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Abstract: In the last few years, the mining and metallurgy industry has made concerted efforts to
improve waste management through a byproduct recovery strategy, mainly focusing on developing
innovative technologies to provide sustainable solutions. This strategy has seen the metallurgy
industry exploit more natural resources in waste streams while reducing its environmental impact,
making the ‘zero-waste’ goal possible. As such, the concept of circular economy emerged, which
seeks to improve the environmental sustainability of mining operations by recycling and reusing
the generated waste as raw materials for producing other new products. This paper aims to analyze
the findings from published studies on the treatment and stabilization technologies of metallurgical
waste or byproducts for the construction industry. Furthermore, the paper synthesizes information
on processes and treatment strategies to beneficiate the waste materials for application in the building
and construction sector. Finally, the paper identifies knowledge gaps in the literature, using a
comprehensive overview of the superior results achieved by the metallurgical industry and potential
synergies with other industrial sectors. In conclusion, the paper presents future opportunities while
highlighting specific areas that may be further explored. This review paper is helpful to researchers
in the mining waste management discipline to have an aerial view of what has already been achieved
in the field to improve the existing processes for environment preservation.

Keywords: solid waste disposal; solid waste management; hazardous waste; sustainable
circular economy

1. Introduction

The mining industry, mainly in South Africa, has been one of the major economic
drivers for decades [1]. Generally, mining is a multiple-activity process involving metal
extraction, mineral beneficiation, refining, and remediation [2]. Large amounts of waste are
produced alongside valuable metals during mining and metallurgical operations. Typically,
the waste generated in the mining sites may be in liquid form, such as wastewater and
acid mine drainage; solid waste in the form of sludge, slags, and waste rock [3]; other
waste types are given in Table 1. These waste streams pose a significant environmental
challenge, and poor management may permanently damage the ecosystem and human
health. The standard practice in South Africa is that these solid waste streams are disposed
of in landfills, exacerbating nearby communities’ environmental and health challenges.
Furthermore, cost increments and the decreasing space of landfills are steadily forcing
researchers to find alternative options for solid waste disposal. Generally, solid waste
management is a global problem that affects environmental sustainability, social and
economic decline, and ecological deterioration [4]. Canceling the effects of the generated
waste from the mining activities requires a robust waste management methodology that
includes recycling the waste back into the processing system and the reuse of the waste for
different applications [5].
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Table 1. Different types of waste are produced in the mining and metallurgy process.

Type of Waste Description

Acid mine drainage
Wastewater generated from tailings and
underground mine work either on active or
inactive mining sites.

Metallurgical waste
Slags of material produced in the metal
refining process, including smelting, are a
byproduct of the process.

Mine tailings
Fine rocks that remain after the metal
extraction process; are in a slurry form and
deposited in tailings ponds.

Waste rock
They also remain after the mining process, but
they are still regarded as rich in minerals but
may form acid-mine drainage.

Overburden
A stockpile of rocks and soil from the mining
process; has the potential to form acid mine
drainage as well.

Waste dust

Particulate dust contains toxic chemicals, such
as organometallic compounds, and toxic gases,
such as CO, NOx, CO2, and SOx are released
during metal processing.

Meanwhile, reusing and recycling the generated waste products and replacing natural
raw materials make their impact on the environment less hazardous [6] and minimize
the potential of causing harm to humans. Regardless of these types of waste being envi-
ronmental stressors, the metallurgical processes may integrate the reuse and recycling of
this waste to form a circular economy model with no pollution [7]. For example, solid
metallurgical waste products, such as blast furnace slag, have proven to be commercially
viable construction materials, including in house building blocks, concrete, and road con-
struction [8]. As such, the circular economy model promotes reclaiming precious metals
and producing more valuable products for other industries while minimizing waste and
land pollution. Moreover, this model seeks to eliminate the destruction of natural land
used as dumping sites for solid waste from mining and metallurgical operations [9]. The
need for the development of recovery and recycling technologies, investment in infras-
tructure, the establishment of viable markets, and participation by industry, research insti-
tutes, government, communities, and consumers are all considered to be a priority in the
circular economy.

Focusing on recycling as the major element in the circular economy approach, waste
material recycling is propelled by economic and technological factors [5]. Moreover, recy-
cling may be defined as a practice that uses metallurgical waste as raw materials to produce
new valuable products [7]. It could also be a means of processing waste and returning to
the material cycle to minimize the contamination of the environment [10]. As asserted by
Simate and Ndlovu [3], Figure 1 presents the short- and long-term advantages of employing
recycling strategies for metallurgical waste. Furthermore, waste streams can be collected
and converted into reused material at the same or even better capacity.

Undoubtedly, the environmental challenges posed in emerging and developed economies
are relatively distinctive; however, both economies suffer from technical, economic, social,
and legislative impacts [11]. To tackle these problems, one needs to read the literature
extensively to compare management strategies, which this paper seeks to achieve to give
a comprehensive overview of the literature. The presented review details the treatment
options, waste management, and current and novel approaches for metallurgical waste
disposal available to fit into the circular economy. Lastly, a proposed integrated system is
proposed to respond to the economic value of mining by reducing liability from metallurgi-
cal waste.
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Figure 1. Some of the short- and long-term benefits of recycling and reusing metallurgical waste.

2. The Circular Economy to Improve Mining Waste Management

In this section, we start by looking at the overall mining and metallurgical waste
management framework. The lawmakers have made strides in delivering social awareness
programs focusing on environmental laws to mitigate the anticipated threats of mining
waste (Table 1). Environmental and social regulations’ primary purpose is to enhance
the protection of communities around the mines and the environment while promoting
ethical conduct for businesses [5]. The laws are ineffective when comparing the amount of
waste generated and disposed of by the mining companies. However, there are policies
meant to regulate the disposal of metallurgical waste [12,13]. Most of these environmental
policies emphasize the rights of compatriots to a clean environment that enhances social and
economic growth. Some environmental policies from different countries are summarized
in Table 2, for example, regulations from SA, USA, and EU.

The design of a circular economy has three fundamental principles: to eliminate waste
and pollution, circulate products and materials at their highest value, and regenerate nature.
As such, the mining sector seeks many solutions to eliminate pollution through circulating
waste and byproducts from metallurgical processing, hoping to produce valuable products,
i.e., for construction. As much as the circular economy is considered for economic, envi-
ronmental, technological, and social improvements, this has yet to be fully realized by all
countries, especially emerging economies. (Figure 2 and Table 2).
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Table 2. Waste management regulations in different countries.

South Africa

National Water Act (no. 36 of 1998)

It gives guidelines for mine water management
to prevent pollution, water reclamation and
reuse, discharge, and treatment. (Department
of Water and Environmental Affairs, 2010).

National Environmental Management Act
(no. 107 of 1008)

It gives guidelines and boundaries for
sustainable development and highlights the
duty of care and mitigation strategies to
minimize environmental risks. It further states
the legal authority to enforce environmental
laws and prosecution/liability for the lack
thereof. (Department of Water and
Environmental Affairs, 2010).

Minerals Act (no. 50 of 1990)

It gives a broad framework for enforcing
environmental protection and management. It
also stresses the importance of environmental
rehabilitation.

Air Quality Act (no. 39 of 2004)

Specifies the need for controlling air emissions
of dust using green technologies and clean
production practices to protect humans and
the environment.

U.S.A. (Environmental Protection Agency,
2015)

Clean Air Act (1970)
It gives guidelines for airborne pollution,
which has the potential to harm humans and
the environment.

National Environmental Policy Act (1970)

Compels environmental impact assessments
(EIAs) for all economic activities that may pose
environmental hazards. Further states that
specifically, mining activities EIAs, need
federal approval.

Resource Conservation and Recovery Act

The framework of conserving natural resources
while reducing the generation of waste.
Furthermore, it talks about waste management
principles to protect the environment in
different categories.

Comprehensive Environmental Response,
Compensation and Liability Act (1980)

Guidelines on reporting chemical handling and
releasing hazardous substances to the
environment compel users to rehabilitate the
site where hazardous substances are disposed
of, including mining, milling, and
smelter waste.

European Union (European Commission,
2010 and 2015)

European commission on mining, metallurgical
and industrial processes

Water framework directive for the protection of
groundwater sources;
Environmental assessment directive;
Industrial emissions directive—focus on
remediation strategies for waste management
in various industries;
Developing a waste management plan for
minimization and recovery.
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Over recent years, the mining and metallurgy industry made strides toward an opera-
tional circular economy concept [14], defined as a way of thinking about the sustainable
economy [15]. Mining processing occurs outside the CE model; reprocessing metallurgical
waste to recover other minerals is referred to as primary extraction. This is particularly
strange, as the recycling of the materials, by design, is meant to occur within the CE cycle.
An overview of the Ellen MacArthur Foundation [16] illustrates in Figure 2, the material
flow, which shows the exclusion of the reprocessing operation in the CE cycle.

As such, there should be a way of re-zoning the reprocessing of waste as a focus on
industry economics. This suggestion is supported by Stahel [17], who describes a CE as
part of industrial strategies for waste prevention, resource efficiency, and labor. Stahel [17]
further advocates for selling or outsourcing instead of owning the generated waste as a
sustainable business model for a CE, which sees the business profiting by externalizing
risks and costs attached to waste.

The fundamental of the CE concept and its application to economic systems and
industrial processes has improved to incorporate different features and contributions from
a variety of concepts that share the same ideas as an integral part of the circular economy;
the concept of sustainability must be considered. Sustainability must have an element of the
transformation of human behavior that enhances living conditions, supporting their health
and security [18]. As cited earlier, the research by Ellen MacArthur Foundation [16,19] has
paved a pathway for collaborative efforts for business, academia, and policymakers.

3. Treatment Options Analysis

While mining is necessary and has many positive economic benefits, the vast amount
of mining and metallurgical sector processes are often accompanied by the generation of
large quantities of mine waste [20,21]. The mine waste can contain high levels of metallic
and metalloid contaminants that can be highly harmful or toxic to the environment, land,
and plants, including biodiversity [7,22,23]. In many parts of the world, including South
Africa, many environmental and health risk challenges for communities are directly linked
to mining waste practices and management strategies [20,24]. The significant steps of mine
processes, including the extraction of ore, refining, and processing of mineral resources,
will recover valuable minerals from mine ore and generate significant amounts of waste.
Typically consisting of overburden, waste rock, tailings, slags, dust, mine water, sludge,
and other waste materials [25]. Air pollution, for instance, due to dust emissions from the
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extraction and processing of ores, leads to the severity of greenhouse gas emissions, which
has a profound impact on acid rain effects and deforestation [26,27].

The large volumes of mining waste generated from mining processes cannot be out-
right discarded but must be strategically managed to meet the demands for increasingly
sustainable environmental practices and primarily for improved individual or community
well-being [28,29]. In some places, environmental hazards and damages to the surrounding
areas could be far more significant than the mining site due to various mining processes
and operations. Therefore, the environmental and safety standards of mining should
be continuously maintained [30–32]. Therefore, the effective treatment of mine waste in
mining processes is highly critical. In addition, the technological-based strategies and
management of mining waste should be targeted to the mitigation of environmental and
health-related challenges from these mining processes [7,33,34].

3.1. Reclamation

The contemporary and technologically advanced strategies in mining may result in
the recovery of various minerals from large volumes of waste generated [35,36]. At the
center of the problem, mining companies still need help with the best waste management
from various mining processes and operations. For instance, the detrimental effects from
tailings, open-pit mine wastewater, mineral processing wastewater, and wastewater from
various laundry activities, particularly in hazardous mining sites, also affect rivers or river
streams, soil, wildlife habitats, and the quality of life in the local communities living near
these mine sites [22,37].

Reclamation is a process of modifying or restoring the mined area post-mining opera-
tions. The environmental rehabilitation of the mining-affected sites should essentially form
part of economic and environmental standards. Environmental rehabilitation should be
able to restore altered soil properties or profiles in these mining sites, produce water quality
that meets human needs, and produce desired long-term land characteristics [38–40]. The
rehabilitation process includes the minimization of soil erosion, dust generation, water
pollution, and other various factors in these mine sites [21,41,42]. Contaminated land due to
accumulated heavy metal substances in reclaimed mining sites soil can enter the food chain
through crop plants. These can also accumulate in the human body through biomagnifica-
tion [43–45]. Therefore, contaminated land remains the biggest threat to human health and
ecosystems. Restoration of vegetation and reforestation applied in mine waste or low-grade
mine soil will mitigate environmental pollution in soil and preserve wildlife. However, the
reclamation application remains not fully appreciated or implemented globally in every
mining company or industry, especially in underdeveloped countries, because it is highly
resource-intensive. Realigning and implementing active mining laws and regulations
should be central to reclamation management and environmental rehabilitation.

For effective implementation of reclamation, a thorough assessment of soil structure,
quality, and soil mineral content quality and concentration of the levels of minerals in
the mine site is essential [46,47]. With the presence of metals in the soil and the acidic
nature of the mining site to be rehabilitated, one of the simple and cost-effective techniques
involves adjusting the soil contents by adding lime reagents or other contents with the
potential of neutralizing the acidity of the topsoil structure. The process becomes vital
in the altered soil characteristics to promote and enhance vegetation growth. The other
advantage is stabilizing soil materials and preventing surface water infiltration and soil
erosion in these mining sites [48,49]. In addition, agriculture mining technology is also
gaining heightened interest in mitigating the issue of mining waste minerals. This emerging
technology involves planting excessive amounts of hyperaccumulator plants. These plants
are capable and have the potential to extract metals from mineral waste soil by absorbing
and accumulating toxic heavy metal substances from the soil. The toxic metals in soil are of
great interest in environmental rehabilitation because they can enter the food chain and
ultimately accumulate in the human body [50,51].
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3.2. The Mine Wastewater and Treatment Options

The wastewater from mining or mineral processing activities is a very useful or
valuable resource for overcoming water shortages and demands from mining activities. The
nature of mine wastewater, particularly its quality and the level of pollutants, can be highly
variable due to various mining operations and practices adopted. The mining water source
can be highly contaminated due to byproducts, metalloids, metals, and other pollutants
from mining activities. The number of toxic contaminants may have various effects on the
environment and human beings [33,52,53]. Each wastewater source will have a different
level of the amounts of pollutants and nature of pollutants. A thorough understanding and
assessment of any water reuse or end-use forms the more significant part of the thorough
assessment of water quality analysis. If not treated, the mine wastewater pollutants
can end up in several large water bodies, such as dams, groundwater, rivers, or river
streams. They can even harm the environment and human beings in the nearby mining
environment [54,55]. The significant sources of mining water include mineral processing
water, alkaline water, acid rock or mine drainage, and residual waters. Statistically, the
mining water from mining activities accounts for the most significant proportion of mining
operations. In most instances, these may originate from open pit mine wastewater, mineral
processing wastewater, and wastewater from various laundry activities.

3.3. Different Treatment Options

To date, different treatment options for mining or metallurgical wastewater exist, and
the selection and use of a specific technology should consider many considerations. In
addition, a specific selection of the preferred water treatment technology strongly correlates
with its ultimate or intended end-use purpose [25,56,57]. Most importantly, the water
quality, costs, water flow or capacity, and ultimate water end-use must be considered when
selecting any preferred water treatment technology. Mine water treatment techniques and
technologies for mine wastewater can be classified as chemically, physically, biologically,
and physio-chemically and ecologically specific [58,59]. These water treatment methods
may also be classified as active, passive, or in-situ treatments based on a wide range of
specific applications, construction, and operational mechanisms.

The active treatment technologies for mine wastewater primarily depend on continu-
ous human intervention or interaction for their effectiveness and operational mechanisms.
For effective performance, these treatment technologies also require maintenance and
monitoring. The most common treatment technologies include neutralization, metal pre-
cipitation, membrane processes, removal of heavy metals, ion exchange, and biological
sulfate. By its design, each emerging technology is unique, including its application in
a specific type of application and performance in water treatment. In underdeveloped
communities, passive treatment technologies can be more valuable and cost-effective if
utilized adequately. They do not require continuous human interventions in operation or
maintenance and often require lower costs due to the gravity flow mechanism’s advantage
in water movement. Constructed wetlands, aerobic or anaerobic wetlands, anoxic or open
limestone drains, and reducing and alkalinity-producing systems are some of the technolo-
gies for passive treatments [60,61]. Most importantly, combined with existing or modern
predictive modeling tools are now one of the options in using these technologies for mine
wastewater; these technologies can significantly complement the analytical methods and
computation data analysis and minimize time factor analysis at the cost of accuracy.

3.4. Acid or Coal Mine Drainage Control and Treatment

Acid mine drainage (AMD) refers to the outflow of acidic water from coal or metal
mines. AMD is the most significant environmental problem in most active or abandoned
mine operations. It affects aquatic ecosystems when mine waste containing sulfate material,
such as pyrite or iron sulfide, is exposed to water and oxygen. A high-acidity solution is
produced in the presence of a high concentration of heavy metals and fine sediment or
precipitate [44,62,63]. However, acid mine drainage sources can also vary the color of the
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water stream due to mine-affected location and time factor, that is, orange or red-colored
water depending on the concentration of the metals in the water. The level of coal mine
drainage in water is directly linked to the presence of aluminum, iron, manganese, and
other pollutants in various concentrations. It may have different hardness levels, sulfates,
and silica [64,65].

The acid or coal mine drainage must be either cleaned or treated (prevent and re-
mediate) to remove the high concentration of metals using appropriate and cost-effective
treatment technology. Similarly, large-scale passive treatment, such as anoxic limestone
drains, constructed wetlands, anaerobic sulfate-reducing bioreactors, open limestone chan-
nels, or active treatments technologies of mine wastewater are commonly used to treat and
control metal-rich contaminants in acid or coal mine drainage. The direct treatment method
of mine water with the neutralization process, such as lime treatment, is one of the effective
options in adjusting and controlling the acidity of water. As such, the increase in the pH
of water results in the precipitation of the dissolved metals [66,67]. The abandoned mine
sites are also a significant source of AMD, and adding lime materials or waste lime in these
mines will no doubt be one of the effective strategies for dealing with AMD formation.
Alkaline materials are often used for importation, resulting in the prevention of AMD for-
mation [68]. Disposal of mine waste underwater, bacteria control, and relocation are some
treatment options for mitigating acid mine drainage in mining water [57,69]. Fast-tracking
cost-effective AMD treatment technologies, especially in underdeveloped countries, still
require urgent attention.

3.5. Tailings Disposal and Treatment Options

Reprocessing of minerals in tailings could offer various economic and environmental
benefits. Tailings typically contain many waste materials from the extraction of targeted
minerals, and more tailings are produced worldwide [70,71]. The characteristics of tailings
in terms of the level of contamination and the amounts of pollutants largely depend on the
type of processed ore and mining processes used. Tailings can contain a high concentration
of metallic elements, sulfides and oxides, carbonates, silicates, process fluids, and other
minerals [72]. Therefore, these toxic pollutants in mine-produced tailings are a serious
source of concern in mine waste due to the toxic effects that can be produced on the
environment and society. Following processing, tailings are either discharged on the
ground, pumped as slurry, thickened as a paste or for a greater density and transported to
storage facilities for deposition. In standard practices, tailings are stored in storage facilities,
such as tailing dams, underground, and rivers and, in some instances, dried before finally
being discharged [73,74]. In the past and to some degree today, rivers or oceans were
commonly used to dispose of mine waste tailings due to the absence or lack of enforcement
of stringent environmental mining laws and regulations in mining industries.

As described in Table 1, large volumes of mine waste are stored as wet tailings in mine
tailings storages or discharged into tailing dams. The advantage of this is that tailing dams
can be retreated or reprocessed to recover some of the minerals in them, and the reclaimed
water can be pumped to the plant environment for reuse purposes [75]. Although no single
or specific design for tailings could be universally adopted, each design should aim to
protect the environment, human health, and communities while being responsibly managed.
The processing of mine waste tailings from the plant environment is usually carried out
using thickeners and, in some instances, with the aid of specific polymer reagents [76].
As part of effective water management, the water recovered from the thickener through
overflowing channels is pumped back to the plant as reclaimed water. These various
filtration techniques are used to filtrate and retain solid materials, including horizontal belt
filters, vacuum disc filters, centrifuges, horizontal plate filters, and filter presses. These
techniques save space for the required storage facility, compared to storing a wet tailing
slurry after disposal [77].
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Backfilling technique is commonly used to dispose of mine tailings, reducing surface
environmental effects by storing it underground. With many tailings dam failures over the
past decades, it is one of the preferred methods, perhaps because it is more beneficial to
support the mine infrastructure. An alternative option includes dry stacking of a thickener
underflow tailing, which involves the transportation of tailings to the filtration plant to
perform the filtration process. The resulting filter cake is transported out of the filtration
plant for stacking [78]. Desulfurized tailings can be used in construction cement materials
or road construction materials, or even sustainable building products. The increased
application is gaining significance in various industries, where the metals in cobalt, nickel,
copper, manganese, and magnesium can be recycled or recovered from these tailings.
The remaining product can then have various applications in industries, including the
construction of eco-friendly building materials or as a cement substitute or replacement
product [70,79,80].

4. Products Recovery, Recycling, and Reuse Options
4.1. Construction Materials

Mining operations produce many solid byproducts, such as mine tailings (MTs),
which are the solid residues left over after valuable minerals have been extracted from
the ores. Many studies have focused on tailings as a better way to increase the utilization
of industrial byproducts to alleviate disposal issues, and some byproducts can be used
in construction [81–83]. Large amounts of mine tailings are produced and disposed of at
high monetary, environmental, and ecological costs. Furthermore, quarrying for natural
construction materials is costly and harmful to the environment; many areas lack natural
construction materials. The MTs present an opportunity to be explored while finding ways
to deal with the dilemma. The mine tailings can be used as substitute construction material
to recycle waste products, especially in hollow blocks, bricks production, paving stones,
and floor tiles. They can also be used in the production of roller compacted concrete (RCC),
cement mixtures, and paint production as a filler. Many studies have shown their potential
in cement and concrete mixtures [84–86]. Table 3 shows the results of the cementitious
characteristics from the recovered mine waste.

Table 3. Properties of mine waste recovered as construction material.

Recycled/ Concrete Compressive Flexural Tensile Mixing
Originality Recovered Porosity Density Strength Strength Strength Rate References

of Waste Material (%) (kg/m3) (Mpa) (Mpa) (Mpa) (%)

Gold mine building - - 36 - - 100% [87]
waste rock concrete

gravel - - 40 - - 100% [87]
cement - - 37.8 - - 100% [88]
concrete

Mine sand in 26.4–29.3 8.58–10.9 100% [89]
tailings cement

concrete

Tailings sand in 2243.53 approx. 40 approx. 4.7 20% [90]
(copper cement 2281.34 approx. 38 approx. 4.5 40%
mine) concrete 2306.54 approx. 36 approx. 4.4 60%

Tailings cement approx. 35.5 approx. 29.5 10% [91]
Phosphate cement - - 13.5 1.3 2.65 100% [92]
mine waste concrete 2360 29 4.9 2.6 100% [93]

rock
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These MTs are treated as wastes that require technologies for their disposal through
landfilling after reaching maximum capacity. When it reaches its maximum capacity, it
will require reclamation. The use of tailings as construction materials can be an option to
pursue to achieve the zero-waste strategy. The difficulties associated with tailings storage
are increasing. As technology advances, lower-grade ores can be mined, resulting in
larger volumes of waste that must be safely stored. Environmental regulations are also
evolving, imposing more stringent requirements on the mining industry, particularly in
tailings storage [7,94,95]. This puts additional strain on tailings facility operators, who are
responsible for tailings discharge and water management daily [96,97]. Nowadays, the
production of construction materials is the primary reclamation of mine waste and tailings.
Significant amounts of disposable or recyclable byproducts are generated by industrial
processes, posing waste management issues [98,99]. Tailings are also disposed of in large
quantities by mining and mineral processing operations on occasion. Their management
should be undertaken with the goal of producing new products while reducing the carbon
footprint on the environment. Mining tailings can be used for a variety of purposes,
including backfilling operations and improving the strength and durability of concrete.
Tailings can be classified into coarser and finer sizes due to the variation in grain fineness
in different mineral processing plants. For most mines, coarse tailings can be used as fine
aggregate in concrete, while fine tailings can be used to make bricks. Through the recycle,
reuse, and reduce strategy, tailings have many positive environmental impacts.

4.2. The Mine Tailing-Based Geopolymers

The use of mine tailings (MTs) as aggregates or precursors of alkali-activated materials
and geopolymers (GPs) is a recommendable approach. It allows for reducing MTs accumu-
lation in the environment and environmental damage. Furthermore, the reduction of the
carbon footprint related to the use of geopolymer technology and the ability to use other
technologically generated aluminosilicate wastes are considered advantages [53,100–102].
Considering the complex material composition of mine tailings, as well as the relatively
little knowledge of the features of tailings geo-polymerization and the influence of various
factors on the properties of MT-based geopolymers, there is now a need to generalize these
aspects and assess the prospects for potential applications. Binder pastes, mortars, and
concretes based on MTs can be used, as well as bricks, backfill materials, adsorbents, porous
materials, and other promising applications. Their inclusion in these products may influ-
ence production costs, making them more affordable. As a result, MT-based geopolymers
can be useful in the construction industry; however, characterization is required to define
the content of the MTs to decide on the appropriate applications [103–105].

Nonetheless, it is observed in Table 4 that the building bricks produced from various
mine wastes were improving their mechanical and physical properties with the increase in
firing temperatures. Noticeably, the results obtained from fired bricks are promising since
the increased temperatures influence the decrease in toxicity of the produced bricks [106]. In
theory, the toxicity should decrease, but no studies have measured the toxicity levels before
and after the firing process. This finding is a knowledge gap that needs urgent attention in
research. Furthermore, the firing process of the bricks requires high temperatures, which
results in an energy-intensive process; this is an area where researchers need to establish if
the benefit of the process outweighs the energy utilization.
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Table 4. Characteristics of bricks from mine waste (adapted from Ally et al. [106]).

Compressive Flexural Shrinkage Porosity Water Density
Waste Drying/Firing Strength Strength Absorption Reference
Type Conditions (Mpa) (Mpa) (%) (%) (%) (g/cm3)

Fe tailings 12 h air drying 6 to 27 - 0.9–1.2 27 to 34 15.5–17.5 approx. [107]
>80% Firing at 900 ◦C, 2

950 ◦C and
1000 ◦C for 2 h

at a rate of 120
◦C/h

Phosphate 24 h air drying - 17–36 approx. 7 to 22 3 to 17 approx. [108]
mining Firing at 900 ◦C, 3.4 2.6
waste 1000 ◦C and

1100 ◦C for 2 h

Mine 24 h air drying - 3.5–11.8 1 to 8 22–42 12 to 26 approx. [109]
tailings Firing at 900 ◦C, 1.9

1000 ◦C and
1100 ◦C for 5 h

at a rate of 48 ◦C/h

Phosphate 24 h air drying - 3.9–13.4 5.2–7.5 9 to 13 12.5–17.2 approx. [110]
sludge Firing at 950 ◦C 1.3
>99% 1000 ◦C, and

1100 ◦C for 3 h
at rate of
120 ◦C/h

Coal dust/ Firing from 8.5–17.5 - - - 14–18 approx. [111]
powder 950 ◦C to 1.74

1100 ◦C for 2 to
4 h at a rate
of 300 ◦C/h

4.3. Backfilling Mine Cavities

Tailings and waste rocks from mines could also be used in a mined backfill area;
both open pit and underground mines can do so. Tailings can be buried in previously
excavated voids. Tailings are usually combined with a binder, usually cement, and pumped
underground to fill voids and support an underground mine [75,112,113]. The cemented
backfill acts as a support, preventing problems with heading collapse and subsidence. On
the surface, backfill tailings are typically mixed with cement before being piped down a
decline, shaft, or surface borehole(s) into the mine. Backfilling is one of the zero-impact
strategies for making use of tailings and waste rocks. It has the advantage of reducing land
usage while also reducing environmental pollution [75,77,112,113]. With the advancement
of backfilling technology, more and more industrial solid waste, such as tailings, waste rock,
and smelter waste, could be used as backfill materials. It is critical for a mine transitioning
from open-pit to underground to pay close attention to backfilling technology for solid
waste disposal. In an underground mine, backfilling the mined-out area could prevent
ground subsidence effectively and reduce the destruction of land [114,115]. When the filling
method is used in underground mining, the solid waste discharge could be drastically
reduced. Backfilling the opencast in a mine transitioning from open-pit to underground
mining can improve stress distribution on the opencast side while also preventing rainwater
from entering the underground mine. Backfilling the opencast in a mine transitioning from
open-pit to underground mining can improve stress distribution while also preventing
rainwater from entering the underground mine. Backfilling should be completed to prevent
contamination of groundwater. Prior to backfilling, an environmental assessment may be
recommended to ensure the option’s long-term viability, in comparison to other tailings
management options. Because tailings are fine-grained, they can fill the gaps between
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waste rocks, increasing the amount of solid waste used. Meanwhile, it may increase the
density of backfill materials while decreasing their coefficient of permeability.

Backfill has the benefit of providing stability or support to the mine, lowering the
risk of rock bursts, improving the ventilation circuit in the mine, and preventing roof falls
caused by blasting. Furthermore, the binders help to reduce groundwater contamination.
Backfilling, however, is expensive if binders are used. When using or performing backfilling,
tailings must usually be highly dewatered to a paste consistency. Tailings effluent could
seep into groundwater, potentially contaminating it.

4.4. Mining Rock Waste

Mining waste, such as coal mine waste rock used in road embankments, has produced
acceptable granulometry properties. Amrani et al. [116] found that coal mine waste rocks
possess similar quality parameters, such as hardness, compared to gravel. This material is
suitable for the construction of pavements and compatible with road works guide and may
also be used as foundation material. Furthermore, Amrani et al. [116] tested phosphate
mine waste rock and observed that it might be used as foundation material since it achieved
more than 95% dry density, as stated in the road works guide (Table 5). Even though the
characteristics of the mining waste, such as grading, hardness, and wear resistance, are
comparable to that of road materials, they need to be used with much caution because there
is a possibility of leaching, thus causing soil contamination.

Table 5. Quality results of the mine waste used in road construction.

Waste CBR Standard Compaction Modified Compaction

Characteristic CBR IBI Wopt Pdopt Wopt Pdopt Health Risks/
4i% % % (kN/m3) % (kN/m3) Hazards

Phosphate mine waste rock 13 - 12.9–14.60 17.9 - - Possibility of
leaching

Coal mine waste rock 9 29 11.2 19 10.11 20.4 Possibility of
leaching

CBR—California bearing ratio used as a measure of strength in the subgrade of roads or paving.

5. Health Implications in the Recycled Construction Materials from Mine Waste

As much as the environmental impacts associated with mine waste are significantly
reduced with recycling efforts to make new construction materials, the human health of the
end users of these materials should also be prioritized. The human health threats could be
initiated by air inhalation or ingestion from leachate and dust that can be exacerbated by the
mine waste recycled construction material exposure to different weather conditions [117].
Cohen Hubal et al. [118] raised concern with children due to the increased possibility of
exposure, thus increasing the chances of ingestion. Some researchers reported possible
health effects in structures built with construction material recycled from metallurgical
waste [119,120], such as the inhalation of dust. Table 6 demonstrates the correlation coef-
ficients for the concentration of selected elements from recycled mine waste bricks. The
Hg element showed the highest rho of 0.617 in floor samples which is a health concern.
McEwen et al. [120] assert that researchers in this field need to observe indoor quality and
exposure levels and propose mitigation solutions to reduce the exposure in households.

Furthermore, according to the risk assessment model employed in this investigation,
Table 7 indicates that the proportion of homes with reported amounts of Hg, As, or Pb
exceeded a health benchmark. Even though the study focused on children, it still calls
for concern about where the mine waste construction material is used. Health and risk
assessments must be carried out on all materials proposed to be reused in households.



Sustainability 2023, 15, 2518 13 of 21

Table 6. Rank correlation coefficients (rho) for elements’ concentrations in mine waste bricks.

Metal Dust on Bricks Dust on the Floor Surface Dust

n 42 48 41
As 0.572 0.298 0.308
Ag 0.528 0.17 0.3
Cu 0.46 0.161 0.046
Hg 0.617 0.453 0.636
Pb 0.264 0.082 0.098
Zn 0.133 0.079 0.05

Table 7. Toxicological reported values for concerning metals (Adapted from McEwen [120]).

Element RfD Major Health Effect Other Health Concerns References

As 0.3 Vascular complications Kidney disease, gastrointestinal, neurological [121]
Hg 0.3 Autoimmune Liver, hypertension, gastrointestinal, neurological [122]
Pb 0.6 Decrease in IQ Heart disease, gastrointestinal, neurological [123]

6. Future Possibilities Benefiting the Circular Economy within the Mining Sector

There is a persistent environmental concern with enormous amounts of solid waste
products generated by mining and metallurgical operations. A proposal fit for a circular
economy strategy, considering the lessened impact on the environment, could be recycling
and reuse of these solid waste products instead of using natural raw materials which are
already at depletion levels. For instance, the volarization of metallurgical waste slurry as
construction material decreases the demand for the natural raw material, whilst, offsetting
the price of building materials. Numerous researchers have highlighted a noticeable price
upward trend for sand because of the overuse thus depletion of natural sand and gravel
which are the essential materials in the creation of building concrete [124,125].

As part of the recycling strategies, the metallurgical waste, whether hazardous or
non-hazardous, can go through an immobilization process. In a case where the waste is
non-hazardous, it may be mixed with other solid waste which has binding properties for the
prevention of pollutants leaching. However, it is important to note that hazard identification
and health studies on toxicity levels are needed to confirm the health impact of these
recovery construction materials. Upon completion of the process, different construction
materials may be produced, such as concrete or bricks. In addition, it may be important for
each country to check its construction products regulations, if it includes a provision on
the sustainable use of natural resources, where applicable, can include the use of recycled
materials, as suggested in this paper.

Moreover, there is a possibility to further extend the circular economy drive through
the metal recovery of some valuable metals, such as iron (Fe), from the mine solid waste, as
proposed in Figure 3. It is important to note that, following such a proposal, there is a need
for an extensive cost factor analysis to ensure that the process indeed fits within the scope
of the circular economy.

Another recovery process could be from the drum separator through the improvement
of the leaching technology which may result in titanium dioxide (TiO2) and/or aluminum
(Al) recovery, depending on the metal content of the metallurgical waste (Figure 4). The
process could be reasonably cost-friendly due to a less energy-demanding process. Just
like any other process, a proper design and optimization study is required to ensure re-
covery efficiencies offset the disposal costs. Moreover, additional costs for reagents and
solvents need to be considered mainly for the leaching process. The proposed processes in
Figures 3 and 4 uses a hybrid approach of physical and chemical metallurgy. With a chemi-
cal approach, cost-effectiveness and eco-efficiencies is enhanced. Table 8 shows the advan-
tages and disadvantages of the existing techniques of metal recovery from metallurgical
waste streams.
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Finally, implementing the circular economy concept to mining waste presents a signifi-
cant opportunity to reduce liability while increasing mining waste value. However, there
are still many challenges, which include current regulatory policies and public acceptance
of these mining waste-derived products. Some solutions to these challenges are mainly
related to socioeconomic aspects, engineering, environmental, and metallurgical processes,
and mining laws and policies. Through circular economy, the mining industry and regula-
tors will be able to carry out full-scale projects, including final residual wastes, utilizing
natural cycles and transformations of metals in the environment, and most importantly,
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creating resilience to resource cycles, for example, better responses to changes in the global
supply and demand for various resources [7].

Table 8. A glance at the successes and drawbacks of the process techniques for metal recovery.

Technical Process
Technique

Metal Recovered by
the Process

Advantages of the
Process Technique

Drawbacks of the
Process Technique References

Hydrometallurgy Al, Fe, Ti, cryolite Novel technique for the
recovery of cryolite

Other elements in the
waste stream
are inhibited

[126,127]

Hydrometallurgy Gallium Efficient Ga by resin

Other elements and
metals in the waste

stream are
not considered

[128]

Combined strategy Al, Fe, Ti Fe and Na2SO4
recovered

Other elements are not
considered in

the process
[129]

Combined strategy Ti, and Fe
Economical and

precipitation process
is excellent

Other elements are not
considered due to
pyrometallurgy
dominance in

the process

[130]

Mineral beneficiation -
Proved to be carbon

efficient and
economical

Concentrate magnetic
and non-magnetic

fraction
[131]

Current proposal TiO2, Fe Physical separation Design and start-up Proposal in this paper

(Hybrid approach) Hydrometallurgy
Chemical metallurgy may be expensive

The fast-tracking of cost-effective AMD treatment technologies remains an urgent
priority, particularly in developing countries. Furthermore, the level and extent of AMD
treatment technology’s optimal performance, availability, and maturity play a significant
role in AMD treatment decision-making. Other factors to consider when selecting an
AMD treatment technology include the acid mine water quality source, the concentration
amounts of contaminants in water, water chemistry, water volume, and quantity, and
geological factors [59,132,133]. Because the specific technology for the intended application
will have financial implications, the fitness criteria and scope for the purpose must be
carefully chosen. In practice, short- and long-term financial viability should be considered
to achieve successful and feasible AMD treatment decisions. As a result, cost-effective AMD
treatment in terms of maintenance and operational costs should also be considered [133].

Moreover, the circular economy may assist in social security at a specific level that
satisfies the minimum human needs for health, security, housing, information, and social
protection, including employment [134]. There is a need for research in these areas for the
CE model to be completed and implemented. As illustrated by Markevych et al. [135] in
Figure 5, all components of economic security need to be considered for the CE model
to align with economic security. All green blocks in Figure 5 demonstrate how the recy-
cling of mine waste contributes to the CE model, and all red blocks highlight a need for
further research to realize the end goal of economic security. The amber colors represent
the areas partly tackled by the recycling/recovery activities of metallurgical waste into
construction materials.
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7. Conclusions

Even though it has been determined by Markevych et al. [135] that the circular econ-
omy concept combines the peculiarities of various system-forming economic security
components, the paper focused on the environmental and industrial facets. This paper
discussed different options available for possible ways to improve the reuse and recovery
of metallurgical waste using an inclusive circular economy model. More research is still
needed to merge metallurgical waste onto the ecological system, including social and
food security. As part of cost-cutting measures, mining sites should design a systematic
control of metallurgical waste through hydro-technical systems, and then recycling, and
reprocessing initiatives. Without a doubt, the reuse of metallurgical waste in the produc-
tion of various building materials is the most notable measure to keep the environment
from being adversely impacted. Moreover, there is an opportunity of offsetting the cost of
metallurgical waste storing and/or transporting to disposal sites, by reusing the waste to
manufacture building materials. However, as much as manufacturing building materials
from metallurgical waste is meaningful, these materials are potentially harmful to human
health and the environment. As such, the manufacturing process and practical application
of these building materials must be under stringent ecological surveillance, and more
studies on the toxicity levels are needed. Furthermore, a study on the perspectives of the
end users of these recovery materials will be of interest to the researchers in the field. For
these reasons, new technological strategies need to be developed to improve the quality of
the by-products, such as building materials, to make them more attractive to consumers,
which in turn will increase their commercialization. Lastly, whilst the mining industry
is subjected to strict regulations, which include social and environmental consciousness,
the issues of sustainable development and the incorporation of the CE model within the
business are critical.
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