. 2021, 271, 121886. [Google Scholar] [CrossRef]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Yilmaz, E. Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings. Gospod. Surowcami Miner. 2011, 27, 89–112. [Google Scholar]
- Lawrence, S.; Davies, P. The sludge question: The regulation of mine tailings in nineteenth-century Victoria. Environ. Hist. Camb. 2014, 20, 385–410. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dams Safety: The Question of Removing Old Dams. J. Earth Sci. Geotech. Eng. 2020, 10, 323–348. [Google Scholar]
- Xu, D.-M.; Zhan, C.-L.; Liu, H.X.; Lin, H.-Z. A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. Environ. Sci. Pollut. Res. 2019, 26, 35657–35669. [Google Scholar] [CrossRef] [PubMed]
- Beulah, M.; Sudhir, M.R.; Mohan, M.K.; Gayathri, G.; Jain, D. Mine waste-based next generation bricks: A case study of iron ore tailings, red mudand ggbs utilization in bricks. Adv. Mater. Sci. Eng. 2021, 2021, 9499613. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmari, S.; Zhang, J. Synthesis and characterization of fly ash modified mine tailings-based geopolymers. Constr. Build. Mater. 2011, 25, 3773–3781. [Google Scholar] [CrossRef]
- He, X.; Yuhua, Z.; Qaidi, S.; Isleem, H.F.; Zaid, O.; Althoey, F.; Ahmad, J. Mine tailings-based geopolymers: A comprehensive review. Ceram. Int. 2022, 48, 24192–24212. [Google Scholar] [CrossRef]
- Obenaus-Emler, R.; Falah, M.; Illikainen, M. Assessment of mine tailings as precursors for alkali-activated materials for on-site applications. Constr. Build. Mater. 2020, 246, 118470. [Google Scholar] [CrossRef]
- Rao, F.; Liu, Q. Geopolymerization and its potential application in mine tailings consolidation: A review. Miner. Process. Extr. Metall. Rev. 2015, 36, 399–409. [Google Scholar] [CrossRef]
- Ignatyev, I.A.; Thielemans, W.; Vander Beke, B. Recycling of polymers: A review. ChemSusChem 2014, 7, 1579–1593. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Liu, H.; Zhao, Y. Disposal of mine tailings via geopolymerization. J. Clean. Prod. 2021, 284, 124756. [Google Scholar] [CrossRef]
- Ally, A.N.; Blanche, M.M.; Nana, U.J.P.; Grâce, M.M.; François, N.; Pettang, C. Recovery of mining wastes in building materials: A review. Open J. Civ. Eng. 2021, 11, 379–397. [Google Scholar] [CrossRef]
- Yang, C.; Cui, C.; Qin, J.; Cui, X. Characteristics of the fired bricks with low-silicon iron tailings. Constr. Build. Mater. 2014, 70, 36–42. [Google Scholar] [CrossRef]
- Loutou, M.; Misrar, W.; Koudad, M.; Mansori, M.; Grase, L.; Favotto, C.; Taha, Y.; Hakkou, R. Phosphate mine tailing recycling in membrane filter manufacturing: Microstructure and filtration suitability. Minerals 2019, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Taha, Y.; Benzaazoua, M.; Mansori, M.; Hakkou, R. Recycling feasibility of glass wastes and calamine processing tailings in fired bricks making. Waste Biomass Valorization 2017, 8, 1479–1489. [Google Scholar] [CrossRef]
- Ettoumi, M.; Jouini, M.; Neculita, C.M.; Coudert, L.; Benzaazoua, M. Characterization of phosphate processing sludge from Tunisian mining basin and its potential valorization in fired bricks making. J. Clean. Prod. 2021, 284, 124750. [Google Scholar] [CrossRef]
- Luo, L.; Li, K.; Fu, W.; Liu, C.; Yang, S. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings. Constr. Build. Mater. 2020, 232, 117250. [Google Scholar] [CrossRef]
- Behara, S.K.; Mishra, D.P.; Singh, P.; Mishra, K.; Mandal, S.K.; Ghosh, C.N.; Kumar, R.; Mandal, P.K. Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective. Constr. Build. Mater. 2021, 309, 125120. [Google Scholar] [CrossRef]
- Hefni, M.; Ahmed, H.A.M.; Omar, E.S.; Ali, M.A. The potential re-use of Saudi mine tailings in mine backfill: A path towards sustainable mining in Saudi Arabia. Sustainability 2021, 13, 6204. [Google Scholar] [CrossRef]
- Bazaluk, O.; Petlovanyi, M.; Lozynskyi, V.; Zubko, S.; Sai, K.; Saik, P. Sustainable underground iron ore mining in Ukraine with backfilling worked-out area. Sustainability 2021, 13, 834. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, R.; Xie, C.; Liu, S. Effect of curing humidity on performance of cemented paste backfill. Int. J. Miner. Metall. Mater. 2020, 27, 1046–1053. [Google Scholar] [CrossRef]
- Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Valorization of phosphate mine waste rocks as materials for road construction. Minerals 2019, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, J.R.; Schwartz, M.; Phipps, L.M.; Restrepo-Baena, O.J.; Lucena, J.; Smits, K.M. A review of the environmental and health implications of recycling mine tailings for construction purposes in artisanal and small-scale mining communities. Extr. Ind. Soc. 2021, 9, 101019. [Google Scholar] [CrossRef]
- Cohen Hubal, E.A.; Sheldon, L.S.; Burke, J.M.; McCurdy, T.R.; Berry, M.R.; Rigas, M.L.; Zartarian, V.G.; Freeman, N.C. Children’s exposure assessment: A review of factors influencing Children’s exposure, and the data available to characterize and assess that exposure. Environ. Health Perspect. 2000, 108, 475–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagan, N.; Robins, N.; Hsu-Kim, H.; Halabi, S.; Gonzales, R.D.E.; de Richter, D.; Vandenburg, J. Residential mercury contamination in adobe brick homes in Huancavelica, Peru. PLoS ONE 2013, 8, e75179. [Google Scholar] [CrossRef] [PubMed]
- McEwen, A.R.; Hsu-Kim, H.; Robins, N.A.; Hagan, N.A.; Halabi, S.; Barras, O.; de Richter, D.; Vandenberg, J.J. Residential metal contamination and potential health risks of exposure in adobe brick houses in Potosí, Bolivia. Sci. Total Environ. 2016, 562, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USEPA. Arsenic, Inorganic: Reference Dose for Chronic Oral Exposure (RfD); USEPA: Washington, DC, USA, 1993. [Google Scholar]
- USEPA. Mercuric Chrloride: Reference Dose for Chronic Oral Exposure (RfD); USEPA: Washington, DC, USA, 1995. [Google Scholar]
- JECFA. Evaluation of Certain Food Additives and Contaminants: 73rd Report of Joint FAO/WHO Experiment Committee on Food Additives; JECFA: Geneva, Switzerland, 2011. [Google Scholar]
- Kirthika, S.K.; Singh, S.K.; Chourasia, A. Alternative fine aggregates in production of sustainable concrete—A review. J. Clean. Prod. 2020, 268, 122089. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Tam, V.W.Y.; Xue, C. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resour. Conserv. Recycl. 2020, 6, 100036. [Google Scholar] [CrossRef]
- Mishra, B.; Gostu, S. Materials sustainability for environment: Red-mud treatment. Front. Chem. Sci. Eng. 2017, 11, 483–496. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep. Purif. Technol. 2013, 108, 96–102. [Google Scholar] [CrossRef]
- Lu, F.; Xiao, T.; Lin, J.; Li, A.; Long, Q.; Huang, F.; Xiao, L.; Li, X.; Wang, J.; Xiao, Q.; et al. Recovery of gallium from Bayer red mud through acidic-leaching-ion-exchange process under normal atmospheric pressure. Hydrometallurgy 2018, 175, 124–132. [Google Scholar] [CrossRef]
- Liu, Y.; Naidu, R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef]
- Alkan, G.; Xakalashe, B.; Yagmurlu, B.; Kaussen, F.; Friedrich, B. Conditioning of red mud for subsequent titanium and scandium recovery–a conceptual design study. World Metall. 2017, 70, 5–12. [Google Scholar]
- Liu, Z.; Li, H. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy 2015, 155, 29–43. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Renforth, P.; Ndiritu, J.; Maree, J.P.; Tekere, M.; Chatzisymeon, E. Challenges and avenues for acid mine drainage treatment, beneficiation, and valorization in the circular economy: A review. Ecol. Eng. 2022, 183, 106740. [Google Scholar] [CrossRef]
- Lorio, C.T.; Orbecido, A.H.; Promentilla, M.A.B.; Tabelin, C.B. Selection of the Optimum Active Treatment Technology for Acid Mine Drainage (AMD) Using Analytic Hierarchy Process. Chem. Eng. Trans. 2022, 94, 931–936. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Markevych, K.; Maistro, S.; Koval, V.; Paliukh, V. Mining sustainability and circular economy in the contest of economic security in Ukraine. Min. Miner. Depos. 2022, 16, 101–113. [Google Scholar] [CrossRef]
Type of Waste | Description |
---|---|
Acid mine drainage | Wastewater generated from tailings and underground mine work either on active or inactive mining sites. |
Metallurgical waste | Slags of material produced in the metal refining process, including smelting, are a byproduct of the process. |
Mine tailings | Fine rocks that remain after the metal extraction process; are in a slurry form and deposited in tailings ponds. |
Waste rock | They also remain after the mining process, but they are still regarded as rich in minerals but may form acid-mine drainage. |
Overburden | A stockpile of rocks and soil from the mining process; has the potential to form acid mine drainage as well. |
Waste dust | Particulate dust contains toxic chemicals, such as organometallic compounds, and toxic gases, such as CO, NOx, CO2, and SOx are released during metal processing. |
South Africa | |
---|---|
National Water Act (no. 36 of 1998) | It gives guidelines for mine water management to prevent pollution, water reclamation and reuse, discharge, and treatment. (Department of Water and Environmental Affairs, 2010). |
National Environmental Management Act (no. 107 of 1008) | It gives guidelines and boundaries for sustainable development and highlights the duty of care and mitigation strategies to minimize environmental risks. It further states the legal authority to enforce environmental laws and prosecution/liability for the lack thereof. (Department of Water and Environmental Affairs, 2010). |
Minerals Act (no. 50 of 1990) | It gives a broad framework for enforcing environmental protection and management. It also stresses the importance of environmental rehabilitation. |
Air Quality Act (no. 39 of 2004) | Specifies the need for controlling air emissions of dust using green technologies and clean production practices to protect humans and the environment. |
U.S.A. (Environmental Protection Agency, 2015) | |
Clean Air Act (1970) | It gives guidelines for airborne pollution, which has the potential to harm humans and the environment. |
National Environmental Policy Act (1970) | Compels environmental impact assessments (EIAs) for all economic activities that may pose environmental hazards. Further states that specifically, mining activities EIAs, need federal approval. |
Resource Conservation and Recovery Act | The framework of conserving natural resources while reducing the generation of waste. Furthermore, it talks about waste management principles to protect the environment in different categories. |
Comprehensive Environmental Response, Compensation and Liability Act (1980) | Guidelines on reporting chemical handling and releasing hazardous substances to the environment compel users to rehabilitate the site where hazardous substances are disposed of, including mining, milling, and smelter waste. |
European Union (European Commission, 2010 and 2015) | |
European commission on mining, metallurgical and industrial processes | Water framework directive for the protection of groundwater sources; Environmental assessment directive; Industrial emissions directive—focus on remediation strategies for waste management in various industries; Developing a waste management plan for minimization and recovery. |
Recycled/ | Concrete | Compressive | Flexural | Tensile | Mixing | |||
---|---|---|---|---|---|---|---|---|
Originality | Recovered | Porosity | Density | Strength | Strength | Strength | Rate | References |
of Waste | Material | (%) | (kg/m3) | (Mpa) | (Mpa) | (Mpa) | (%) | |
Gold mine | building | - | - | 36 | - | - | 100% | [87] |
waste rock | concrete | |||||||
gravel | - | - | 40 | - | - | 100% | [87] | |
cement | - | - | 37.8 | - | - | 100% | [88] | |
concrete | ||||||||
Mine | sand in | 26.4–29.3 | 8.58–10.9 | 100% | [89] | |||
tailings | cement | |||||||
concrete | ||||||||
Tailings | sand in | 2243.53 | approx. 40 | approx. 4.7 | 20% | [90] | ||
(copper | cement | 2281.34 | approx. 38 | approx. 4.5 | 40% | |||
mine) | concrete | 2306.54 | approx. 36 | approx. 4.4 | 60% | |||
Tailings | cement | approx. 35.5 | approx. 29.5 | 10% | [91] | |||
Phosphate | cement | - | - | 13.5 | 1.3 | 2.65 | 100% | [92] |
mine waste | concrete | 2360 | 29 | 4.9 | 2.6 | 100% | [93] | |
rock |
Compressive | Flexural | Shrinkage | Porosity | Water | Density | |||
---|---|---|---|---|---|---|---|---|
Waste | Drying/Firing | Strength | Strength | Absorption | Reference | |||
Type | Conditions | (Mpa) | (Mpa) | (%) | (%) | (%) | (g/cm3) | |
Fe tailings | 12 h air drying | 6 to 27 | - | 0.9–1.2 | 27 to 34 | 15.5–17.5 | approx. | [107] |
>80% | Firing at 900 °C, | 2 | ||||||
950 °C and | ||||||||
1000 °C for 2 h | ||||||||
at a rate of 120 °C/h | ||||||||
Phosphate | 24 h air drying | - | 17–36 | approx. | 7 to 22 | 3 to 17 | approx. | [108] |
mining | Firing at 900 °C, | 3.4 | 2.6 | |||||
waste | 1000 °C and | |||||||
1100 °C for 2 h | ||||||||
Mine | 24 h air drying | - | 3.5–11.8 | 1 to 8 | 22–42 | 12 to 26 | approx. | [109] |
tailings | Firing at 900 °C, | 1.9 | ||||||
1000 °C and | ||||||||
1100 °C for 5 h | ||||||||
at a rate of 48 °C/h | ||||||||
Phosphate | 24 h air drying | - | 3.9–13.4 | 5.2–7.5 | 9 to 13 | 12.5–17.2 | approx. | [110] |
sludge | Firing at 950 °C | 1.3 | ||||||
>99% | 1000 °C, and | |||||||
1100 °C for 3 h | ||||||||
at rate of | ||||||||
120 °C/h | ||||||||
Coal dust/ | Firing from | 8.5–17.5 | - | - | - | 14–18 | approx. | [111] |
powder | 950 °C to | 1.74 | ||||||
1100 °C for 2 to | ||||||||
4 h at a rate | ||||||||
of 300 °C/h |
Waste | CBR | Standard Compaction | Modified Compaction | |||||
---|---|---|---|---|---|---|---|---|
Characteristic | CBR | IBI | Wopt | Pdopt | Wopt | Pdopt | Health Risks/ | |
4i% | % | % | (kN/m3) | % | (kN/m3) | Hazards | ||
Phosphate mine waste rock | 13 | - | 12.9–14.60 | 17.9 | - | - | Possibility of leaching | |
Coal mine waste rock | 9 | 29 | 11.2 | 19 | 10.11 | 20.4 | Possibility of leaching |
Metal | Dust on Bricks | Dust on the Floor | Surface Dust |
---|---|---|---|
n | 42 | 48 | 41 |
As | 0.572 | 0.298 | 0.308 |
Ag | 0.528 | 0.17 | 0.3 |
Cu | 0.46 | 0.161 | 0.046 |
Hg | 0.617 | 0.453 | 0.636 |
Pb | 0.264 | 0.082 | 0.098 |
Zn | 0.133 | 0.079 | 0.05 |
Element | RfD | Major Health Effect | Other Health Concerns | References |
---|---|---|---|---|
As | 0.3 | Vascular complications | Kidney disease, gastrointestinal, neurological | [121] |
Hg | 0.3 | Autoimmune | Liver, hypertension, gastrointestinal, neurological | [122] |
Pb | 0.6 | Decrease in IQ | Heart disease, gastrointestinal, neurological | [123] |
Technical Process Technique | Metal Recovered by the Process | Advantages of the Process Technique | Drawbacks of the Process Technique | References |
---|---|---|---|---|
Hydrometallurgy | Al, Fe, Ti, cryolite | Novel technique for the recovery of cryolite | Other elements in the waste stream are inhibited | [126,127] |
Hydrometallurgy | Gallium | Efficient Ga by resin | Other elements and metals in the waste stream are not considered | [128] |
Combined strategy | Al, Fe, Ti | Fe and Na2SO4 recovered | Other elements are not considered in the process | [129] |
Combined strategy | Ti, and Fe | Economical and precipitation process is excellent | Other elements are not considered due to pyrometallurgy dominance in the process | [130] |
Mineral beneficiation | - | Proved to be carbon efficient and economical | Concentrate magnetic and non-magnetic fraction | [131] |
Current proposal | TiO2, Fe | Physical separation | Design and start-up | Proposal in this paper |
(Hybrid approach) | Hydrometallurgy Chemical metallurgy | may be expensive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhathini, T.P.; Bwapwa, J.K.; Mtsweni, S. Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review. Sustainability 2023, 15, 2518. https://doi.org/10.3390/su15032518
Makhathini TP, Bwapwa JK, Mtsweni S. Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review. Sustainability. 2023; 15(3):2518. https://doi.org/10.3390/su15032518
Chicago/Turabian StyleMakhathini, Thobeka Pearl, Joseph Kapuku Bwapwa, and Sphesihle Mtsweni. 2023. "Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review" Sustainability 15, no. 3: 2518. https://doi.org/10.3390/su15032518
APA StyleMakhathini, T. P., Bwapwa, J. K., & Mtsweni, S. (2023). Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review. Sustainability, 15(3), 2518. https://doi.org/10.3390/su15032518