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Abstract: As energy plays a fundamental role in our modern life and most of a building’s energy is
used for air conditioning, understanding the sustainable regulation theory of central air condition-
ing remains a significant scientific issue. In view of three shortcomings of existing energy-saving
regulation methods of central air conditioning: (1) few studies on low-latency, high-reliability, and
safer energy-saving control operation modes, (2) lack of consideration for human comfort, and
(3) insufficient analysis of the comprehensive impact of the human–machine–environment, this paper
proposes an energy-saving control framework of central air conditioning based on cloud–edge–device
architecture. The framework establishes a prediction model of human comfort based on recurrent neu-
ral network. An intelligent energy-saving control strategy is proposed to ensure indoor personnel’s
thermal comfort, considering the human–machine–environment factors. This study provides a basis
for better understanding the sustainable control theory of building central air conditioning. Finally,
the experiment proves that the proposed method can effectively reduce the energy consumption of
central air conditioning. Compared with traditional regulation approaches, the proposed real-time
control strategy can save up to 91% of energy consumption, depending on the environment, and
advance control strategies can save an average of 4%.

Keywords: central air conditioning; sustainability; energy-saving regulation; cloud–edge–device;
thermal comfort; control strategy

1. Introduction

As technology progresses, the expectations of developing green energy will increase
with the growing global competition. However, the carbon dioxide generated through
power generation still accounts for about one third of the worldwide emissions [1]. Ac-
cording to statistics, the energy consumption of commercial buildings accounts for about
40% of global energy consumption [2,3], and most of the energy consumption comes
from heating, ventilation, and air-conditioning (HVAC) systems [4,5]. Therefore, the
energy-saving optimization of the building’s central air conditioning plays a pivotal role in
sustainable development.

Much energy-saving optimization research of the building central air conditioning has
been conducted in the area of optimization algorithms, as well as advance control strategies.
For example, Shi et al. established dynamic programming algorithms based on the partial
load characteristics of chillers to solve the optimal load distribution of chillers [6]. Huang
et al. proposed to optimize the number of chillers in operation by adjusting the cooling
load nodes and condensating set temperature [7]. Ma analyzed and compared various
energy-saving strategies of chillers and found that the parallel operation strategy of the
same type of chiller has the highest energy-saving benefit [8]. Weng et al. described a unit
optimization and simulation algorithm by studying the energy consumption of different
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unit configuration schemes under the same cooling demand [9]. Relying on the cooling
load estimation algorithm, Beghi et al. revealed a multi-unit energy-saving optimization
method [10]. Ma et al. considered the power consumption of the refrigeration unit and the
cooling tower. They used the performance map and exhaustive search (PMES) method to
solve the cooling water temperature with the minimum power consumption [11]. Yu and
Chan proposed a load-based speed control strategy to control the cooling water flow and
cooling tower fan speed, which can reduce the annual power consumption of the HVAC
system [12]. Yu et al. provided a graded number of air-conditioning control strategies to
improve the stability of indoor temperature and humidity [13]. Based on the government’s
electricity consumption data platform, Zhou et al. analyzed building energy consumption
levels using data-mining methods and provided suggestions for energy conservation [14].
However, implementation is complex, and users will not cooperate. Lei et al. used rough
set theory to simplify the data of 100 civil public buildings. A neural network scheme is
presented to predict building energy consumption [15].

However, the above research on optimization algorithms and control strategies
has limitations.

First limitation. Few investigations have been carried out on the building’s cen-
tral air-conditioning operation framework for the low-latency, high-reliability, and safer
energy-saving regulations. For instance, Lee et al. constructed an artificial intelligence
implementation framework for building energy conservation and realized a three-level
control of equipment, facilities, and buildings [16]. However, this architecture is deployed
locally in the building, which is costly and has poor reusability. Lee et al. used a combined
algorithm to control the operation of air conditioners in the cloud, achieving higher energy
efficiency [17]. However, the implementation is more complicated, and the experimen-
tal object is a household split air conditioning. The advantages of cloud–edge–device
collaboration technology have been widely certified, especially in terms of low latency,
high reliability, and security [18–20]. For example, Wen et al. used cloud–edge–device
collaboration technology to effectively alleviate the decision-making pressure of single
cloud computing or edge computing and improve the architecture’s real-time response
capability, operational stability, and economy [21]. Cloud computing can provide more
efficient computing, and edge computing can offer a low delay. Only when cloud edge
and end cooperate can they maximize the value of cloud and edge computing. Huang
et al. used the cloud edge collaborative process monitoring method to train the model and
perform fault detection at the edge layer in the cloud [22].

Second limitation. Previous research ignores human comfort. Central air conditioning
serves humans, but excessive energy-saving may adversely affect the indoor thermal com-
fort of the human body. Therefore, the control strategy of the central air conditioning needs
to ensure the thermal comfort of the indoor human body. One of the classic prediction
methods of human thermal comfort is the thermodynamic principle, such as the predicted
mean vote (PMV) model proposed by Fanger [23]. The main influencing variables of the
PMV index are indoor temperature, indoor relative humidity, air velocity, clothing heat
insulation rate, human metabolic rate, and radiation temperature. Fanger further improved
the PMV model to estimate the average comfort level of all building occupants [24]. More-
over, Taki verified that the PMV model could accurately predict the thermal comfort of
the environment [25]. However, the solution process of PMV is nonlinear, which can be
improved by the neural network algorithm for its significant nonlinear approximation
ability. A neural network is a neuron-based machine learning algorithm that learns the
relationship between input (i.e., operating status, real-time environmental information)
and output (i.e., comfort). If the operating status and real-time environmental information
of the air conditioning are specified, the trained neural network model can predict the
comfort level [26].

Third limitation. Insufficient analysis of the comprehensive impact of the human–
machine–environment factors on energy-saving control strategies. A stable power en-
vironment provides a guarantee for social power consumption. Using a unified power
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quality conditioner (UPQC) in a modern power environment, combined with distributed
or artificial neural network technology, can effectively improve power quality [27,28]. Few
approaches fully consider the comprehensive impact of the location of the building, room
usage, number of people in the room, and control objects on energy-saving strategies. For
example, the energy-saving effect of a similar control strategy is different for the same cen-
tral air conditioning if the geographical location of the building is different [29]. In addition,
building orientation, area of the room, building structure materials and colors, etc., would
all affect energy consumption [30]. Khan et al. evaluated the energy-saving performance of
the integrated use of phase change materials (PCM) in building envelopes and concluded
that it is economically feasible to implement PCM in building envelope structures in some
areas [31]. For instance, Konstantinidou et al. studied the energy-saving optimization of
building exterior wall structures based on phase change materials and optimized the indoor
cooling demand and comfort time for typical office spaces [32]. Farhan found that the
color of the roof of the building will impact energy consumption [33]. Moreover, Ma et al.
found that the energy consumption of hospital buildings is much higher than that of office
buildings and school buildings [34], which means the flow of people in the building will
also affect energy consumption. In summary, the optimal control of central air conditioning
that considers the comprehensive impact of man–machine–environment factors is much
more consistent with reality [35,36].

To cater to these limitations, this paper proposes an energy-saving and control frame-
work for central air conditioning based on cloud–edge–device architecture. This framework
establishes a neural network-based calculation and prediction model of indoor comfort. In
addition, according to the operating state, the indoor comfort state index, and the build-
ing’s internal cooling load demand, an optimized energy-saving control scheme to ensure
indoor comfort is designed. Finally, to ensure indoor comfort, this paper can reduce the
energy consumption of building central air conditioning to the greatest extent through the
implementation of different energy-saving control strategies.

2. Energy-Saving and Control Framework of the Central Air Conditioning Based on
Cloud–Edge–Device Architecture

The operation mode based on the cloud–edge–device architecture has a character of
low latency, high reliability and security, which is suitable for the energy-saving abilities of
the central air conditioning that requires high real-time computing and a short cycle. For
example, in the architecture, functions of the network forwarding, storage, computing, and
intelligent data analysis are deployed at the edge layer to effectively reduce response delay,
cloud pressure, and bandwidth costs. Moreover, the architecture can provide cloud services
such as network-wide scheduling and computing power distribution. The proposed energy-
saving and control framework is shown in Figure 1, which includes the physical layer, the
terminal data perception layer, the terminal intelligent control layer, the edge device layer,
and the twin layer of the virtual cloud space. The framework provides an operation mode
based on edge cloud computing, which integrates cloud computing technology and edge
computing capabilities. Moreover, the framework represents a flexible cloud computing
platform on edge infrastructure to form a cloud–edge–device collaboration.

(1) Physical layer

Central air conditioning is a strongly coupled system composed of units, operation
environment, buildings, personnel, etc. For example, adjusting cooling water flow or
cooling tower power has knock-on effects on the operating power of the chiller. In addition,
the indoor and outdoor environments, room orientation, and number of people have an
impact on energy-saving regulation strategies. Therefore, the energy-saving optimization
analysis should fully consider these influencing factors, including not only the central air
conditioning itself but also the construction where the central air conditioning is installed,
environmental factors, and the people served by the air conditioning. Among them, the
central air conditioning includes intercalated sub-components such as the refrigeration
host, cooling tower, cooling water circulation pipeline, cooling water pump, chilled water
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pump, chilled water circulation pipeline, terminal device, etc. Environment refers to factors
that have a significant impact on the temperature and humidity of a building, such as
outdoor temperature, relative humidity, and wind speed. The building itself also affects
the energy-saving control of the air conditioning through factors such as the height of the
floor, the area, and the orientation of the room. Personnel is the service object; therefore,
the purpose of the energy-saving regulation is to reduce system energy consumption on
the premise of ensuring the thermal comfort of each person.
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(2) Terminal data awareness layer

The diversity and integrity of terminal data collection are the premises to ensure
the accuracy of energy-saving optimization and control strategies. The terminal data
perception layer is used to collect the operation data of the central air conditioning, indoor
and outdoor environmental data, building information, and people flow data. For these
multi-source heterogeneous state data, the terminal data awareness layer designs the
corresponding sub-modules of the terminal data perception layer based on multi-protocol
fusion technologies such as MODBUS, 485, ZigBee, WIFI, 4G, and 5G. It mainly includes an
indoor temperature and humidity collection module, operation data collection module for
the air-conditioning host, cooling tower operation data collection module, cooling water
pump and freezing water pump operation data collection module, terminal equipment
operation data collection module, outdoor environment real-time information collection
module and building flow collection module, etc.
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(3) Terminal intelligent control layer

The terminal intelligent control layer realizes virtual control and energy-saving opti-
mization through the online and real-time regulation of the air-conditioning host, cooling
water pump, chilled water pump, cooling tower, and terminal equipment in the physical
layer. The control layer is mainly composed of control strategy, control equipment, control
method and control system. Among them, the control strategy includes the real-time control
strategy and the advance control strategy (see Section 4.2 for details). The real-time control
strategy refers to the control system based on the state data from the perception layer,
which calculates whether the current indoor human comfort is within the comfort range. If
it exceeds the rated range, the power that needs to be adjusted for each sub-component is
calculated, and the power of the central air conditioning is regulated. In contrast, as for the
advance control strategy, the control system regulates the terminal fan in the designated
room in advance according to the use time and the number of users of the room, including
the time for the air conditioning to be turned on in advance, the set temperature and wind
speed, etc. In addition, the advance control strategy can avoid energy waste during the
non-use period and can ensure the appropriate range of human comfort in the room within
the specified time.

(4) Edge device layer

The edge device layer is composed of indoor and outdoor edge equipment deployed.
It can provide basic services for the terminal, such as querying historical data of local
equipment operations and pre-processing data uploaded by the cloud. First of all, the edge
device layer filters and integrates data from the air conditioning, environment, building
and human body, which are collected by the terminal data perception layer. Then, the
processed data is uploaded to the twin database of the cloud server to achieve local storage
of historical data. At the same time, the equipment layer receives control strategies sent
by the cloud layer, which are then decomposed into adjustment instructions, and finally
transmitted into the control system of the terminal intelligent control layer.

(5) The twin layer of the cloud virtual space

The twin layer refers to the virtual object corresponding to the entire process of the
operation of the air conditioning in the physical layer, including twin data, twin models
and optimization engines. Among them, twin data comes from the terminal data awareness
layer l, which can ensure the high fidelity of the twin model. Twin models not only
include three-dimensional structure models of the central air conditioning, but also include
process models, simulation optimization models and mechanism models. These models
are consistent with the physical entity in the geometric structure, status, behaviors, and
functions—for example, the thermal comfort prediction model and central air-conditioning
energy-saving optimization control strategy model. In addition, the twin layer has the role
of data center and business center and can perform model correction, model fusion, and
environmental configuration.

These layers have interacted through functional interfaces. For example, the versatile
and heterogeneous data collected by the terminal data perception layer is transmitted to the
edge device. After the data is filtered by the edge device layer, it is uploaded to the cloud
server. On the other hand, the data can be preserved in the local area to effectively reduce
the pressure on the cloud server, such as the querying function of the historical operation.
The cloud server predicts changes in the comfort of indoor humans by calculating the
thermal comfort and formulating a control strategy, which will be sent to the edge device
layer by the cloud server. The control strategy is then decomposed into the adjustment
instruction. The terminal intelligent control layer receives the adjustment instruction issued
by the edge device layer to the specified central air-conditioning equipment.

It can be seen that the energy-saving framework has achieved a closed loop of data col-
lection, data processing, data transmission, intelligent energy-saving optimization, and feed-
back control. In the end, the framework has the potential to guarantee the smallest energy
consumption of the building’s central air conditioning in the context of human comfort.
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3. Thermal Comfort Prediction Model and Energy-Saving Optimization
Control Strategy

Thermal comfort prediction models and reasonable control strategies are fundamental
to the energy-saving optimization regulation of central air conditioning. The comfort state
index (CSI) is used to quantize thermal comfort, which is described in detail in Section 4.1.
After obtaining the CSI value, the system formulates the corresponding control strategy of
energy-saving optimization. Specifically, when the CSI value is less than 0, which means
discomfort with cold, heating is required in the indoor environment. When the CSI is 0, the
current indoor environment is comfortable. The current state is hot and uncomfortable if
the CSI is greater than 0, indicating that the indoor environment has a cooling demand. It
is necessary to increase the power of the central air conditioning.

The process of thermal comfort prediction and the energy-saving control strategy are de-
picted in Figure 2, including the real-time control strategy and the advance control strategy.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 20 
 

It can be seen that the energy-saving framework has achieved a closed loop of data 
collection, data processing, data transmission, intelligent energy-saving optimization, and 
feedback control. In the end, the framework has the potential to guarantee the smallest 
energy consumption of the building’s central air conditioning in the context of human 
comfort. 

3. Thermal Comfort Prediction Model and Energy-Saving Optimization Control Strat-
egy 

Thermal comfort prediction models and reasonable control strategies are fundamen-
tal to the energy-saving optimization regulation of central air conditioning. The comfort 
state index (CSI) is used to quantize thermal comfort, which is described in detail in Sec-
tion 4.1. After obtaining the CSI value, the system formulates the corresponding control 
strategy of energy-saving optimization. Specifically, when the CSI value is less than 0, 
which means discomfort with cold, heating is required in the indoor environment. When 
the CSI is 0, the current indoor environment is comfortable. The current state is hot and 
uncomfortable if the CSI is greater than 0, indicating that the indoor environment has a 
cooling demand. It is necessary to increase the power of the central air conditioning.  

The process of thermal comfort prediction and the energy-saving control strategy are 
depicted in Figure 2, including the real-time control strategy and the advance control strat-
egy. 

 
Figure 2. Process of the thermal comfort prediction and energy-saving control strategy. 

(1). Real-time control strategy. First, the CSI of indoor occupants is calculated 
through the thermal comfort prediction model based on the collected indoor and outdoor 
environmental information and personnel information. Then, the energy-saving optimi-
zation strategy of the cloud server is used to specify the optimal power adjustment strat-
egy according to the CSI and the real-time operating parameters of the equipment. Then, 
the adjustment strategy is sent to the terminal intelligent control device through the edge 
device layer. Finally, corresponding adjustments are executed relying on the received 
power adjustment instructions. 

Figure 2. Process of the thermal comfort prediction and energy-saving control strategy.

(1) Real-time control strategy. First, the CSI of indoor occupants is calculated through
the thermal comfort prediction model based on the collected indoor and outdoor envi-
ronmental information and personnel information. Then, the energy-saving optimization
strategy of the cloud server is used to specify the optimal power adjustment strategy
according to the CSI and the real-time operating parameters of the equipment. Then, the
adjustment strategy is sent to the terminal intelligent control device through the edge
device layer. Finally, corresponding adjustments are executed relying on the received
power adjustment instructions.
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(2) Advance control strategy. The system first reads the room usage schedule data that
the building administrator synchronizes to the twin database. Then, the air conditioning is
turned on in advance before the use time specified in the schedule to ensure the comfort
of the designated room during the use time period. In the same way, the air conditioning
is adjusted and shut down in advance before the end-of-use time to save as much energy
as possible.

In the energy-saving framework established in Section 3, the above steps are peri-
odically executed to keep the energy consumption of the system at the lowest level and
maintain the environmental comfort in the room within the expected range.

3.1. Thermal Comfort Prediction Model of the Indoor Environment

The thermal comfort prediction model of the indoor environment is indispensable to
the energy-saving strategy, which is reflected by the CSI. The accuracy of the CSI prediction
is decided by the predicted mean vote (PMV), representing the hot and cold sensation of
most people in the same environment, as shown in Equation (1) [19].

PMV = [0.303× `−0.036M + 0.028]×
{
(M−W)− 3.05× 10−3×

[5733− 6.99× (M−W)− Pa]− 0.42× [(M−W)− 58.15]−
1.7× 10−5 ×M× (5867− Pa)− 0.0014×M× (34− Ta)−
3.96× 10−8 × fcl × [(Tcl + 273)4 − (Tr + 273)4]− fcl × hc × (Tcl − Ta)

} (1)

In Equation (1), M refers to the metabolic rate of the human body, and the unit is W/s.
W represents the power of the human body, and the unit is W/s. Pa stands for indoor air
water vapor pressure, the unit of which is Pa. Ta represents the indoor air temperature, Tcl
represents the average radiation temperature of the clothing surface, and Tr is the average
indoor radiation temperature, and their units are ◦C. fcl stands for the ratio of the covered
surface area of the human body to the exposed surface area of the human body. hc describes
the convective heat transfer coefficient, and the unit is W/s*m2* ◦C.

According to the analysis of the influencing factors of indoor comfort, variables that
have a strong impact on thermal comfort are the environmental temperature and humidity,
and the indoor personnel themselves. However, since the real-time data collected by the
terminal data perception layer has a fixed interval time series, the model of prediction must
have a strong long-term series ability to predict. This paper adopts the long short-term
memory (LSTM) model to realize thermal comfort prediction, because it is able to preserve
the memory of previous inputs and is considered effective for time series prediction [37]. In
addition, LSTM is an optimization of recurrent neural network (RNN). A “gate” structure
in the LSTM on the basis of RNN is designed to solve the long-term dependency problem,
as well as the gradient disappearance or explosion problem in RNN.

Figure 3 exhibits the structure of LSTM. Ct−1 stands for the state of the neuron at
time t − 1, Ct refers to the state of the current neuron, ht−1 represents the output value
at time t − 1, Xt is the input at time t, and ht is the output at time t. It can be seen from
Figure 3 that there are three control gates in the LSTM neural unit, namely the forgetting
gate ft, the input gate it and the output gate Ot. The useless information learned at the
previous moment according to ht−1 and Xt is removed by the forget gate, so that LSTM
can memorize important information for a long time. The calculation of the forget gate ft is
revealed in Equation (2) [38], where σ(x) describes the activation function, ω refers to the
weight, and b represents the bias. The input gate is used to judge the feature of the input
information at time t, which is used to update the neuron state. The output gate is used by
the neuron to calculate the output value at the current moment.

ft = σ(ω·[ht−1, xt] + b) (2)
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According to the above analysis, the LSTM model can transmit relevant feature infor-
mation along the long-term sequence for prediction, thereby overcoming the influence of
RNN’s short-term memory, and will lead to useful information being ignored. This mecha-
nism is crucial for improving prediction accuracy. As indoor thermal comfort changes with
alterations in environment and personnel, this paper uses an LSTM recurrent neural net-
work to build a prediction model for indoor environmental thermal comfort, as illustrated
in Figure 4.
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Figure 4. Prediction model of indoor thermal comfort.

The network architecture of the prediction model in Figure 4 includes an input layer,
some hidden layers, and an output layer. The number of neurons in the input layer and
output layer is six and one, respectively. In the input layer, the input parameters of the
model are indoor temperature, indoor relative humidity, indoor traffic flow, outdoor tem-
perature, outdoor relative humidity, and wind speed. Among them, the indoor temperature
and humidity data is the average temperature and humidity in the room collected by the
terminal data perception layer. The indoor flow of people is collected by the people flow
collection module deployed in the room. The outdoor real-time environmental information
collection module collects outside. The increase in the number of LSTM layers will bring
about an exponential increase in time overhead and memory overhead. At the same time,
when the number of LSTM layers exceeds three, the gradient disappearance between layers
becomes obvious. Therefore, a two-layer LSTM neural network is used in the hidden layer.

The output of the prediction model is the CSI of the indoor environment. When
CSI = 0, it indicates a comfortable state. When CSI > 0, it indicates thermal discomfort.
When CSI < 0, it indicates cold discomfort. CSI was set at an interval of [−0.5, 0.5] in
this study.
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3.2. Design of the Energy-Saving Optimization Strategy

According to the calculation results of the thermal comfort in Section 3.1, this section
combines the design data, environmental data, equipment operation data of the building
rooms to design an optimized energy-saving strategy. The prediction result in the CSI of
thermal comfort will affect the decision of the energy-saving optimization algorithm. The
algorithm will actively adjust the system power consumption when the CSI value is too
small or less than the set interval.

The coefficient of performance (COP) of the central air-conditioning chiller unit is an
index to measure energy consumption [39]. As shown in Equation (3), it is the ratio of
cooling capacity to power consumption.

COP = Cooling capacity(W)/Power consumption(W) (3)

According to Equation (3), when the workload rate of the main engine is closer to the
load rate of the optimal working condition point, the COP value of the main engine is also
greater. The energy consumption of the cooling host accounts for the largest proportion
of the total energy consumption; thus, improving the COP of the cooling host is crucial to
reduce the overall energy consumption of the central air conditioning. In addition, when
the number of cooling hosts is fixed, the greater the cooling load demand in the building,
the higher the overall energy consumption efficiency. Therefore, if the required cooling
capacity of the building is fixed, the number of refrigeration units turned on essentially
determines the efficiency performance of the overall energy consumption. In addition,
chillers account for about 40% of energy consumption in the central air conditioning, and
cooling towers account for more than 27% [40]. Therefore, reasonable adjustment of the
cooling tower power and the start–stop system and power of the refrigeration host can
effectively reduce the overall energy consumption of the building.

From the above analysis, under the premise of ensuring the stability of the indoor
thermal comfort index, this paper adopts the real-time optimization control strategy and
the advance optimization control strategy for the central air conditioning, as follows.

(1) Real-time control strategy 1: Under the condition of a certain required cooling capacity,
the number of central air-conditioning hosts are specified to drive the operating load
rate of the central air-conditioning hosts close to the optimal operating point.

(2) Real-time control strategy 2: Under the condition of a stable operating load of the
central air-conditioning host, the power of the cooling tower is adjusted to drive the
central air conditioning to run stably and simultaneously reduce the overall energy
consumption to a minimum.

The optimization control strategy in advance can calculate the turn-on time of the air
conditioning in the corresponding room according to the room usage schedule in the twin
database, such as setting the air volume, wind speed and other parameters in advance, as
shown in Figure 5.

(1) Advance control strategy 1: The air conditioning is turned on before the room is
used to ensure the comfort of the room in advance, such as the reserved use of the
meeting room.

(2) Advance control strategy 2: Before the end of room use (e.g., when you are about to
leave work), the air conditioning is turned off or the air-conditioning load is adjusted
in advance.

According to the above analysis, this paper establishes the optimization design model
of the energy-saving optimization strategy. The design variables and the objective function
are expressed by Equations (4) and (5), respectively. The constraints are represented
by Equations (6)–(8).

X1 = [x1, x2, x3, x4, x5, x6]
T (4)

min(Ptotal) = min(Ph + Ppco + Ppci + Pt + Pend) (5)
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Figure 5. Operation logic diagram of the advance control strategy.

In the energy-saving optimization strategy, the input includes building design data,
geographical location data, equipment operation data, predicted indoor thermal comfort
index, etc. Therefore, in Equation (4), x1, x2, x3, x4, x5, and x6 are, respectively, expressed as
parameters such as predicted thermal comfort index, terminal equipment power, cooling
tower power, main engine power, chilled water pump power, and cooling water pump
power, as described in Table 1.

Table 1. Detailed parameters and sources of design variables.

Variable Name Data Sources Ranges Unit

Thermal comfort
index x1

Thermal comfort
prediction model [−3, 3] null

Terminal equipment
power x2

Terminal data
acquisition module

[0, The sum of terminal
rated power] W

Cooling tower
power x3

Cooling tower data
acquisition module

[0, Total cooling tower
rated power] KW

Main engine power x4
Host data acquisition

module
[0, The sum of the rated

power of the main engine] KW

Chilled water pump
power x5

Chilled water pump data
acquisition module

[0, Total rated power of
cooling water pump] KW

Cooling water pump
power x6

Cooling water pump data
acquisition module

[0, The sum of rated power
of chilled water pumps] KW

The optimization goal of the energy-saving strategy is to minimize the overall energy
consumption Ptotal of the central air conditioning. Under the condition of satisfying the
cooling capacity of the required temperature, if the energy efficiency ratio of the refrigera-
tion system is the largest, the total energy consumption Ptotal of the central air conditioning
needs to be minimized. Ptotal is represented by Equation (5). Among them, Ph is the energy
consumption of the central air conditioning, Ppco is the energy consumption of the cooling
water pump, Ppci refers to the energy consumption of the chilled water pump, Pt stands for
the energy consumption of the cooling tower, and Pend describes the energy consumption
of the terminal equipment.
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To ensure the consistency between the simulation platform and the actual status of the
central air conditioning of the building and in order to improve the accuracy and reliability
of the simulation, operating constraints are imposed on the cooling water pump and chilled
water pump, and on the cooling tower.

(1) Operation constraints of cooling water pump and chilled water pump. The
operating frequency of the water pump at full load is 50 HZ. When the operating fre-
quency is lower than 60%, there will be a large waste of energy consumption. Therefore,
there is a constraint for the cooling water pump and the chilled water pump, provided
by Equations (6) and (7).

30 HZ < fpco < 50 HZ (6)

30 HZ < fpci < 50 HZ (7)

(2) Operation constraints of the cooling tower. It is the frequency of the fan that affects
the cooling effect in the cooling tower; therefore, there is a constraint of Equation (8) on the
cooling tower.

30 HZ < ft < 50 HZ (8)

4. Experimental Results and Discussion

To verify the effectiveness and feasibility of the proposed method, this section conducts
experiments on the designed prediction model of indoor environment thermal comfort and
optimized energy-saving control strategy.

For the prediction model, the experimental environment and configuration are as
follows. Subjects of the experiment are the central air conditioning of the Zhengzhou
Post Building in Henan, as well as the offices and conference rooms of the building. The
acquisition hardware includes sensors for indoor and outdoor temperature and humidity.
The data collection time is from mid-June to the end of September 2022. The human body
activity rate is set to 1.0 met-1.2 met. Clothing thermal resistance is set as 0.6 clo. In addition,
the data, after being preprocessed, are divided into the training set, test set, and verification
set according to 7:2:1, which the LSTM model verifies.

To optimize the energy-saving control strategy, this paper simulates the building’s
indoor thermal environment and energy consumption through the Transient System Simu-
lation Program (Trnsys). For example, we use Trnsys to set meteorological data and solar
radiation. The energy-saving effect of the advance control strategy and the real-time control
strategy are simulated by the thermal comfort value predicted using the prediction model
in Trnsys.

4.1. Model Training and Result Analysis

According to the neural network model shown in Figure 3, six input nodes are set
in the experiment, two LSTM (long short-term memory) hidden layers are used for the
middle layer, and an output layer is selected.

Linear rectification function (ReLU) is used as the activation function expressed by
Equation (9) [41]. The use of ReLu makes the output of some neurons in the neural network
0, which can alleviate the over-fitting problem.

F(a) = max{0, a} (9)

The result of the designed thermal comfort model is displayed in Figure 6. The logical
process of the entire prediction of the model is as follows: the output value of each neuron
is propagated forward, and the error (loss value) between the neuron and the actual value
is propagated back. Meanwhile, the Adam optimizer is used to quickly repair the error
during the training process. Therefore, the predicted result is close to the actual result.
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The configuration parameter values of the model are shown in Table 2. During the
training process, the mean square error (MSE) is used as the loss calculation function.
The middle two hidden layers have 32 neurons and 128 neurons, respectively. In order
to prevent the phenomenon of over-fitting, a batch normalization (BN) layer is added
between the input layer, each LSTM layer, and the output layer. Moreover, dropout is used
between each layer of LSTM. In addition, the model optimizer is configured as Adam. To
significantly speed up the training, the sliding time step is set to 10, and the training batch
size is set to 128.

Table 2. The value of each parameter of the model.

Parameter
Name

Number of
Hidden Layers

Loss
Function Optimizer Batch Size Learning

Rate

parameter
value 2 MSE Adam 10 0.0005

The convergence curve of model training is given in Figure 7. It can be seen that the
loss value is close to 0, indicating that the model has a positive convergence effect. After 13
rounds, the loss curve and the training loss curve tend to coincide. After 20 rounds, they
tend to be stable.
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After the model training is completed, the model’s performance needs to be measured
using various evaluation indicators shown in Table 3. MSE is the mean square error, RMSE
stands for root mean square error, and MAE represents the mean absolute error.

Table 3. Model evaluation index.

Parameter Name MSE RMSE MAE

This paper’s model 0.0093 0.0963 0.0777
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From the analysis in Figure 7 and Table 3, it can be concluded that the error range of
the indoor environmental thermal comfort model based on the LSTM neural network is
very small, which proves that the prediction effect is remarkable.

4.2. Energy-Saving Strategy Simulation and Result Analysis

The energy consumption of air conditioning in office buildings is mainly determined
by the cooling load. The demand for cooling load in the building depends on changes in
the environment and working hours. This section analyzes the energy-saving strategy of
the building’s air conditioning, simulates the summer working conditions with the highest
energy consumption of the building’s central air conditioning, and tests the energy-saving
effect of the proposed strategy introduced in Section 4.2.

The operation simulation of the central air conditioning of an office building is es-
tablished in Transient System Simulation Program (TRNSYS), as shown in Figure 8. In
the simulation platform, the usable building volume is set as 1500 m2. The floor area of
the building is 300 square meters, with a total of 10 rooms and two floors of cement brick
wall structure. The central air conditioning includes three refrigeration hosts, three cooling
towers, three cooling water pumps, three chilled water pumps, and one terminal water
temperature control device. The capacity of a single refrigeration host is 2050 kW.
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The simulation process is shown in Figure 9. According to the latitude and longitude
of the building site, the weather condition is exported by Meteonorm, a meteorological
data viewing software. First, the external configuration file is read to obtain the ambi-
ent temperature and humidity from the end of June to mid-September 2022, as shown
in Figures 10 and 11.

Then, the cooling load demand of the building is calculated. During the simulation
process, the building use time is set as 9:00–17:00 from Monday to Friday during working
hours and rest on weekends. The indoor temperature of the building is set at 26 ◦C during
working hours and a maximum of 30 ◦C at other times. The cooling load demand of the
building is shown in Figure 12.

After the weather, equipment information, building cooling load demand and other
conditions are determined, the real-time control strategy and the advance control strategy
are simulated. The differences in energy consumption before and after using the optimized
energy-saving strategy are verified.
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4.2.1. Real-Time Control Strategy Simulation

The real-time control strategy mainly controls two pieces of equipment that consume
a large proportion of the energy of the central air conditioning: the refrigeration host and
the cooling tower. The summer weather in Zhengzhou, where the building is located, is
relatively hot, but there are almost no extreme weather conditions. As a result, the building
load rarely reaches the peak, and the central air conditioning usually operates under partial
load. Therefore, the energy reduction in the refrigeration host means the energy reduction
in the overall central air conditioning of the building.

In general, the number of refrigeration hosts in central air conditioning depends on
the experience of the on-site operator. For this reason, by default, in the case of normal
work in summer, two hosts are usually turned on. Comparatively, a host is turned on
when the building cooling load is light. In the case of high temperature, three hosts will be
turned on at the same time. Since the number of chillers to be turned on depends on the
experience of the on-site operators, it has a hysteresis to the change of the cooling load of
the building, and the COP value of the chiller will change with the load rate. By calculating
the interval between the building cooling load and the host COP value load rate, the energy
consumption performance of the cooling host can be effectively improved and the number
of enabled hosts can be specified. For this reason, the power consumption of different
numbers of units turned on and the influence of adjusting the power consumption of the
cooling tower on the overall energy consumption of the central air conditioning is tested
separately below.

(1) The power consumption test of different numbers of available hosts

According to the building cooling load demand shown in Figure 12, the building’s
maximum cooling load per hour is about 54,500 kj/hr, and the top daily load date is
29 August. The building cooling load on 23 August was relatively moderate. In this
simulation, on 29 August and 23 August 2022, during the 8-h working time, different energy
consumption values of the central air conditioning are calculated when one, two, or three
refrigeration hosts are turned on respectively. The calculation results are shown in Table 4.

Table 4. Energy consumption of hosts with different numbers.

Number
of Open

Calculation Results on 29 August Calculation Results on 23 August

Energy
(KW·h) Compared Average

COP
Energy
(KW·h) Compared Average

COP

1 76207 1171.5% 5.042 7084 617.1% 5.23

2 6571 101.0% 5.087 1148 100.0% 5.24

3 6505 100.0% 5.088 1700 148.1% 5.24
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In the case of a high demand for building cooling load, the energy consumption
of turning on two cooling hosts is 1% more than that of three cooling hosts. In contrast,
running three engines at the same time consumes about 10 times as much energy as running
only one cooling engine. When the cooling load demand of the building is appropriate, it
turning on two cooling hosts is the most energy-efficient option. In contrast, turning on
three hosts consumes 48.1% more energy than turning on two hosts, and turning on one
host consumes 517.1% more energy than that of two hosts. Through the above analysis,
when the building cooling load reaches a certain level, increasing the number of turned-on
cooling hosts can effectively reduce the energy consumption.

(2) The effect test of adjusting the cooling tower power

It is known that the air-conditioning administrator controls the cooling tower by
switching the power supply. The energy consumption of the cooling tower also accounts
for a relatively high proportion of the energy consumption of the central air conditioning
when the refrigeration host is running stably. While keeping the indoor temperature within
the set range, the total energy consumption is calculated by adjusting the power of the
cooling tower. As displayed in Figure 13, the relationship between the power ratio of the
cooling tower and the total energy consumption of the central air conditioning is obtained.
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The two experiments abovementioned can verify the energy-saving performance of
the real-time control strategy. When the demand for building cooling increases, increasing
the number of cooling hosts can reduce the energy waste by at least 1%. When the central
air-conditioning refrigeration host is stable, the power reduction in the cooling tower can
also save up to about 60% of the energy consumption.

4.2.2. Advance Control Strategy Simulation

There are two meeting rooms available by appointment in the Zhengzhou Post Build-
ing. Among them, meeting room A is 6 m long, 4.5 m wide and 3.3 m high. Conference
room B is 5 m long, 4 m wide and 3.3 m high. In addition, the reserved usage time of the
conference room is stored in the schedule table in the cloud database.

Assume that meeting room A is used 3 times a week, and the duration of each use
is 3 h. Meeting room B is used 5 times a week, 2 h each time on average. During the
experiment, to ensure that the indoor comfort index during the use period is within the
comfort range, the air conditioning is set to be turned on one hour in advance, and the
power load is gradually increased. At the same time, the indoor cooling load is gradually
reduced one hour before the end of use of the room.

The schedule is loaded into the operation simulation platform TRNSYS, and 3 weeks
are stochastically selected to test. Table 5 represents the test result of the energy-saving
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effect. It can be seen that the early control strategy has a significant effect on energy-saving,
which can save an average of 4% of energy consumption under preset conditions.

Table 5. Comparison of energy consumption before and after using the advance control strategy.

Number
of Exper-
iments

Energy Consumption
before Using Advance

Control Strategy
(KW·h)

Energy Consumption
after Using Advance

Control Strategy
(KW·h)

Energy-
Saving
(KW·h)

Energy-
Saving

Percentage

1 147,183 141,304 5879 3.99%

2 147,183 159,004 7481 4.49%

3 126,541 122,392 4149 3.28%

We performed a lot of optimizations to the model. It can be seen from the model
training in Section 4.1 that the convergence curve of model training is smooth, and the
loss value approaches 0. It can be seen from the training results that MSE is 0.0093,
RMSE is 0.0963 and MAE is 0.0777, which proves that the prediction error of the indoor
environmental thermal comfort prediction model is small.

In Section 4.2, we conducted detailed simulation experiments on energy-saving strate-
gies. In the simulation experiment of real-time control strategy, the difference in the number
of open refrigeration hosts has a tremendous influence on the energy consumption of the
central air-conditioning system. When the cooling load demand is at the highest level in the
experimental period, starting one and two hosts will increase energy consumption by 1%
and 1071.5% compared with starting three hosts, that is, the maximum energy consumption
can be saved by 91% when three hosts are started under a high load. When the cooling load
demand is at the medium level in the experimental period, starting one and three hosts will
increase the energy consumption by 48.1% and 517.1% compared with starting two hosts.
Starting two hosts at medium load can save 84% of energy consumption. When the central
air conditioning system runs stably, the real-time control strategy can save about 60% of
energy consumption by adjusting the cooling tower power. In the simulation experiment
of the advance control strategy, using the advance control strategy can save 4% energy
consumption on average.

5. Conclusions

This paper proposes an energy-saving framework for central air conditioning based
on deploying cloud–edge–device architecture. This framework can realize a low-delay,
high-reliability, low-cost, and reusable energy-saving regulation of central air conditioning
terminal equipment. Moreover, it can effectively reduce overall energy consumption. On
this basis, a human comfort prediction model based on an LSTM cyclic neural network
is established. This research provided an energy-saving control strategy combining man–
machine–environment factors to ensure the thermal comfort of indoor personnel.

The cloud–edge–device architecture is used to ease the decision-making pressure of
single cloud computing, which can reduce the delay of data transmission, and improve
the operation stability and system security of the framework. According to the indoor and
outdoor environmental parameters and indoor occupants, a prediction model of indoor
environmental thermal comfort is designed. The proposed thermal comfort prediction
model based on LSTM is verified. According to the operating status of the central air condi-
tioning, the indoor comfort state index and the building’s internal cooling load demand, an
energy-saving control scheme to ensure indoor comfort is designed. The real-time control
strategies and advance control strategies are tested on an office building in Zhengzhou
through the TRNSYS simulation test, which have a significant energy-saving effect.

In the experimental results in Section 4, the prediction accuracy of the human thermal
comfort model based on LSTM is higher, with MSE of 0.0093, RMSE of 0.0963 and MAE of
0.0777. Through the simulation experiment of the energy-saving strategy, the advantages
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of real-time control strategy and advance control strategy for energy-saving are proved.
Among them, real-time control strategy can save from 84% to 91% of energy consumption,
depending on the environment. The advance control strategy saves an average of 4%.

However, it should be noted that this study mainly considered the adult group in
the office building environment. In addition, because the hosts of the cooling and heating
systems in the building are different, only the energy-saving optimization of the cooling
environment is studied. Further research is required for different age groups and that
which covers energy-saving studies for heating systems. The following research should
use actual field experiments to verify the effect.
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Nomenclature
symbols
HVAC heating, ventilation and air conditioning
PMV predicted mean vote
CSI the comfort state index
M the metabolic rate of the human body
W the power of the human body
Pa indoor air water vapor pressure
Ta indoor air temperature
Tcl the average radiation temperature of the clothing surface
Tr the average indoor radiation temperature
hc the convective heat transfer coefficient
Ptotal the overall energy consumption
Ppco the energy consumption of the cooling water pump
Ppci the energy consumption of the chilled water pump
Ct−1 the state of the neuron at time t − 1
Ct the state of the current neuron
ht−1 the output value at time t − 1
Xt the input at time t
ht the output at time t
ft the forgetting gate
it the input gate
Ot the output gate
σ(x) the activation function
ω the weight
b the bias
COP the coefficient of performance
Pt cooling tower energy consumption
Pend terminal equipment energy consumption
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