
Citation: Wang, W.; Zhang, B.; Jia, B.

A Multiobjective Optimization

Approach for Multiobjective Hybrid

Flowshop Green Scheduling with

Consistent Sublots. Sustainability

2023, 15, 2622. https://doi.org/

10.3390/su15032622

Academic Editors: Maxim

A. Dulebenets and Mirco Peron

Received: 5 December 2022

Revised: 24 January 2023

Accepted: 26 January 2023

Published: 1 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Multiobjective Optimization Approach for Multiobjective
Hybrid Flowshop Green Scheduling with Consistent Sublots
Weiwei Wang, Biao Zhang * and Baoxian Jia

School of Computer Science, Liaocheng University, Liaocheng 252000, China
* Correspondence: zhangbiao1218@gmail.com

Abstract: Hybrid flowshop scheduling problems are encountered in many real-world manufacturing
scenarios. With increasingly fierce market competition, the production mode of multiple varieties
and small batches has gradually been accepted by enterprises, where the technology of lot streaming
is widely used. Meanwhile, green criteria, such as energy consumption and carbon emissions,
have attracted increasing attention to improving protection awareness. With these motivations, this
paper studies a multiobjective hybrid flowshop green scheduling problem with consistent sublots
(MOHFGSP_CS), aiming to minimize two objectives, i.e., makespan and total energy consumption,
simultaneously. To solve this complex problem, we first formulate a novel multiobjective optimization
model. However, due to the NP-hard nature of the problem, the model is computationally prohibitive
as the problem scale increases. Thus, a multiobjective discrete artificial bee colony algorithm (MDABC)
based on decomposition is proposed. There are three phases in this algorithm: the VND-based
employed bee phase, the adjustment weight onlooker bee phase, and the population interaction scout
bee phase. In the experimental study, various small-scale and large-scale instances are collected to
verify the effectiveness of the multiobjective optimization model and the MDABC. Comprehensive
computational comparisons and statistical analysis show that the developed strategies and MDABC
show superior performance.

Keywords: hybrid flowshop scheduling problem; green scheduling; consistent sublots; multiobjective
evolutionary algorithm

1. Introduction

As a classical production scheduling problem, the hybrid flow shop scheduling prob-
lem (HFSP) appears in various flexible manufacturing systems, such as electronics, paper,
textile, and petrochemical [1]. In a real-world hybrid flow shop, there is a set of jobs that can
select exactly one machine from several identical parallel machines at a given stage. The
HFSP aims to determine the job sequence and machine assignment at each stage, and it has
been proven to be strongly NP-hard in the strong sense [2]. Given its important theoretical
and practical value, the HFSP has aroused wide concern in recent decades. Various solution
methods have been developed for solving them in the literature [3–5]. It is worth noting
that most research on solving the HFSP treats each job as a whole part. Because of the
intense market competition, more and more enterprises are steadily adopting the produc-
tion method of multiple varieties and small batches. The concept of lot streaming was
formally introduced by Reiter [6] and is widely used in the flowshop context. Lot streaming
has emerged as an attractive method for reducing makespan, cycle time, work-in-process
inventory, etc. Using the division methodology, a batch of jobs (called a lot) is divided
into several sublots that can be processed in an overlapping fashion at successive stages
in a multistage manufacturing system. The division methodology can be classified into
three categories: consistent sublots, equal sublots, and variable sublots [7]. Consistent
sublots indicate that the sizes of different sublots may not be the same but consistent among
different stages. For equal sublots, the sizes of different sublots of a lot are equal at different

Sustainability 2023, 15, 2622. https://doi.org/10.3390/su15032622 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15032622
https://doi.org/10.3390/su15032622
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4898-2731
https://doi.org/10.3390/su15032622
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15032622?type=check_update&version=1

Sustainability 2023, 15, 2622 2 of 29

stages. With the variable sublots, the sizes of different sublots are different and remain
variable among different stages. Equal sublots are a special kind of consistent sublots. For
the variable sublots, the complex scenario of variable sublots can cause difficulties in the
transformation and management of the system. Thus, this study introduces the consistent
sublots into the HFSP, resulting in a scheduling problem, namely, the HFSP with consistent
sublots (HFSP_CS). Previous studies on the HFSP_CS only consider production efficiency
and do not pay attention to environmental factors [8].

With the improvement of environmental protection awareness, green manufacturing has
become a research hotspot in the field of advanced manufacturing. According to statistics, the
manufacturing industry consumes approximately 31% of primary energy consumption and
36% of carbon emissions [9,10]. In practice, machines in any given factory can vary in terms
of power consumption. Furthermore, any given machine consumes power at a different rate
depending on the speed at which it is run. In general, the faster the speed, the faster the lots
are completed; but the faster the speed, the more power consumption. Therefore, the purpose
of hybrid green flowshop scheduling is to reduce energy consumption, reduce environmental
pressure, and achieve sustainable development.

Given the above, considering the variable machine processing speeds, this paper
studies a multiobjective hybrid flowshop green scheduling problem with consistent sublots
(MOHFGSP_CS) with two minimizing objectives, i.e., makespan and total energy consump-
tion, simultaneously. To solve this problem, we first develop a multiobjective mixed integer
programming model (MILP) [11,12] by considering real-world processing constraints. The
model is solved by the mathematical programming software Gurobi 9.5.0 by assigning a set
of uniform weights to the two objectives. It is found that the two objectives have a trade-off
relationship. Meanwhile, the optimal solutions cannot be obtained within a reasonable
amount of time as the problem scale increases. Due to their trade-off nature, there does not
exist a single solution with two minimum objective values. Therefore, we try to find a set
of Pareto solutions for the MOHFGSP_CS.

The multiobjective evolutionary algorithm (MOEA) based on decomposition is sug-
gested to obtain Pareto solutions of their superior performance in solving the multiobjective
problems. In this paper, considering the problem-specific characteristics, an artificial bee
colony algorithm (MDABC) based on decomposition is proposed. In the VND-based
employed bee phase, the variable neighborhood descent (VND) with eight designed neigh-
borhoods is employed for a search. In the adjustment weight onlooker bee phase, a weight
adjustment strategy (WAS) is introduced to maintain the diversity of solutions. In the
population interaction scout bee phase, the solution interaction strategy (SIS) is developed
to enhance the exploration of the algorithm.

The major contributions of this paper can be summarized as follows: (1) regarding
the problem modelling, a mathematical model for the MOHFGSP_CS is formulated; in this
model, two objectives, including makespan and total energy consumption, are taken into
account; (2) regarding the optimization algorithm, we adopted the Tchebycheff decomposi-
tion approach to obtain different Pareto optimal solutions; (3) regarding the experiment,
we verify the excellent performance of the MDABC via a set of computational experiments.
The novelties of the proposed MDABC are as follows: (1) a three-level encoding is specially
designed; (2) eight neighborhood structures and the VND are introduced to enable that
each subproblem can be optimized independently; (3) the WAS is introduced to maintain
the diversity of solutions; (4) the SIS is developed to enhance the exploration of the solution
thoroughly along its different direction.

The remainder of this paper is organized as follows: Section 2 provides the literature
review; Section 3 gives the problem description and formulates a mathematical model for
this problem; Section 4 describes the proposed MDABC for solving the MOHFGSP_CS;
Section 5 presents the comprehensive comparison of MDABC; Section 6 summaries this
study and offers future research directions.

Sustainability 2023, 15, 2622 3 of 29

2. Literature Review

In this section, we first review the studies on HFSPs. Next, the HFSP with lot streaming
regarding equal and consistent sublots are reviewed. Finally, green scheduling research on
HFSP environments is reviewed.

2.1. The Classical Hybrid Flowshop Scheduling Problem

HFSP is an extension of classical flowshop scheduling that contains multiple opera-
tions, and each operation has one or more parallel machines. In most cases, they are defined
as NP-hard problems [2]. In the two-stage HFSP problem, Gupta showed that minimiz-
ing the makespan with identical parallel machines at each stage is strongly NP-hard [13].
Likewise, Yang demonstrated that a minimization makespan scheduling problem for a two-
stage hybrid flow shop with dedicated machines at the second stage is NP-complete [14].
Guirchon et al. [15] proposed a novel polynomial time algorithm to solve a special zero
wait two-stage HFSP with different parallel machines in the second stage.

2.2. The Hybrid Flowshop Scheduling Problem with Lot Streaming

In a recent study, the lot streaming splitting is adopted where parallel processing of
the same lot in different stages is possible. Table 1 shows the major research concerning
minimizing a single objective. In the case of the equal sublots, Cheng et al. [16] studied a
special two-stage HFSP containing only one machine in the first stage and two machines
in the second stage. First, they determine the optimal sublot size with the number of
sublots known; second, the upper limit of sublot quantity is determined according to
the size of sublot, and a heuristic method for determining sublot sequence is proposed.
Zhang et al. [17] analyzed k-stage HFSP and proposed a heuristic method for determining
the size of and sequence of the sublot. In case of the consistent sublots, Kim et al. [18]
studied the two-stage HFSP problem under hypothetical conditions for lot streaming prob-
lems. Zhang et al. [8] studied k-stage HFSP and proposed a collaborative variable descent
algorithm to solve the lot sequence, machine assignment, and lot split, simultaneously. To
determine the lot sequence, they developed a MILP model and a local search algorithm.
Nejati et al. [19] explored a k-stage HFSP with various special production restrictions, such
as work-in-process inventory, working shift, and sequence-dependent setup, taking the
case of intermingling into consideration. In their study of a k-stage HFSP, Lalitha et al. [20]
only took into account one machine at each stage except the final one. They created a
MILP model and employed LINGO software to optimally resolve small-scale issues. In the
intermingling case, the number of sublots is assumed to be known, Nejati et al. [21] studied
a two-stage assembly HFSP and they proposed the genetic algorithm to solve the problem.

Table 1. Comparison of this study with previous studies considering lot steaming.

Studies Type of HFSP Objective Problem Characteristic

Cheng et al. [16] Two-stage Makespan With equal sublot
Zhang et al. [17] K-stage Production lead time With equal sublot
Kim et al. [18] Two-stage Makespan With consistent sublot
Zhang et al. [8] K-stage Makespan With consistent sublot

This study HFSP Makespan, Total energy consumption With consistent sublot

2.3. The Hybrid Flowshop Green Scheduling Problem

Regarding green scheduling considering energy consumption, Dai et al. [22] proposed
an improved genetically simulated annealing algorithm for an energy-efficient flexible
flow shop scheduling problem. Fernandez-Viagas et al. [23] used different meta-heuristics
or more complex local search procedures to reduce total carbon consumption for the per-
mutation flowshop scheduling problem. Gu et al. [24] proposed a hybrid cuckoo search
algorithm to solve MOPFSP with the objective of minimizing total carbon emissions. To
solve this multiobjective mixed-integer linear programming (MILP), Lu et al. [25] proposed

Sustainability 2023, 15, 2622 4 of 29

the collaborative multi-objective optimization algorithm. Meng et al. [26] developed an
MILP model with the objective of minimising energy consumption. For this kind of mul-
tiobjective problem, there is usually not a single best solution but a set of solutions that
are superior to others when considering all objectives. This set is called the Pareto set
of nondominated solutions. Much multiobjective research on ABCs has been proposed.
Baiand and Liu proposed a multiobjective artificial bee colony (MOABC) algorithm based
on decomposition by the penalty-based boundary intersection (PBI) method [27]. Addition-
ally, considering the relative importance of objectives, Li, Lei, and Cai [28] addressed an
energy-efficient HFSP with total tardiness, makespan, and total energy consumption. In
this study, the machine speed selection for each job at each stage needs to be determined
optimally. Yan et al. [29] divided an energy-efficient HFSP into a machine tool level and a
shop floor level that were solved hierarchically. Zhang et al. [30] proposed a decomposition
algorithm for HFSP. Experimental results show that the proposed multilevel optimization
approach can reduce the makespan and total energy consumption.

Through the above review, as shown in Table 2, we do not find any study on the
energy consumption of the hybrid flowshop scheduling problem with a consistent sublot.
Therefore, the research in this paper has a very important role. The multiobjective hybrid
flowshop green scheduling with consistent sublots studied in this paper draws on the
previous lot splitting strategy and the encoding and decoding of green scheduling. MO-
HFGSP_CS aims to determine the lot sequence, lot split, machine assignment, and speed
selection to minimize the makespan and total energy consumption simultaneously.

Table 2. Comparison of this study with previous studies about green scheduling.

Studies Type Objective Problem Characteristic

Fernandez-Viagas et al. [23] FPSP Makespan, Total energy consumption With various machine speeds
Gu et al. [24] FFSP Makespan, Total energy consumption With the relative objectives
Lu et al. [25] DPFSP Total energy consumption With limited buffers
Li et al. [28] DPFSP Total flowtime With the relative algorithm

Zhang et al. [30] HFSP Makespan, Total energy consumption With lot steaming
This study HFSP Makespan, Total energy consumption With lot steaming and various machine speeds

3. Problem Statement
3.1. Mathematical Model

The MOHFGSP_CS is described as follows. Several lots are to be examined consecu-
tively through a series of stages, each of which has several sizes. At each stage, there exist
several identical and parallel machines. With consistent sublots, many will be split into a
number of sublots, which is limited to a maximum value. Each sublot contains a different
number of sublot sizes. The sublot quantity and sublot size are consistent at different stages.
The processing time of the sublot is the product unit time and sublot size. The setup time
is only expected before the processing time of the first sublot. In addition, machines can
be assigned variable speed levels. It is often assumed that energy consumption increases
and the processing time decrease when a lot is processed on a machine at a higher speed
level [31]. In this study, we take into account two conflicting objectives simultaneously:
the makespan and total energy consumption. The problem needs to determine the lot
sequence, lot split, machine assignment, and machine speed selection. The makespan
refers to the completion time of the last sublots processed in the system. The total energy
consumption includes three parts: machine processing power consumption, setup time
power consumption, and idle time power consumption. Several assumptions are given as
follows [30,32]:

• All machines and lots are available at time zero;
• Each unit can only be processed on one machine at a time;
• Preemption is not allowed, and buffer size is not limited;
• Each machine cannot process more than one unit at a time;

Sustainability 2023, 15, 2622 5 of 29

• The machines are turned on when the first lot assigned to them is going to start and
turn off once all lots assigned to them are finished;

• A sublot at a stage can be processed after it has been completed at the previous stage
and transported to this stage;

• Machine speed cannot be changed while processing a sublot.

To present a mathematical model for the problem described in the previous section,
we define several notions as follows.

(1) Notations:
K The total number of stages;
k Index of stages, k ∈ {1, 2, 3, . . . , K};
J Total number of lots;
j Index of lots, j ∈ {1, 2, 3, . . . , J};
Mk Number of parallel machines at stage k;
i Index of machines at stage k,i ∈ {1, 2, 3, . . . , Mk};
Tj Total number of lots j;
L The maximum number of sublots of each lot;
e Index for the sublots, e ∈ {1, 2, 3, . . . , L};
LSj,e Number units of sublot e of lot j;
v The speed level index;
Vk The speed level of machines at stage k, and Vk ∈ {1, 2, 3, . . . , v, . . . , |Vk|};
Pk,j,v Unit processing time of sublot e of lot j by speed v;
BTk,j,e Beginning processing time of sublot e of lot j at stage;
ETk,j,e Ending processing time of sublot e of lot j at stage k;
Sk,j Set up the time of lot j at stage k;
Tk,j Transportation time of lot j at stage k;
PWk,i,v The power of consumption of machine i in stage k by speed j during processing status;
SWk,i,v The power of consumption of the machine i in stage k by speed j during setup status;
PIk,i The power of consumption of machine i in stage k during idle status.

(2) Decision variables:
Wj,e Binary variable that takes the value of 1 when the sublot of lot j is larger than 0 and 0

otherwise;
Dk,j,i Binary variable that takes the value of 1 when a lot j is assigned to machine i at stage k

and 0 otherwise;
Yk,j,j′,i Binary variable that takes the value of 1 when l j is scheduled before lot j′ on machine i

at stage k and 0 otherwise;
Xk,i,j,v Binary variable that takes the value of 1 when lot j is processed on machine i at stage k

by speed v and 0 otherwise.
(3) Objectives:

Minimize(Cmax) (1)

MinimizeTEC = E1 + E2 + E3 (2)

E1 = ∑ j∈J∑ e∈E∑ i∈Mk∑ v∈VkPWk,j,v ∗ Pk,j,v ∗ LSj,e ∗ Dk,j,i ∗ Xk,j,v (3)

E2 = ∑ j∈J∑ e∈E∑ i∈Mk∑ v∈VkDk,j,i ∗ Sk,j ∗ SWk,i,v ∗ LSj,e (4)

E3 = ∑ j∈J∑ e∈E∑ i∈Mk∑ v∈Vk(BTk,j,e + 1− ETk,j,e −∑ j∈J∑ v∈VkXk,j,i,v
(Pk,j,v + ∑ j∈J′Yk,j′,j,i ∗ Sk,j)) ∗ PIk,i,v ∗ LSj,e

(5)

(4) Constraints:
Mk

∑
i=1

Dk, j, i = 1 ∀i ∈ Mk, j ∈ J, k ∈ K (6)

L

∑
e=1

LSj,e, e = Tj ∀j ∈ J, e ∈ L (7)

LSj,e

G
≤Wj,e ≤ LSj,e ∀j ∈ J, e ∈ L (8)

Sustainability 2023, 15, 2622 6 of 29

Wj,e ≤Wj,e+1 ∀j ∈ J, e ∈ L (9)

ETk,j,e − BTk,j,e = Pk,j,v × LSj,e ∀k ∈ K, j ∈ J, e ∈ L (10)

BTk+1,j,e − ETk,j,e ≥ 0 ∀k ∈ K, j ∈ J, e ∈ L (11)

BTk,j,1 − ETk,j′,L − Sk,j + G(3−Yk,j′j,i − Dk,j,i − Dk,j′,i) ≥ 0∀k ∈ K, j ∈ J, e ∈ L (12)

BTk+1,j,e − ETk,j,e ≥Wj,e × Tk,j ∀k ∈ {1, 2, 3, . . . , K− 1}, j ∈ J, e ∈ L (13)

Yk,j,j′,i + Yk,j′,j,i ≤ 1∀k ∈ K, j, j′ ∈ J, i ∈ Mk (14)

Yk,j,j′i + Yk,j′,j,i ≤ Dk,j,i + Dk,j′,i ∀k ∈ K, j, j′ ∈ J, i ∈ Mk (15)

Yk,j,j′i + Yk,j′,j,i ≥ Dk,j,i + Dk,j′,i − 1 ∀k ∈ K, j, j′ ∈ J, i ∈ Mk (16)

Yk,j,j′i ∈ {0, 1} ∀k ∈ K, j, j′ ∈ J, i ∈ Mk (17)

Xk,i,j,v ∈ {0, 1} ∀k ∈ K, j, j′ ∈ J, i ∈ Mk, v ∈ V (18)

Objective (1) minimizes the maximum completion time Cmax. Objective (2) determines
the total energy consumption, where E1 represents the energy consumption when the
machines are in the processing state, E2 represents the energy consumption when the
machines are in the setup state, and E3 represents the energy consumption when the
machines stay idle. Equation (6) specifies the limits of the lot arrangement; that is, each
lot must go through all stages and can only be processed by exactly one machine at each
stage. Equation (7) defines the lot split constraint, which requires that for a given lot, the
sum of its sublot sizes must be equal to its lot size. Equation (8) establishes the relationship
between two decision variables LSj,e and Wj,e. Equation (9) determines the priorities of
the sublots to accommodate the units, and the priority of the previous sublot is higher
than that of the following sublot. Equation (10) requires that the processing of each sublot
cannot be interrupted. For each sublot, its processing time is equal to the unit processing
time times the number of units unit number. In Equation (11), for sublots, their start time at
the next stage must be greater than or equal to their completion time at the previous stage.
Equation (12) expresses that the first sublot of a lot can be started only after the completion
of the last sublot of the previous lot if it exists and the setup operation. Equation (13)
requires that at a given stage, a sublot can be started only after it has been completed at the
previous stage and transferred to this stage. For a sublot, the transfer is only required when
its sublot size is larger than 0. Equation (14) guarantees that Yk,j,j′,i does not take the value
of 1 at the same time. If j and j′ are processed on the same machine, they must be processed
in sequence. Equations (15) and (16) together establish the relationship between the two
variables and Dk,j,i. Equations (17) and (18) define the possible values of three decision
variables Yk,j,j′,i, Dk,j,i and Xk,i,j,v.

3.2. Trade-Off Relationship of the Objectives

To illustrate the makespan and TEC, consider an example with five lots and two stages.
The maximum sublot quantity is set to five, and at each stage, there exist two identical and
parallel machines that have three speed levels. The relevant data are described as follows.

Sustainability 2023, 15, 2622 7 of 29

Lj,e =


1, 2, 1
3, 3, 0
2, 0, 0
1, 1, 0
2, 2, 0


Tk,j = [1, 1, 1, 1, 1]

Sk,j=

[
3, 4, 3, 2, 1
1, 3, 1, 3, 2

]
Vk =

[
1, 2, 1, 3, 1
1, 1, 2, 3, 2

]
Pk,j,v =

[
2, 3, 2, 1, 2
2, 2, 3, 1, 3

]
PWk,i,v =

[
4, 16, 4, 36, 4
4, 4, 16, 36, 16

]
SWk,i,v = [2, 2]

PIk,i = [1, 1]

To solve the aforementioned example by running the model on Gurobi 9.5.0, we assign
20 uniform weights in the range of [0, 1] to the two objectives, resulting in 20 subproblems.
These subproblems can be solved to optimality and output 20 optimal solutions. By
collecting these solutions, Figure 1 illustrates the plot of the obtained makespan versus the
TEC. It shows that the two objectives cannot be optimized simultaneously. In addition,
Figures 2 and 3 show Gantt charts of the example for the optimal makespan and optimal
TEC, respectively. They are very different. These figures show that these two objectives
conflict with each other. In detail, when makespan increases, TEC decreases, and when
makespan decreases, TEC increases. Thus, we can ensure that there exists a trade-off
relationship between the two objectives.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 31

TEC, respectively. They are very different. These figures show that these two objectives
conflict with each other. In detail, when makespan increases, TEC decreases, and when
makespan decreases, TEC increases. Thus, we can ensure that there exists a trade-off rela-
tionship between the two objectives.

Figure 1. Plots of makespan versus TEC.

Figure 2. Gantt chart of the schedule for the optimal maxC .

Figure 1. Plots of makespan versus TEC.

Sustainability 2023, 15, 2622 8 of 29

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 31

TEC, respectively. They are very different. These figures show that these two objectives
conflict with each other. In detail, when makespan increases, TEC decreases, and when
makespan decreases, TEC increases. Thus, we can ensure that there exists a trade-off rela-
tionship between the two objectives.

Figure 1. Plots of makespan versus TEC.

Figure 2. Gantt chart of the schedule for the optimal maxC .

Figure 2. Gantt chart of the schedule for the optimal Cmax.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 31

TEC, respectively. They are very different. These figures show that these two objectives
conflict with each other. In detail, when makespan increases, TEC decreases, and when
makespan decreases, TEC increases. Thus, we can ensure that there exists a trade-off rela-
tionship between the two objectives.

Figure 1. Plots of makespan versus TEC.

Figure 2. Gantt chart of the schedule for the optimal maxC .

Figure 3. Gantt chart of the schedule for the optimal TEC.

4. Proposed Algorithm

Using the decomposition strategy, the proposed MDABC decomposes the MOHFGSP_CS
into a set of subproblems and optimizes them simultaneously. The framework of the MDBC
is displayed in Figure 4, which mainly contains four phases. In the following, considering
the problem-specific characteristics, the solution encoding and decoding rules are first
designed. Then, the approaches of decomposition and objective normalization are detailed.
Next, the employed VND-based bee phase, the WAS-based onlooker bee phase, and the
SIS-based scout bee phase are detailed.

Sustainability 2023, 15, 2622 9 of 29

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 31

Figure 3. Gantt chart of the schedule for the optimal TEC.

4. Proposed Algorithm
Using the decomposition strategy, the proposed MDABC decomposes the

MOHFGSP_CS into a set of subproblems and optimizes them simultaneously. The frame-
work of the MDBC is displayed in Figure 4, which mainly contains four phases. In the
following, considering the problem-specific characteristics, the solution encoding and de-
coding rules are first designed. Then, the approaches of decomposition and objective nor-
malization are detailed. Next, the employed VND-based bee phase, the WAS-based on-
looker bee phase, and the SIS-based scout bee phase are detailed.

Figure 4. The proposed MDABC framework.

Figure 4. The proposed MDABC framework.

4.1. Solution Encoding and Population Initialization

To solve the MOHFGSP_CS, four tasks need to be addressed simultaneously, i.e.,
lot sequence, lot split, machine assignment, and machine speed selection. In this paper,
machine assignment is addressed in solution decoding using the strategy of an available
machine strategy, which is widely used in the HFSP literature and has outstanding perfor-
mance [33]. The other tasks can be reflected directly in the solution representation. The
solution is encoded into three parts. The first part is an n-dimensional lot permutation
πn = {π(1), . . . , π(j), . . . , π(n)}, where π(j) denotes a lot and n represents the number of
lots. This permutation only represents the lot sequence at the first state.

Sustainability 2023, 15, 2622 10 of 29

The second part is lot split matrix ∆n×L as shown below, which denotes the size of the
eth sublot of the jth lot.

∆n×L=


µ1,1 µ1,2 · · · ,
µ2,1 µ2,2 · · · ,
...

µ2,1

...
µn,2

µj,e
· · · ,

µ1,L
µ2,L
...

µ2,L


The third part is a machine speed selection matrix vm×n, which is constructed as

follows. vj,e denotes the machine speed level for sublot e at stage j.

vm×n=


v1,1 v1,2 · · · ,
v2,1 v2,2 · · · ,
...

vm,1

...
vm,2

vj,e
· · · ,

v1,n
v2,n
...

vm,n


There are N randomly generated solutions in our algorithm. By using the decompo-

sition strategy, each solution should be assigned a weight vector, resulting in N weight
vectors. Uniformly distributed weights are essential to produce uniformly distributed
Pareto solutions. Thus, we generated a set of uniformly distributed weight vectors using
the method proposed by Zhang et al. [30].

Here, the elements in the weight vector will be chosen from the weight vectors poor
W, which take values from { 0/H , 1/H , . . . , H/H }. H is a positive integer that controls the
size of W. Afterward, we generate N = Cm−1

H+m−1 different weight vectors, where m is the
number of objectives. To solve the multiobjective problem, we set m to 2 and H to N − 1.

4.2. Solution Decoding

Regarding solution encoding, the heuristic rules for the lot sequence and machine
assignment are taken into consideration in order to decode the solution into a feasi-
ble schedule.

For the lot sequence, in the HFSP literature, the following rule is commonly used. At
the first stage, the lot permutation in the solution representation can directly reflect the lot
sequence. At the following stages, the job that has been completed earlier at the previous
stage receives the priority to be scheduled at the following stage.

Considering the characteristics of the problem lot split, two heuristics are designed.
One is called the Sublot Priority (SP). The sooner the first sublot of a lot is completed in
the previous stage, the sooner it will be processed. Another one is called Lot Priority (LP).
The sooner the last sublot of a lot is completed in the previous stage, the sooner it will
be processed.

For the machine assignment, two common heuristics are employed. One is the First
Available (FA). In this rule, for the given lot, the machine that has the earliest available time
will be assigned to the lot. Another is the First Completion (FC). In this rule, for the given
lot, the machine that can complete the lot earliest will be assigned earliest. According to
the above description, the whole decoding process for a solution is summarized as follows.

At the first stage, i.e., i = 1, take π′ j from π′n one by one and then conduct the
following steps:

(1) Find the earliest available machine using the FA or FC, and then assign πj to
the machine;

(2) The completion time of the sublots (e = 1, . . . , L) are calculated as the unit process-
ing time times at the v speed level of the number of units unit number. The unit processing
time is known, the number of units is known from ∆n×L, v is known from vm×n, and the
available time of the selected machine can also be updated.

At the following stages, i.e., i = {2, . . . , m}, obtain a new lot sequence using the SP or
LP. We take π′ j from π′n one by one and conduct the following steps.

Sustainability 2023, 15, 2622 11 of 29

(1) Find the assigned machine according to FA or FC and assign it π′ j to the machine;
(2) The completion time of sublots is calculated using the above method. Update the

machines available time.

4.3. Decomposition Approaches and Objective Normalization

The weighted sum approach and the Tchebycheff approach are two related decomposi-
tion methods for solving combinatorial problems [34]. The two approaches are introduced
in detail below.

Assume a MILP is considered with m minimization objectives. Consider
λ = (λ1, . . . , λi, . . . , λm) being the weight vector assigned to the scalar optimization prob-
lem, where λi represents the weight value of the ith objective. The weighted sum approach
can be defined is:

minimizeg(X|λ, Z∗) =
m

∑
i=1

λi fi(X), subject to X ∈ Ω (19)

where X is the variable that needs to be optimized, fi(X) is the objective value of the ith
objective, and Ω represents the feasible solution space. While the Tchebycheff approach
can be defined is:

minimizeg(X|λ, Z∗) = max
1≤i≤m

{λi| fi(x)| − Z∗i } (20)

where Z∗i is the optimal value of the ith objective. In this article, low values for the two
objectives can be used as reference points.

As discussed in Section 2, two objectives have disparately scaled values in this paper.
Objective normalization can improve the performance of the algorithm because the search
might favor the objective with a larger scale. For this reason, the max–min method is used
to normalize the objectives between 0 and 1 [32], which is described as follows:

f̃i =
fi −min(fi)

max(fi)−min(fi)
(21)

where f̃i is the normalized value of the objective fi and Max fi and Min fi represent the
upper and lower bounds of the objective fi, respectively. However, it is difficult to find
the upper and lower fronts of the two objectives in the MOHFGSP_CS. Two definitions for
some extreme cases are given below.

Definition 1. Consider the case in which a lot is split into several sublots, and one sublot accommo-
dates only one unit; that is, as a unit from a lot is finished at a specific stage, it can be transported
to the next stage. Let Cmin

i (Cmax
i) denote the completion time of the last sublot Tj of lot j that is

processed at the fastest (/slowest) speed at each stage.

Definition 2. Consider the case in which a lot is split into several sublots, and one sublot accommo-
dates only one unit; that is, as a unit from a lot is finished at a specific stage, it can be transported to
the next stage. Let TEClow

i,j denote the total energy consumption of the machine at stage j processing
sublot of lot j at the lowest speed.

According to the above definitions, we can obtain approximations of the upper and
lower bounds as follows.

max(Cmax) = ∑
i∈I

Cmax
j,1 (22)

min(Cmax) = max
i∈I

{
Cmin

j,Tj

}
(23)

max(TEC) = ∑
i∈I

∑
e∈E

∑
j∈J

TECup
i,e,j (24)

Sustainability 2023, 15, 2622 12 of 29

min(TEC) = ∑
i∈I

∑
e∈E

∑
j∈J

TEClow
i,e,j (25)

4.4. VND-Based Employed Bee Phase

In the classical ABC, the role of the employed bees is to perform a local search for each
solution. Therefore, the neighborhood structure plays an important role in enhancing the
performance of the local search. The neighborhood structure contains many parts, and it is
difficult to find an optimal solution using only a single neighborhood structure. Therefore,
based on solution encoding, eight neighborhood structures are specially designed. For the
lot sequence vector, two widely used neighborhood structures, namely, Lot insertion and
Lot swap, are employed. For the lot split matrix, the neighborhood structure, namely, Lot
split mutation, is designed. For the speed selection matrix, the neighborhood structure,
namely, machine speed mutation, is designed. Moreover, four combined structures are also
developed, which combine Lot insertion and Lot swap with Lot split mutation and Lot
insertion, and Lot swap with machine speed mutation. They are detailed as follows:

(1) Lot insertion: from the lot permutation, many are randomly selected and inserted
into a different randomly picked position; (2) Lot swap: from the lot sequence vector, two
lots are randomly selected, and their positions are exchanged; (3) Lot split mutation: from
the lot split matrix, a stage is selected randomly in which a lot with two or more sublots
is randomly selected, and then two sublots are randomly selected. The random number
in the distribution is U[1, 5], reduced from the size of one sublot and added to another
sublot size; (4) Machine speed mutation: from the machine speed selection matrix, a stage is
selected randomly in which many sublots are randomly selected and the processing speed
level of each sublot is changed into a different one; (5) Combined structure 1: first, Lot
insertion is conducted, and then Lot split mutation is conducted; (6) Combined structure 2:
first, Lot swap is conducted, and then Lot split mutation is conducted; (7) Combined
structure 3: first, Lot insertion is conducted, and then Machine speed mutation is conducted;
(8) Combined structure 4: first, Lot swap is conducted, and then Machine speed mutation
is conducted.

To improve the utilization efficiency of the eight neighborhood structures, the variable
neighborhood descent [35] (VND) strategy is applied to each subproblem. The essence of
this approach is that a variety of neighborhood structures between the switch strategy are
used to explore the solution space. First, a trial solution Xi is chosen from the population,
where Xi denotes the ith solution. Then, a neighborhood solution X′ i is generated by using
the kth neighborhood structure Nk(k ∈ [1, . . . , 8]) of the solution Si, where Si denotes the
ith neighborhood solution. The obtained solution X′ i will replace the solution Xi when the
solution X′ i dominates the current solution Xi. Otherwise, the neighborhood structure is
switched to the next one and a local search is performed. The procedure of the employed
bee phase is displayed in Algorithm 1.

Algorithm 1. VND-based employed bee phase

1: For i = 1 to N do
2: Generate X′i by using a neighborhood Si
3: Update the external population use X′i
4: If g

(
X′i
∣∣∣λki

i

)
< g
(

Xi

∣∣∣λki
i

)
then

5: Xi ← X′i ; Si ← 1 ;
6: Else
7: Xi ← Xi ; Si ← Si + 1 ;
8: End if
9: If Nk > 8 then
10: k← 1 ;
11: End if
12: End for

Sustainability 2023, 15, 2622 13 of 29

4.5. WAS-Based Onlooker Bee Phase

In the classical ABC, the role of the onlooker bees is selecting a good solution with
a winning probability. To select good solutions, we employed the technique for order
preference by similarity to an ideal solution (TOPSIS) and the binary tournament selection
rule in this phase. First, two solutions are picked randomly, and the similarity to the ideal
solution is measured based on TOPSIS. Then, a better solution is chosen.

The crossover operators aim to share the information with other solutions. According
to the characteristics of the solution representation of MOHFGSP_CS. Position-based
crossover (PBX) is employed in this part because it has a greater chance of exploring the
unknown regions of the search space. This crossover operator for the lot sequence vector is
depicted in Figure 5. For the machine speed selection and lot split matrix, because of the
fixed lot size constraint, the PBX operator may result in an infeasible solution. Therefore, we
proposed lot split matrix and machine speed selection matrix, as shown in Figures 6 and 7.
Specifically, the split and select information are selected from the potential solutions with a
specific probability P, and a large P value can make the offspring inherit more information
from the potential solutions and is more likely to perform well.

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 31

individual, and k is the index of the weight vector nearest to individual P. λ must satisfy
the following two conditions:

(1) tan (,) tan (,)p k kdis ce dis ceλ λ λ λ< : the selected weight vector λ should ensure

that the distance increased between pλ and kλ ;

(2) tan (,) tan (,)kdis ce dis ce Wλ λ λ< : the selected weight vector λ is not very close to
the other weight vectors in the current population.

First, if the selected weight vector satisfies the above two conditions, it will be stored
in W, and its corresponding solution will be stored in set A, which is used to store the
archive solutions. Then, the weight vector with the largest distance pλ is selected for re-
placement. Finally, with each replacement operation completed, the distances of the ar-
chive members and the solutions in the population need to be updated separately. Given
the above, the procedure of the WAS-based onlooker bee phase is displayed in Algorithm
2.

Figure 5. Illustration of PBX for the lot sequence.

Figure 6. Illustration of lot split matrix.

Figure 5. Illustration of PBX for the lot sequence.

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 31

individual, and k is the index of the weight vector nearest to individual P. λ must satisfy
the following two conditions:

(1) tan (,) tan (,)p k kdis ce dis ceλ λ λ λ< : the selected weight vector λ should ensure

that the distance increased between pλ and kλ ;

(2) tan (,) tan (,)kdis ce dis ce Wλ λ λ< : the selected weight vector λ is not very close to
the other weight vectors in the current population.

First, if the selected weight vector satisfies the above two conditions, it will be stored
in W, and its corresponding solution will be stored in set A, which is used to store the
archive solutions. Then, the weight vector with the largest distance pλ is selected for re-
placement. Finally, with each replacement operation completed, the distances of the ar-
chive members and the solutions in the population need to be updated separately. Given
the above, the procedure of the WAS-based onlooker bee phase is displayed in Algorithm
2.

Figure 5. Illustration of PBX for the lot sequence.

Figure 6. Illustration of lot split matrix. Figure 6. Illustration of lot split matrix.

Sustainability 2023, 15, 2622 14 of 29

In most MOEAs based on decomposition, uniformly distributed weight vectors have
been designed, yet their performance on complex problems is still not ideal [36]. The inter-
section of the weight vector and the expected solution is not uniformly distributed [37]. To
ensure that every individual moves towards unexplored areas and maintains the diversity
of the population, we adopt the weight adjustment strategy (WAS) proposed by Liu [38],
which is more suitable to characterize the true distribution of solutions in irregular PF. For
the replacement of weight vectors, this strategy considers the solutions that have good
convergence to some extent and uses the Euclidean distance to estimate the diversity. W is
the pool of the weight vectors, λ is the weight vector of the selected individual, λp is the
weight vector of individual P, λp is the weight vector of the neighbor individual, and k is
the index of the weight vector nearest to individual P. λ must satisfy the following two
conditions:

(1) dis tan ce(λp, λk) < dis tan ce(λ, λk): the selected weight vector λ should ensure
that the distance increased between λp and λk;

(2) dis tan ce(λ, λk) < dis tan ce(λ, W): the selected weight vector λ is not very close to
the other weight vectors in the current population.

First, if the selected weight vector satisfies the above two conditions, it will be stored in
W, and its corresponding solution will be stored in set A, which is used to store the archive
solutions. Then, the weight vector with the largest distance λp is selected for replacement.
Finally, with each replacement operation completed, the distances of the archive members
and the solutions in the population need to be updated separately. Given the above, the
procedure of the WAS-based onlooker bee phase is displayed in Algorithm 2.

Algorithm 2. WAS-based onlooker bee phase

1: For i = 1 to N do
2: Select a promising solution Xa based on TOPSIS
3: Finding a partner solution Xb from Xa
4: Generate Xchild by conducting PBX Xa and Xb
5: Update the external population use Xchild
6: W ← Generate N initial weights
7: If g(Xchild|λa)< g(Xa|λa) then
8: Xa ← Xchild ;
9: Else
10: Xa ← Xa ;
11: End if
12: For j = 1 to T do
13: If g

(
Xchild

∣∣∣λb
)

< g
(

Xb

∣∣∣λb
)

then
14: Xb ← Xb ;
15: End if
16: λP = argmindistance(u, λP);
17: If distance(λP, λk) < distance(λ, λk) and distance(λ, λk) < distance(λ, W)
18: W ← λ ;
19: End if
20: λP = argmaxdistance(u, λP);
21: End for
22: End for

4.6. SIS-Based Scout Bee Phase

In the scout bee phase, individuals are abandoned if they do not have improvements
in consecutive generations. In basic ABC algorithms, an abandoned solution is replaced
by a randomly generated solution within a predefined search scope. This process will
reduce the searching efficiency and could worsen the random regeneration solution. For
this reason, we present two solution interaction operators to regenerate a better individual:
the solution-exchange operator and the solution-insert operator.

Sustainability 2023, 15, 2622 15 of 29

The solution-exchange operator: when a solution to its subproblem is not improved
and dominates the neighboring solutions to one of its subproblems, the two subproblems
will exchange their solutions. In particular, for the individual solution Xi that has not been

improved after successive L cycles, we exchanged it with a neighborhood solution Xk
i
.

The solution-insert operator: when the neighboring solution falls into the local opti-
mum, the insertion operator can retain a new individual solution. For the neighborhood
solution, find two different positions and insert them. If the first position is pt1 smaller than

the second position pt2, the neighborhood solution Xk
i

is inserted after the first position;
otherwise, it is inserted in front of the first position pt1.

The above two operations not only improve the search efficiency, but also reduce the
computational complexity.

The pseudo steps of the scout bee phase are shown in Algorithm 3.

Algorithm 3. SIS-based scout bee phase

1: For i = 1 to N do
2: If L(Xi) > L then
3: k← 1 ;
4: isExchanged← f alse
5: while isExchanged← f alse then

6: If Xi > Xk
i then

7: Xi ←→ Xk
i ;

8: isExchanged← true
9: Else
10: k++;
11: End if
12: If k > T then
13: pt1 ← random[1, T] ; pt2 ← random[1, T];
14: Xk

pt1+1 ← Xk
pt1

; Xk
pt1
← Xk

pt2
;

15: insert← true;
16: End if
17: End while
18: End if
19: End for

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 31

Figure 7. Illustration of the machine speed selection matrix.

4.6. SIS-Based Scout Bee Phase
In the scout bee phase, individuals are abandoned if they do not have improvements

in consecutive generations. In basic ABC algorithms, an abandoned solution is replaced
by a randomly generated solution within a predefined search scope. This process will re-
duce the searching efficiency and could worsen the random regeneration solution. For this
reason, we present two solution interaction operators to regenerate a better individual:
the solution-exchange operator and the solution-insert operator.

Algorithm 2. WAS-based onlooker bee phase

1: For 𝑖 = 1 to 𝑁 do
2: Select a promising solution Χ௔ based on TOPSIS
3: Finding a partner solution Χ௕ fromΧ௔
4: Generate Χ௖௛௜௟ௗ by conducting PBX Χ௔ andΧ௕
5: Update the external population use Χ௖௛௜௟ௗ
6: 𝑊 ←Generate N initial weights
7: If 𝒈(Χ௖௛௜௟ௗ|𝝀𝒂ሻ< 𝒈(Χ௔|𝝀𝒂ሻ then
8: Χ௔ ← Χ௖௛௜௟ௗ;
9: Else
10: Χ௔ ← Χ௔;
11: End if
12: For 𝑗=1 to 𝑇 do
13: If 𝒈൫Χ௖௛௜௟ௗห𝝀𝒃൯< 𝒈൫Χ௕ห𝝀𝒃൯ then
14: Χ௕ ← Χ௕;
15: End if
16: 𝜆௉ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢, 𝜆௉);
17: If 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜆௉, 𝜆௞ሻ < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜆, 𝜆௞ሻ and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜆, 𝜆௞ሻ < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜆, 𝑊ሻ
18: 𝑊 ← 𝜆;
19: End if
20: 𝜆௉ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢, 𝜆௉);
21: End for
22: End for

Figure 7. Illustration of the machine speed selection matrix.

5. Experiments and Results

In this section, we present computational experiments to demonstrate the effectiveness
of the proposed multiobjective optimization model and the MDABC. Small-scale instances

Sustainability 2023, 15, 2622 16 of 29

are solved on Gurobi 9.5.0 by assigning 20 uniform weights in the range of [0, 1] to the
two objectives. Thus, the solutions are obtained through 20 runs with the time limit
set as 1800 seconds. For all the compared MOEAs, the maximum CPU elapsed time
of n ×m× t milliseconds is used for the termination criterion, where n is the number
of lots, m is the number of stages, and t is a fixed value. This termination allows for
more computational time for instances with a larger-scale. Here, we set t = 100 in our
comprehensive experiments. All the algorithms are coded in C++ and run on a 3.10 GHz
Intel Pentium processor.

5.1. Test Data

To systematically assess the behavior of the MDABC, two sets of instances with
different scales are collected, including small-scale instances and large-scale instances [39],
which are labeled with n×m. n represents the number of lots, and m represents the number
of stages.

For small-scale instances, we generate the instances with n ∈ {2, 4, 6, 8, 10} and
m ∈ {2, 3, 4}, and this will lead to 15 different combinations by combining n and m. For
each n ×m, we have only one machine layout, resulting in 15 instances. Fifteen small
instances are to be solved by the Gurobi and the MOEAs. For large-scale instances, we
generate the instances with n ∈ {20, 40, 60, 80, 100} and m ∈ {3, 5, 8, 10}. This will lead to
20 different combinations by combining n and m. For each n×m, we have four different
machine layouts [7], resulting in 80 combinations. For each combination, five instances
are generated. Thus, 400 instances are generated in total and to be solved by the MOEAs.
The processing data are generated below. The number of units for each lot is obtained
using a uniform distribution U[50, 100]. The unit processing time is randomly given by
a uniform distribution U[1, 10]. The setup time and transportation time are, respectively,
obtained from uniform distributions U[50, 100] and U[10, 20]. In addition, the maximum
sublot quantity is set as 30.

The above instances are then obtained by adding machine speed and energy consump-
tion information [32]. The machine speed levels Vj at stage j is randomly given from a
uniform distribution U[1, 5]. The processing time pi,j,v of lot i that is processing a speed
level v at stage j can be calculated as pi,j,v = pi,j/cj,v . The processing power is calculated by
ppj,v = 4× cj,v. In addition, the setup power spj = 2, and the idle power ipj = 1.

5.2. Performance Metrics

In this paper, four performance metrics are chosen to evaluate the obtained PFs of
the algorithms [40]. They are the generational distance (GD), inverse GD (IGD), set cover
(C_metric), and the number of nondominated solutions (N_metric), which are detailed
as follows:

(1) GD: This metric measures how close between PFobtain and PFtrue, which can be
defined as:

GD =
1
N

√√√√ N

∑
i=1

d2
i

where N is the total number of solutions in PFobtain and di denotes the Euclidean distance
between the ith solution and its nearest solution in PFtrue. Usually, a smaller GD value
indicates better convergence of the algorithm. Note that a normalization method max–min
for each objective is used in this metric;

(2) IGD: This metric is a comprehensive indicator that reflects both the convergence
and diversity of the PFs, which can be formulated as:

IGD =
1

N∗

√√√√N∗

∑
i=1

d∗2i

Sustainability 2023, 15, 2622 17 of 29

where N∗ is the number of solutions in PFtrue and d∗i represents the Euclidean distance
between the ith solution and its nearest solution in PFobtain. Similar to GD, a smaller IGD
is preferred. Note that a normalization method max–min for each objective is used in
this metric;

(3) C_metric: This metric directly reflects the quality of the obtained PF. C(A, B)
represents the percentage of solutions in B that are dominated by the solutions in A, which
can be represented as:

C(A, B) =
|{m ∈ B |∀n ∈ A, n ⊆ m|

|B|
Obviously, a large value of C(A, B) and a small value of C(B, A) can reflect that A has

a better quality than B;
(4) N_metric [41]: This metric represents the number of nondominated solutions in

PFobtain. A large value can reflect the diversity of the obtained PF to some extent.

5.3. Parameter Setting

As we all know, the performance of algorithms is sensitive to parameter settings.
Therefore, it is important to set the appropriate parameters. All the parameter settings
of the MDABC considered in this study are listed below: the size of solutions in the
population (N), the number of neighboring solutions in a neighborhood (T), and the
number of consecutive generations in which a solution is not improved (R).

To gain empirical insight into the impact of the three parameters, the Taguchi method
is applied [42]. For each parameter, four reasonable levels are listed in Table 3, which are
determined in our preliminary experiments. For combing the parameter levels, the L16
orthogonal matrix is employed. In addition, the average IGD values (AVG) are collected as
the response values, which are shown in Table 4. Based on Table 4, the factor level trend
is displayed in Figure 8. From Table 4 and Figure 8, it is seen that a large N can facilitate
the exploration capability, but it goes against a deep search of the subproblems under a
limited termination criterion. A too small value for the parameter T may promote the
collaboration of extremely similar solutions, which may hinder global exploration. While a
too large value may lead to a lack of convergence. Regarding the parameter R, a small value
may cause a solution that is not fully developed to be discarded, while a large value may
cause a waste of computing resources. Based on the above description, the best parameter
configuration for MDABC is determined, i.e., N = 200, T = 25, and R = 30.

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 31

8 150 25 50 0.0260
9 200 10 50 0.0193

10 200 15 80 0.0199
11 200 20 20 0.0201
12 200 25 30 0.0156
13 250 10 80 0.0230
14 250 15 50 0.0215
15 250 20 30 0.0213
16 250 25 20 0.0216

Figure 8. The trend of the factor level.

5.4. Evaluation of the Proposed Strategies
This subsection is intended to assess the effectiveness of the strategies proposed in

this paper, including an adjustment weight strategy (WAS) and a solution interaction
strategy (SIS). In this subsection, MDABC represents the whole algorithm, MDABC1 rep-
resents the MDABC without WAS strategy, and MDABC2 denotes the MDABC without
SIS strategy. For a fair comparison environment, the three algorithms are conducted for
each instance 20 times independently, and the parameter settings are the same as in Sec-
tion 5.3. Table 5 shows the experimental results of MDABC, MDABC1, and MDABC2 in
terms of IGD, where the AVG and the standard variance (SD) values are presented.

From Table 5, based on the AVG values, it is clear that for each problem, the average
IGD value obtained by MDABC is much lower than that obtained by MDABC1 and
MDABC2; that is, MDABC can yield the PFs with the best diversity and convergence for
all of the problems. Concerning the SD values, when compared with MDABC1, MDABC
can yield the smallest value for 16 out of 20 problems except for 20 × 5, 60 × 10, 80 × 8, and
80 × 10. When MDABC is compared with MDABC2, MDABC achieves smaller values for
15 problems except for 20 × 5, 40 × 3, 80 × 5, 100 × 3, and 100 × 10.

Thus, it can be concluded that MDABC has the best robustness. Overall, it is clear
that MDABC outperforms MDABC1 and MDABC2. From the above observations, the va-
lidity of these two strategies is demonstrated. The reasons for the good performance of
MDABC are as follows. The WAS strategy allows the solutions to be optimized in different
directions, thereby improving the global exploration ability of the algorithm. The SIS strat-
egy can improve the local exploitation of the algorithm.

Figure 8. The trend of the factor level.

Sustainability 2023, 15, 2622 18 of 29

Table 3. Parameters and their levels.

Parameters
Parameter Level

1 2 3 4

N 100 150 200 250
T 10 15 20 25
R 20 30 50 80

Table 4. The orthogonal array and AVG values.

Test
Parameters

AVG
N T R

1 100 10 20 0.0238
2 100 15 30 0.0230
3 100 20 50 0.0295
4 100 25 80 0.0206
5 150 10 30 0.0237
6 150 15 20 0.0294
7 150 20 80 0.0254
8 150 25 50 0.0260
9 200 10 50 0.0193
10 200 15 80 0.0199
11 200 20 20 0.0201
12 200 25 30 0.0156
13 250 10 80 0.0230
14 250 15 50 0.0215
15 250 20 30 0.0213
16 250 25 20 0.0216

5.4. Evaluation of the Proposed Strategies

This subsection is intended to assess the effectiveness of the strategies proposed in this
paper, including an adjustment weight strategy (WAS) and a solution interaction strategy
(SIS). In this subsection, MDABC represents the whole algorithm, MDABC1 represents the
MDABC without WAS strategy, and MDABC2 denotes the MDABC without SIS strategy.
For a fair comparison environment, the three algorithms are conducted for each instance
20 times independently, and the parameter settings are the same as in Section 5.3. Table 5
shows the experimental results of MDABC, MDABC1, and MDABC2 in terms of IGD,
where the AVG and the standard variance (SD) values are presented.

From Table 5, based on the AVG values, it is clear that for each problem, the average
IGD value obtained by MDABC is much lower than that obtained by MDABC1 and
MDABC2; that is, MDABC can yield the PFs with the best diversity and convergence for all
of the problems. Concerning the SD values, when compared with MDABC1, MDABC can
yield the smallest value for 16 out of 20 problems except for 20 × 5, 60 × 10, 80 × 8, and
80 × 10. When MDABC is compared with MDABC2, MDABC achieves smaller values for
15 problems except for 20 × 5, 40 × 3, 80 × 5, 100 × 3, and 100 × 10.

Thus, it can be concluded that MDABC has the best robustness. Overall, it is clear that
MDABC outperforms MDABC1 and MDABC2. From the above observations, the validity
of these two strategies is demonstrated. The reasons for the good performance of MDABC
are as follows. The WAS strategy allows the solutions to be optimized in different directions,
thereby improving the global exploration ability of the algorithm. The SIS strategy can
improve the local exploitation of the algorithm.

Sustainability 2023, 15, 2622 19 of 29

Table 5. IGD mean values of the proposed strategies.

Problem MDABC MDABC1 MDABC2

20 × 3 0.0474(0.0256) 0.1853(0.0199) 0.2496(0.0267)
20 × 5 0.0509(0.0261) 0.1959(0.0204) 0.2450(0.0270)
20 × 8 0.0536(0.0229) 0.2085(0.0247) 0.2470(0.0299)

20 × 10 0.0541(0.0233) 0.2259(0.0317) 0.2515(0.0231)
40 × 3 0.0405(0.0210) 0.1840(0.0223) 0.2481(0.0207)
40 × 5 0.0563(0.0256) 0.2092(0.0268) 0.2637(0.0289)
40 × 8 0.0553(0.0229) 0.2399(0.0250) 0.3175(0.0283)

40 × 10 0.0611(0.0223) 0.2149(0.0226) 0.2731(0.0277)
60 × 3 0.0462(0.0236) 0.1942(0.0286) 0.2587(0.0226)
60 × 5 0.0500(0.0215) 0.2353(0.0240) 0.2945(0.0231)
60 × 8 0.0620(0.0262) 0.2466(0.0273) 0.3083(0.0272)

60 × 10 0.0586(0.0244) 0.2321(0.0221) 0.2897(0.0295)
80 × 3 0.0468(0.0225) 0.1921(0.0292) 0.2706(0.0292)
80 × 5 0.0552(0.0248) 0.2591(0.0272) 0.3299(0.0203)
80 × 8 0.0536(0.0231) 0.2487(0.0167) 0.3164(0.0299)

80 × 10 0.0725(0.0261) 0.2834(0.0219) 0.3609(0.0284)
100 × 3 0.0507(0.0227) 0.2259(0.0287) 0.2983(0.0211)
100 × 5 0.0557(0.0189) 0.2536(0.0230) 0.3336(0.0296)
100 × 8 0.0699(0.0236) 0.2736(0.0306) 0.3360(0.0245)
100 × 10 0.0680(0.0235) 0.2768(0.0289) 0.3569(0.0216)

Mean 0.0054(0.0243) 0.2292(0.0245) 0.2925(0.0250)

5.5. Comparison of the Proposed MDABC with Other Algorithms in Small-Scale Instances

To evaluate the performance of the proposed MDABC, we compare it with four
state-of-the-art MOEAs in the literature, i.e., MOEA/D [43], NSGA-II [44], TMOA [30],
and MOCGWO [45]. To our knowledge, they all have been proven to have excellent
performance. MOEA/D and NSGA-II are two well-known algorithm frameworks that
use different fitness evaluation methods. TMOA and MOCGWO are specially designed to
solve energy-efficient HFSPs, and they all incorporated energy reduction strategies. Thus,
these four algorithms can be well adapted to our problem. To create a fair environment, the
parameter settings for all compared algorithms are the same as in Section 5.3.

To obtain the computational results for the small-scale instances, each algorithm is run
independently 20 times for each instance. Tables 6–9 report AVG and SD values for small-
scale instances based on GD, IGD, C-metric, and N-metric, respectively. From Table 6, based
on the GD values, it can be seen that the Gurobi can acquire the best AVG values for the
four smallest instances. The reason behind this is that the Gurobi can solve these instances
to optimality within the limited time, and obviously can have the best convergence. With
the increase in the number of lots and stages, it is difficult for Gurobi to obtain the optimal
solutions under the time constraint of 1800 s. Regarding the MOEAs, MDABC obtained
the smallest AVG values based on GD for these instances. From Table 7, based on the IGD
values, the Gurobi performs better for the five instances. This is because IGD reflects not
only convergence but also distribution, and the distribution of solutions obtained by means
of weight allocation in a limited time is not very good. Regarding the MOEAs, MDABC
obtained the smallest IGD values for these instances. Table 8 shows that for these instances,
Gurobi does not obtain the best C-metric values. This can be reflected by the N-metric
values given in Table 9, where Gurobi obtains the smallest values in all instances. For
these two averages, the proposed MDABC once again performs best among the MOEAs.
Regarding the SD values, the SD values obtained by the Gurobi are always smaller.

Sustainability 2023, 15, 2622 20 of 29

Table 6. AVG(SD) values for small-scale problems based on GD.

Problem Gurobi MDABC MOEA/D MOCGWO TMOA NSGA-II

2 × 2 0.0006(0.0143) 0.0180(0.0120) 0.0573(0.0080) 0.0765(0.0116) 0.0668(0.0092) 0.1306(0.0143)
2 × 3 0.0028(0.0140) 0.0089(0.0052) 0.0468(0.0061) 0.0617(0.0114) 0.0524(0.0082) 0.1078(0.0140)
2 × 4 0.0084(0.0168) 0.0092(0.0051) 0.0529(0.0068) 0.0645(0.0077) 0.0594(0.0080) 0.1184(0.01680
4 × 2 0.0009(0.0272) 0.0137(0.0085) 0.0779(0.0096) 0.0826(0.0122) 0.0828(0.0085) 0.1809(0.0272)
4 × 3 0.1871(0.0310) 0.0106(0.0065) 0.0823(0.0160) 0.0126(0.0126) 0.0862(0.0128) 0.1871(0.0310)
4 × 4 0.1720(0.0270) 0.0074(0.0043) 0.0771(0.0097) 0.0104(0.0104) 0.0816(0.0099) 0.1720(0.0270)
6 × 2 0.1933(0.0237) 0.0103(0.0068) 0.0884(0.0103) 0.0122(0.0122) 0.0934(0.0113) 0.1933(0.0237)
6 × 3 0.0249(0.0331) 0.0101(0.0062) 0.0922(0.0103) 0.0942(0.0131) 0.0985(0.0107) 0.2049(0.0331)
6 × 4 0.0107(0.0353) 0.0078(0.0042) 0.0908(0.0112) 0.0903(0.0121) 0.0982(0.0127) 0.2027(0.0353)
8 × 2 0.2307(0.0291) 0.0097(0.0061) 0.0899(0.0102) 0.0933(0.0108) 0.0964(0.0109) 0.2037(0.0291)
8 × 3 0.2067(0.0355) 0.0085(0.0052) 0.1019(0.0117) 0.1012(0.0132) 0.1106(0.0137) 0.2218(0.0355)
8 × 4 0.2044(0.0323) 0.0083(0.0056) 0.1084(0.0142) 0.1058(0.0144) 0.1167(0.0131) 0.2244(0.0291)

10 × 2 0.3060(0.0343) 0.0086(0.0053) 0.0970(0.0120) 0.1014(0.0169) 0.1067(0.0134) 0.2136(0.0355)
10 × 3 0.3086(0.0342) 0.0071(0.0044) 0.1018(0.0131) 0.0972(0.0162) 0.1064(0.0148) 0.2079(0.0323)
10 × 4 0.2062(0.0350) 0.0064(0.0037) 0.1072(0.0116) 0.1029(0.0187) 0.1142(0.0131) 0.2291(0.0342)
Mean 0.1978(0.0282) 0.0096(0.0059) 0.0848(0.0104) 0.0738(0.0129) 0.0914(0.0113) 0.1866(0.0528)

Table 7. AVG(SD) values for small-scale problems based on IGD.

Problem Gurobi MDABC MOEA/D MOCGWO TMOA NSGA-II

2 × 2 0.2230(0.0291) 0.1819(0.1037) 0.4281(0.0125) 0.4572(0.0115) 0.4454(0.0119) 0.4747(0.0149)
2 × 3 0.1444(0.0332) 0.0873(0.0478) 0.2908(0.0103) 0.3188(0.0121) 0.3036(0.0088) 0.3444(0.0132)
2 × 4 0.1630(0.0407) 0.0905(0.0494) 0.3195(0.0103) 0.3383(0.0108) 0.3275(0.0107) 0.3630(0.0107)
4 × 2 0.0408(0.0321) 0.0975(0.0526) 0.3916(0.0110) 0.3928(0.0161) 0.3987(0.0133) 0.4806(0.0167)
4 × 3 0.0426(0.0233) 0.0881(0.0448) 0.3920(0.0110) 0.3764(0.0145) 0.3928(0.0131) 0.4826(0.0211)
4 × 4 0.0718(0.0356) 0.0708(0.0373) 0.3920(0.0113) 0.3745(0.0151) 0.3953(0.0113) 0.4718(0.0165)
6 × 2 0.0998(0.0513) 0.0793(0.0452) 0.4036(0.0138) 0.3867(0.0209) 0.4044(0.0127) 0.4998(0.0185)
6 × 3 0.1318(0.0410) 0.0802(0.0445) 0.4339(0.0137) 0.4133(0.0203) 0.4387(0.0124) 0.5318(0.0207)
6 × 4 0.1328(0.0411) 0.0692(0.0393) 0.4347(0.0137) 0.4215(0.0180) 0.4409(0.0122) 0.5328(0.0203)
8 × 2 0.0446(0.0310) 0.0708(0.0423) 0.4414(0.0142) 0.4374(0.0178) 0.4499(0.0124) 0.5446(0.0181)
8 × 3 0.1801(0.0131) 0.0689(0.0415) 0.4711(0.0135) 0.4502(0.0201) 0.4790(0.0126) 0.5801(0.0228)
8 × 4 0.0056(0.0342) 0.0704(0.0384) 0.4973(0.0125) 0.4751(0.0197) 0.5021(0.0133) 0.6056(0.0231)

10 × 2 0.0603(0.0323) 0.0715(0.0414) 0.4578(0.0135) 0.4349(0.0213) 0.4633(0.0117) 0.5603(0.0170)
10 × 3 0.0845(0.0141) 0.0655(0.0376) 0.4834(0.0148) 0.4544(0.0194) 0.4858(0.0137) 0.5845(0.0219)
10 × 4 0.0979(0.0310) 0.0531(0.0309) 0.4933(0.0133) 0.4515(0.0182) 0.4988(0.0122) 0.5979(0.0200)
Mean 0.0513(0.0346) 0.0830(0.0464) 0.4220(0.0126) 0.4122(0.0170) 0.4284(0.0122) 0.5103(0.0184)

Table 8. AVG(SD) values for small-scale problems based on C-metric.

Problem A:MDABC B:MOEA/D A:MDABC B:MOCGWO

C (A, B) C (B, A) C (A, C) C (C, A)

2 × 2 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
2 × 3 1.000(0.000) 0.000(0.000) 1.000(0.001) 0.000(0.000)
2 × 4 0.998(0.004) 0.000(0.000) 1.000(0.000) 0.000(0.001)
4 × 2 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
4 × 3 0.999(0.001) 0.000(0.000) 1.000(0.000) 0.000(0.000)
4 × 4 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
6 × 2 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
6 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
6 × 4 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
8 × 2 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
8 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
8 × 4 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)

Sustainability 2023, 15, 2622 21 of 29

Table 8. Cont.

Problem A:MDABC B:MOEA/D A:MDABC B:MOCGWO

C (A, B) C (B, A) C (A, C) C (C, A)

10 × 2 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
10 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
10 × 4 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
Mean 0.999(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)

Problem A: MDABC B: TMOA A: MDABC B:N B:NSGA-II A: MDABC B:NB:Gurobi

C(A, D) C(D, A) C(A, E) C(E, A) C(A, F) C(F, A)

2 × 2 0.998(0.004) 0.001(0.007) 1.000(0.000) 0.000(0.000) 0.970(0.036) 0.017(0.001)
2 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.984(0.019) 0.005(0.008)
2 × 4 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.981(0.020) 0.005(0.007)
4 × 2 0.999(0.002) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
4 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
4 × 4 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.994(0.014) 0.001(0.003)
6 × 2 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
6 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.016) 0.000(0.000)
6 × 4 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
8 × 2 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
8 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
8 × 4 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)

10 × 2 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
10 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
10 × 4 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
Mean 0.999(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.995(0.006) 0.001(0.002)

Table 9. AVG(SD) values for small-scale problems based on N-metric.

Problem Gurobi MDABC MOEA/D MOCGWO TMOA NSGA-II

2 × 2 5.9(1.5) 92.3(32.1) 39.4(7.9) 24.8(5.0) 31.5(6.5) 16.5(1.8)
2 × 3 6.1(1.6) 117.8(31.5) 36.7(6.0) 24.8(5.4) 29.9(5.9) 11.2(2.9)
2 × 4 6.5(1.3) 112.4(23.7) 31.7(5.3) 24.6(4.9) 26.5(5.7) 11.5(1.9)
4 × 2 5.9(1.6) 87.2(23.1) 27.0(4.9) 23.2(4.5) 23.6(3.5) 13.7(3.7)
4 × 3 5.8(0.8) 86.3(31.9) 22.0(4.0) 19.1(4.1) 19.9(3.7) 19.7(2.8)
4 × 4 6.1(1.5) 96.4(20.9) 21.3(3.8) 18.6(4.0) 20.1(3.9) 17.2(1.3)
6 × 2 6.4(1.5) 90.2(23.5) 22.3(4.2) 20.5(4.3) 19.8(3.8) 12.3(2.2)
6 × 3 6.1(1.3) 80.8(20.8) 19.8(3.6) 16.1(3.7) 17.9(2.9) 25.2(2.0)
6 × 4 6.2(1.4) 99.4(29.4) 20.3(4.3) 16.8(3.5) 17.8(3.4) 14.7(3.3)
8 × 2 6.3(1.0) 100.5(23.5) 22.9(3.9) 19.1(3.2) 20.5(3.2) 35.7(2.2)
8 × 3 6.4(1.5) 89.2(23.0) 18.4(3.3) 16.3(3.2) 16.6(3.0) 13.2(3.4)
8 × 4 6.1(1.3) 99.4(19.5) 18.0(3.6) 14.8(3.3) 15.8(3.0) 11.8(2.3)

10 × 2 8.1(1.2) 86.2(17.6) 20.5(3.9) 16.8(3.9) 17.5(3.6) 19.3(3.2)
10 × 3 8.1(1.3) 111.6(24.9) 18.1(3.6) 16.2(3.7) 17.1(3.6) 36.5(3.9)
10 × 4 7.5(1.4) 109.2(20.5) 17.5(3.0) 14.3(3.2) 15.6(3.1) 18.0(2.9)
Mean 6.4(1.3) 97.2(24.3) 23.7(4.3) 19.0(4.0) 20.7(3.9) 18.4(2.6)

5.6. Comparison of the Proposed MDABC with Other Algorithms in Large-Scale Problems

For the large-scale instances, each algorithm is run independently 20 times for each
instance, and then the results are averaged and grouped into the same scale. Tables 10–13
demonstrate the AVG and SD values for large-scale instances based on GD, IGD, C-metric,
and N-metric, respectively. The results in Table 10 show that the GD-metric values of the
MDABC are the lowest among all the algorithms. This means that the Pareto solutions
obtained by the MDABC algorithm are closest to the Pareto solutions in the true PF. Table 11
shows the IGD-metric values of the MDABC. In terms of average IGD values, MDABC
is the winner in each instance of all algorithms. From the IGD-metric of the SD values,

Sustainability 2023, 15, 2622 22 of 29

MDABC performs better than NSGA-II, TMOA, and MOCGWO, but worse than MOEA/D
on 80× 10 and 100× 10. Similar to the GD values, we can further demonstrate the diversity
and strong robustness of the solution generated by the MDABC. As presented in Table 12,
the proposed MDABC performs outstandingly when testing 20 problems which receive
the highest C-metric values. From the above observations, it can be concluded that the
Pareto solutions of the other four algorithms are dominated by the Pareto solutions of the
MDABC. From Table 13, we can observe that the MDABC is significantly superior to its
competitors on almost all problems in terms of the N-metric.

Table 10. AVG(SD) values for large-scale problems based on GD.

Problem MDABC MOEA/D MOCGWO TMOA NSGA-II

20 × 3 0.0059(0.0033) 0.0889(0.0011) 0.0716(0.0137) 0.0874(0.0105) 0.1829(0.0275)
20 × 5 0.0066(0.0037) 0.0901(0.0131) 0.0691(0.0112) 0.0863(0.0131) 0.1718(0.0229)
20 × 8 0.0073(0.0032) 0.0954(0.0133) 0.0741(0.0162) 0.0963(0.0144) 0.1883(0.0279)

20 × 10 0.0079(0.0040) 0.0968(0.0116) 0.0766(0.0185) 0.0978(0.0129) 0.2039(0.0329)
40 × 3 0.0047(0.0024) 0.0985(0.0109) 0.0837(0.0151) 0.0960(0.0116) 0.1812(0.0225)
40 × 5 0.0074(0.0040) 0.1088(0.0156) 0.0999(0.0179) 0.1104(0.0141) 0.2113(0.0294)
40 × 8 0.0080(0.0041) 0.1262(0.0194) 0.1187(0.0260) 0.1238(0.0185) 0.2357(0.0357)

40 × 10 0.0111(0.0047) 0.1118(0.0188) 0.1031(0.0190) 0.1078(0.0156) 0.2203(0.0364)
60 × 3 0.0065(0.0033) 0.1074(0.0122) 0.0978(0.0159) 0.1069(0.0131) 0.2045(0.0357)
60 × 5 0.0079(0.0038) 0.1098(0.0131) 0.1010(0.0150) 0.1112(0.0119) 0.2070(0.0315)
60 × 8 0.0108(0.0053) 0.1142(0.0156) 0.1093(0.0201) 0.1145(0.0179) 0.2127(0.0295)

60 × 10 0.0114(0.0051) 0.1074(0.0152) 0.1093(0.0211) 0.1122(0.0156) 0.2059(0.0333)
80 × 3 0.0067(0.0032) 0.1081(0.0134) 0.1018(0.0167) 0.1069(0.0121) 0.2062(0.0328)
80 × 5 0.0086(0.0044) 0.1159(0.0177) 0.1132(0.0224) 0.1140(0.0158) 0.2042(0.0272)
80 × 8 0.0095(0.0049) 0.1078(0.0157) 0.1112(0.0197) 0.1085(0.0130) 0.1989(0.0304)

80 × 10 0.0173(0.0079) 0.1409(0.0200) 0.1489(0.0307) 0.1355(0.0166) 0.2479(0.0425)
100 × 3 0.0068(0.0032) 0.1093(0.0148) 0.1044(0.0161) 0.1076(0.0136) 0.1993(0.0291)
100 × 5 0.0100(0.0045) 0.1165(0.0151) 0.1144(0.0187) 0.1142(0.0141) 0.2092(0.0269)
100 × 8 0.0141(0.0069) 0.1153(0.0178) 0.1249(0.0231) 0.1200(0.0187) 0.2189(0.0349)
100 × 10 0.0161(0.0078) 0.1307(0.0185) 0.1401(0.0241) 0.1281(0.0174) 0.2309(0.0410)

Mean 0.0092(0.0045) 0.1100(0.0151) 0.1037(0.0191) 0.1093(0.0145) 0.2071(0.0315)

Table 11. AVG(SD) values for large-scale problems based on IGD.

Problem MDABC MOEA/D MOCGWO TMOA NSGA-II

20 × 3 0.0451(0.0244) 0.4209(0.0139) 0.3880(0.0169) 0.4192(0.0137) 0.5150(0.0153)
20 × 5 0.0484(0.0247) 0.4215(0.0127) 0.4025(0.0174) 0.4221(0.0112) 0.5202(0.0169)
20 × 8 0.0485(0.0215) 0.4100(0.0163) 0.3941(0.0200) 0.4144(0.0162) 0.5189(0.0202)

20 × 10 0.0502(0.0224) 0.4228(0.0165) 0.4066(0.0253) 0.4212(0.0185) 0.5376(0.0125)
40 × 3 0.0396(0.0206) 0.4549(0.0156) 0.4241(0.0183) 0.4498(0.0151) 0.5426(0.0167)
40 × 5 0.0519(0.0246) 0.4607(0.0173) 0.4429(0.0251) 0.4618(0.0179) 0.5641(0.0214)
40 × 8 0.0506(0.0227) 0.4964(0.0200) 0.4610(0.0243) 0.4933(0.0259) 0.6068(0.0229)

40 × 10 0.0563(0.0228) 0.4299(0.0173) 0.4174(0.0229) 0.4329(0.0189) 0.5434(0.0206)
60 × 3 0.0449(0.0231) 0.4750(0.0164) 0.4492(0.0221) 0.4715(0.0158) 0.5698(0.0208)
60 × 5 0.0472(0.0210) 0.4769(0.0179) 0.4640(0.0179) 0.4799(0.0150) 0.5770(0.0194)
60 × 8 0.0578(0.0253) 0.4791(0.0243) 0.4538(0.0274) 0.4714(0.0201) 0.5726(0.0183)

60 × 10 0.0556(0.0235) 0.4478(0.0169) 0.4321(0.0246) 0.4460(0.0211) 0.5489(0.0183)
80 × 3 0.0455(0.0227) 0.4705(0.0172) 0.4471(0.0193) 0.4652(0.0166) 0.5592(0.0171)
80 × 5 0.0540(0.0245) 0.4919(0.0202) 0.4825(0.0219) 0.4893(0.0223) 0.5874(0.0186)
80 × 8 0.0524(0.0228) 0.4578(0.0145) 0.4523(0.0214) 0.4533(0.0196) 0.5522(0.0203)

80 × 10 0.0692(0.0251) 0.5014(0.0188) 0.4858(0.0305) 0.4978(0.0307) 0.6025(0.0256)
100 × 3 0.0488(0.0222) 0.4778(0.0168) 0.4678(0.0221) 0.4793(0.0160) 0.5673(0.0176)
100 × 5 0.0544(0.0226) 0.4776(0.0168) 0.4680(0.0214) 0.4740(0.0186) 0.5677(0.0169)
100 × 8 0.0682(0.0309) 0.4647(0.0165) 0.4633(0.0253) 0.4619(0.0231) 0.5587(0.0198)
100 × 10 0.0641(0.0290) 0.4716(0.0168) 0.4630(0.0269) 0.4675(0.0241) 0.5686(0.0239)

Mean 0.0527(0.0239) 0.4605(0.0172) 0.4433(0.0226) 0.4586(0.0191) 0.5590(0.0196)

Sustainability 2023, 15, 2622 23 of 29

Table 12. AVG(SD) values for large-scale problems based on C-metric.

Problem A: MDABC B: MOEA/D A: MDABC B: MOCGWO A: MDABC B: TMOA A: MDABC B:N B:NSGA-II

C(A, B) C(B, A) C(A, C) C(C, A) C(A, D) C(D, A) C(A, E) C(E, A)

20 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
20 × 5 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
20 × 8 1.000(0.000) 0.000(0.000) 0.997(0.007) 0.001(0.002) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)

20 × 10 1.000(0.000) 0.000(0.000) 0.998(0.005) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
40 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
40 × 5 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.999(0.003) 0.000(0.003) 1.000(0.000) 0.000(0.000)
40 × 8 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)

40 × 10 1.000(0.000) 0.000(0.000) 0.996(0.010) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
60 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
60 × 5 1.000(0.000) 0.000(0.000) 0.999(0.002) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
60 × 8 1.000(0.000) 0.000(0.000) 0.993(0.010) 0.001(0.003) 0.999(0.003) 0.000(0.000) 1.000(0.000) 0.000(0.000)

60 × 10 0.996(0.008) 0.000(0.000) 0.986(0.031) 0.000(0.001) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
80 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
80 × 5 1.000(0.000) 0.000(0.000) 0.997(0.007) 0.000(0.001) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
80 × 8 1.000(0.000) 0.000(0.000) 0.997(0.006) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)

80 × 10 0.999(0.002) 0.000(0.000) 0.998(0.006) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
100 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
100 × 5 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.999(0.002) 0.000(0.000) 1.000(0.000) 0.000(0.000)
100 × 8 0.999(0.003) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.999(0.002) 0.000(0.000) 1.000(0.000) 0.000(0.000)
100 × 10 0.998(0.004) 0.000(0.001) 0.995(0.007) 0.003(0.007) 0.994(0.014) 0.002(0.019) 1.000(0.000) 0.000(0.000)

Mean 0.996(0.001) 0.000(0.000) 0.997(0.005) 0.007(0.001) 0.999(0.001) 0.001(0.001) 1.000(0.000) 0.000(0.000)

Table 13. AVG(SD) values for large-scale problems based on N-metric.

Problem MDABC MOEA/D MOCGWO TMOA NSGA-II

20 × 3 114.0(12.2) 14.7(3.1) 12.8(2.6) 15.3(2.8) 5.8(1.4)
20 × 5 83.2(13.0) 13.1(3.1) 11.9(2.5) 14.0(3.3) 5.7(1.2)
20 × 8 62.7(9.9) 11.5(2.6) 9.8(2.2) 11.6(2.7) 5.2(1.2)

20 × 10 58.1(8.9) 11.7(2.3) 9.2(2.2) 11.4(2.3) 4.8(1.3)
40 × 3 90.2(12.6) 14.3(2.5) 11.2(2.2) 15.0(2.8) 6.0(1.1)
40 × 5 64.3(9.8) 12.4(2.9) 9.5(2.3) 12.1(2.7) 5.0(1.0)
40 × 8 47.0(7.8) 11.1(2.8) 7.9(2.2) 11.1(2.8) 4.8(1.2)

40 × 10 41.4(6.6) 10.9(2.6) 8.1(1.6) 11.3(2.5) 4.8(1.1)
60 × 3 78.7(13.7) 13.8(2.5) 9.9(2.4) 14.1(2.9) 5.6(1.6)
60 × 5 54.1(8.1) 12.6(2.4) 9.7(2.3) 12.4(2.3) 5.3(1.1)
60 × 8 40.3(6.2) 11.2(2.7) 8.4(2.0) 11.3(2.9) 5.2(0.8)

60 × 10 35.8(5.0) 11.4(2.2) 7.9(1.9) 10.0(2.2) 5.0(1.2)
80 × 3 65.2(9.0) 13.2(2.6) 10.3(2.7) 13.2(2.6) 5.3(1.4)
80 × 5 47.5(7.8) 12.5(3.0) 9.1(2.1) 12.7(2.5) 5.8(1.1)
80 × 8 37.8(6.3) 11.4(2.4) 7.9(2.0) 10.8(1.9) 5.1(1.4)

80 × 10 28.1(4.2) 9.6(1.9) 7.4(2.4) 10.2(1.9) 4.9(1.7)
100 × 3 60.0(8.9) 13.8(2.6) 9.8(2.1) 13.7(2.8) 5.8(1.4)
100 × 5 40.2(6.3) 11.6(2.5) 9.0(2.0) 11.8(2.3) 5.1(1.1)
100 × 8 31.4(4.6) 11.2(2.5) 7.8(1.7) 10.4(2.7) 5.0(1.4)
100 × 10 26.8(4.6) 10.1(2.7) 7.3(1.9) 9.8(2.2) 5.2(1.7)

Mean 55.3(7.8) 12.1(2.6) 9.2(2.2) 12.1(2.6) 5.3(1.3)

Figures 9–11 display the variance values with Tukey’s HSD (honesty significant differ-
ence) at the 95% confidence level in large-scale instances. Figures 9–11 show that MDABC
obtains the obviously lowest GD and IGD values and the largest C-metric and N-metric
values among the five algorithms. Figures 12 and 13 present the convergence curve of the
GD and IGD values for the increase of stages and jobs. Based on the GD values, we can see
that as the number of stages increases, MDABC, MOEA/D, MOCGWO, and TMOA exhibit
slight improvement; however, NSGA_II increases significantly, as shown in Figure 12a. In
Figure 12b, MDABC remains unchanged with the increase in lots, and the other algorithms
have an obvious corresponding change. Based on the IGD values, Figure 13a reveals that all
algorithms remain relatively stable. Figure 13b shows that the performances of MOEA/D,

Sustainability 2023, 15, 2622 24 of 29

MOCGWO, TMOA, and NSGA_II have remarkable improvement with increasing lots.
Meanwhile, MDABC remains stable with the growth of lots. From the above results, we
can conclude that the proposed MDABC is highly competitive in terms of convergence,
distribution, and stability.

To visualize the performance of MDABC and its peers, Figure 14 displays the approxi-
mation of Pareto fronts found by those algorithms for four representative problems. The
horizontal coordinate represents the maximum makespan time, and the vertical coordinate
represents the total energy consumption (TEC). As expected, the nondominated solutions
obtained by the MDABC have better quantity and distribution, and the corresponding PF
is lower than that of the other algorithms.

Sustainability 2022, 14, x FOR PEER REVIEW 24 of 31

80 × 3 0.0067(0.0032) 0.1081(0.0134) 0.1018(0.0167) 0.1069(0.0121) 0.2062(0.0328)
80 × 5 0.0086(0.0044) 0.1159(0.0177) 0.1132(0.0224) 0.1140(0.0158) 0.2042(0.0272)
80 × 8 0.0095(0.0049) 0.1078(0.0157) 0.1112(0.0197) 0.1085(0.0130) 0.1989(0.0304)
80 × 10 0.0173(0.0079) 0.1409(0.0200) 0.1489(0.0307) 0.1355(0.0166) 0.2479(0.0425)
100 × 3 0.0068(0.0032) 0.1093(0.0148) 0.1044(0.0161) 0.1076(0.0136) 0.1993(0.0291)
100 × 5 0.0100(0.0045) 0.1165(0.0151) 0.1144(0.0187) 0.1142(0.0141) 0.2092(0.0269)
100 × 8 0.0141(0.0069) 0.1153(0.0178) 0.1249(0.0231) 0.1200(0.0187) 0.2189(0.0349)

100 × 10 0.0161(0.0078) 0.1307(0.0185) 0.1401(0.0241) 0.1281(0.0174) 0.2309(0.0410)
Mean 0.0092(0.0045) 0.1100(0.0151) 0.1037(0.0191) 0.1093(0.0145) 0.2071(0.0315)

Figure 9. The mean plot and 95% confidence intervals on GD for large-scale problems.

Table 11. AVG(SD) values for large-scale problems based on IGD.

Problem MDABC MOEA/D MOCGWO TMOA NSGA-II
20 × 3 0.0451(0.0244) 0.4209(0.0139) 0.3880(0.0169) 0.4192(0.0137) 0.5150(0.0153)
20 × 5 0.0484(0.0247) 0.4215(0.0127) 0.4025(0.0174) 0.4221(0.0112) 0.5202(0.0169)
20 × 8 0.0485(0.0215) 0.4100(0.0163) 0.3941(0.0200) 0.4144(0.0162) 0.5189(0.0202)
20 × 10 0.0502(0.0224) 0.4228(0.0165) 0.4066(0.0253) 0.4212(0.0185) 0.5376(0.0125)
40 × 3 0.0396(0.0206) 0.4549(0.0156) 0.4241(0.0183) 0.4498(0.0151) 0.5426(0.0167)
40 × 5 0.0519(0.0246) 0.4607(0.0173) 0.4429(0.0251) 0.4618(0.0179) 0.5641(0.0214)
40 × 8 0.0506(0.0227) 0.4964(0.0200) 0.4610(0.0243) 0.4933(0.0259) 0.6068(0.0229)
40 × 10 0.0563(0.0228) 0.4299(0.0173) 0.4174(0.0229) 0.4329(0.0189) 0.5434(0.0206)
60 × 3 0.0449(0.0231) 0.4750(0.0164) 0.4492(0.0221) 0.4715(0.0158) 0.5698(0.0208)
60 × 5 0.0472(0.0210) 0.4769(0.0179) 0.4640(0.0179) 0.4799(0.0150) 0.5770(0.0194)
60 × 8 0.0578(0.0253) 0.4791(0.0243) 0.4538(0.0274) 0.4714(0.0201) 0.5726(0.0183)
60 × 10 0.0556(0.0235) 0.4478(0.0169) 0.4321(0.0246) 0.4460(0.0211) 0.5489(0.0183)
80 × 3 0.0455(0.0227) 0.4705(0.0172) 0.4471(0.0193) 0.4652(0.0166) 0.5592(0.0171)
80 × 5 0.0540(0.0245) 0.4919(0.0202) 0.4825(0.0219) 0.4893(0.0223) 0.5874(0.0186)
80 × 8 0.0524(0.0228) 0.4578(0.0145) 0.4523(0.0214) 0.4533(0.0196) 0.5522(0.0203)
80 × 10 0.0692(0.0251) 0.5014(0.0188) 0.4858(0.0305) 0.4978(0.0307) 0.6025(0.0256)
100 × 3 0.0488(0.0222) 0.4778(0.0168) 0.4678(0.0221) 0.4793(0.0160) 0.5673(0.0176)
100 × 5 0.0544(0.0226) 0.4776(0.0168) 0.4680(0.0214) 0.4740(0.0186) 0.5677(0.0169)
100 × 8 0.0682(0.0309) 0.4647(0.0165) 0.4633(0.0253) 0.4619(0.0231) 0.5587(0.0198)

100 × 10 0.0641(0.0290) 0.4716(0.0168) 0.4630(0.0269) 0.4675(0.0241) 0.5686(0.0239)
Mean 0.0527(0.0239) 0.4605(0.0172) 0.4433(0.0226) 0.4586(0.0191) 0.5590(0.0196)

Figure 9. The mean plot and 95% confidence intervals on GD for large-scale problems.

Sustainability 2022, 14, x FOR PEER REVIEW 25 of 31

Figure 10. The mean plot and 95% confidence intervals on IGD for large-scale problems.

Table 12. AVG(SD) values for large-scale problems based on C-metric.

Problem A: MDABC B: MOEA/D A: MDABC B: MOCGWO A: MDABC B: TMOA A: MDABCB:N B:NSG
 C(A, B) C(B, A) C(A, C) C(C, A) C(A, D) C(D, A) C(A, E) C(E, A)

20 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
20 × 5 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
20 × 8 1.000(0.000) 0.000(0.000) 0.997(0.007) 0.001(0.002) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)

20 × 10 1.000(0.000) 0.000(0.000) 0.998(0.005) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
40 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
40 × 5 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.999(0.003) 0.000(0.003) 1.000(0.000) 0.000(0.000)
40 × 8 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)

40 × 10 1.000(0.000) 0.000(0.000) 0.996(0.010) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
60 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
60 × 5 1.000(0.000) 0.000(0.000) 0.999(0.002) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
60 × 8 1.000(0.000) 0.000(0.000) 0.993(0.010) 0.001(0.003) 0.999(0.003) 0.000(0.000) 1.000(0.000) 0.000(0.000)

60 × 10 0.996(0.008) 0.000(0.000) 0.986(0.031) 0.000(0.001) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
80 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
80 × 5 1.000(0.000) 0.000(0.000) 0.997(0.007) 0.000(0.001) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
80 × 8 1.000(0.000) 0.000(0.000) 0.997(0.006) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)

80 × 10 0.999(0.002) 0.000(0.000) 0.998(0.006) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
100 × 3 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000)
100 × 5 1.000(0.000) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.999(0.002) 0.000(0.000) 1.000(0.000) 0.000(0.000)
100 × 8 0.999(0.003) 0.000(0.000) 1.000(0.000) 0.000(0.000) 0.999(0.002) 0.000(0.000) 1.000(0.000) 0.000(0.000)
100 × 10 0.998(0.004) 0.000(0.001) 0.995(0.007) 0.003(0.007) 0.994(0.014) 0.002(0.019) 1.000(0.000) 0.000(0.000)
Mean 0.996(0.001) 0.000(0.000) 0.997(0.005) 0.007(0.001) 0.999(0.001) 0.001(0.001) 1.000(0.000) 0.000(0.000)

Figure 10. The mean plot and 95% confidence intervals on IGD for large-scale problems.

Sustainability 2023, 15, 2622 25 of 29Sustainability 2022, 14, x FOR PEER REVIEW 26 of 31

Figure 11. The mean plot and 95% confidence intervals on the C-metric for large-scale problems.

Table 13. AVG(SD) values for large-scale problems based on N-metric.

Problem MDABC MOEA/D MOCGWO TMOA NSGA-II
20 × 3 114.0(12.2) 14.7(3.1) 12.8(2.6) 15.3(2.8) 5.8(1.4)
20 × 5 83.2(13.0) 13.1(3.1) 11.9(2.5) 14.0(3.3) 5.7(1.2)
20 × 8 62.7(9.9) 11.5(2.6) 9.8(2.2) 11.6(2.7) 5.2(1.2)
20 × 10 58.1(8.9) 11.7(2.3) 9.2(2.2) 11.4(2.3) 4.8(1.3)
40 × 3 90.2(12.6) 14.3(2.5) 11.2(2.2) 15.0(2.8) 6.0(1.1)
40 × 5 64.3(9.8) 12.4(2.9) 9.5(2.3) 12.1(2.7) 5.0(1.0)
40 × 8 47.0(7.8) 11.1(2.8) 7.9(2.2) 11.1(2.8) 4.8(1.2)
40 × 10 41.4(6.6) 10.9(2.6) 8.1(1.6) 11.3(2.5) 4.8(1.1)
60 × 3 78.7(13.7) 13.8(2.5) 9.9(2.4) 14.1(2.9) 5.6(1.6)
60 × 5 54.1(8.1) 12.6(2.4) 9.7(2.3) 12.4(2.3) 5.3(1.1)
60 × 8 40.3(6.2) 11.2(2.7) 8.4(2.0) 11.3(2.9) 5.2(0.8)
60 × 10 35.8(5.0) 11.4(2.2) 7.9(1.9) 10.0(2.2) 5.0(1.2)
80 × 3 65.2(9.0) 13.2(2.6) 10.3(2.7) 13.2(2.6) 5.3(1.4)
80 × 5 47.5(7.8) 12.5(3.0) 9.1(2.1) 12.7(2.5) 5.8(1.1)
80 × 8 37.8(6.3) 11.4(2.4) 7.9(2.0) 10.8(1.9) 5.1(1.4)
80 × 10 28.1(4.2) 9.6(1.9) 7.4(2.4) 10.2(1.9) 4.9(1.7)
100 × 3 60.0(8.9) 13.8(2.6) 9.8(2.1) 13.7(2.8) 5.8(1.4)
100 × 5 40.2(6.3) 11.6(2.5) 9.0(2.0) 11.8(2.3) 5.1(1.1)
100 × 8 31.4(4.6) 11.2(2.5) 7.8(1.7) 10.4(2.7) 5.0(1.4)

100 × 10 26.8(4.6) 10.1(2.7) 7.3(1.9) 9.8(2.2) 5.2(1.7)
Mean 55.3(7.8) 12.1(2.6) 9.2(2.2) 12.1(2.6) 5.3(1.3)

Figure 11. The mean plot and 95% confidence intervals on the C-metric for large-scale problems.

Sustainability 2022, 14, x FOR PEER REVIEW 27 of 31

(a) (b)

Figure 12. Effect of the problem variables on the algorithm regarding GD for large-scale problems.
(a) Effect of the Stage on MDABC regarding GD; (b) effect of the Job on MDABC regarding GD.

(a) (b)

Figure 13. Effect of the problem variables on the algorithm regarding IGD for large-scale problems.
(a) Effect of the Stage on MDABC regarding IGD; (b) effect of the Job on MDABC regarding IGD.

Figure 12. Effect of the problem variables on the algorithm regarding GD for large-scale problems.
(a) Effect of the Stage on MDABC regarding GD; (b) effect of the Job on MDABC regarding GD.

Sustainability 2022, 14, x FOR PEER REVIEW 27 of 31

(a) (b)

Figure 12. Effect of the problem variables on the algorithm regarding GD for large-scale problems.
(a) Effect of the Stage on MDABC regarding GD; (b) effect of the Job on MDABC regarding GD.

(a) (b)

Figure 13. Effect of the problem variables on the algorithm regarding IGD for large-scale problems.
(a) Effect of the Stage on MDABC regarding IGD; (b) effect of the Job on MDABC regarding IGD.

Figure 13. Effect of the problem variables on the algorithm regarding IGD for large-scale problems.
(a) Effect of the Stage on MDABC regarding IGD; (b) effect of the Job on MDABC regarding IGD.

Sustainability 2023, 15, 2622 26 of 29

Sustainability 2022, 14, x FOR PEER REVIEW 27 of 31

(a) (b)

Figure 12. Effect of the problem variables on the algorithm regarding GD for large-scale problems.
(a) Effect of the Stage on MDABC regarding GD; (b) effect of the Job on MDABC regarding GD.

(a) (b)

Figure 13. Effect of the problem variables on the algorithm regarding IGD for large-scale problems.
(a) Effect of the Stage on MDABC regarding IGD; (b) effect of the Job on MDABC regarding IGD.

Figure 14. Pareto fronts obtained by the compared algorithms. (a) Pareto fronts in 20*8; (b) Pareto
fronts in 40*8; (c) Pareto fronts in 60*8; (d) Pareto fronts in 100*8.

5.7. Experimental Analysis

This subsection aims to summarize the performance of Gurobi and MDABC based on
four types of evaluation indicators on both small-scale and large-scale sets.

The results from Tables 6–9 indicate that the optimal solutions cannot be obtained on
Gurobi with 1800 s under some weights. Thus, as the size of the problem increases, the MILP
model cannot be optimally resolved in an acceptable time. From the above experimental
results, it can be seen that the MOEAs are suitable for solving the MOHFGSP_CS, and
MDABC performs well in various indicators among the compared algorithms.

From Tables 10 and 11, we can see that the AVG values based on GD and IGD are
consistent on large-scale sets. It shows the best overall convergence performance and
diversity performance on these instances. The reason for the good performance of MDABC
can be explained as follows: first, the initialization and VND strategy can contribute to
enhancing the exploration; second, the WAS strategy and the crossover operators help
the algorithm maintain a compromising diversity: third, the SIS strategy prevented the
algorithm from falling into a local optimum. It should be pointed out that MOEA/D,
TMOA, MOCGWO, and NSGA-II seem better than MDABC from the view of IGD values.
Since stability is difficult to guarantee when the number of Pareto solutions increases, it
seems reasonable to obtain a larger variance. For further illustration, the AVG and SD values
based on the N-metric are given in Table 13. Since the AVG values achieved by the MDABC
are larger for most of the instances, the SD values are always larger. Figures 12 and 13
present the convergence curve of the GD and IGD values for the increase of lots and stages.
Regarding the number of lots and stages, all algorithms obtain worse GD and IGD results
with increasing values except MDABC. Overall, according to the above analysis, we can
conclude that MDABC is effective and efficient in solving the MOHFGSP_CS.

6. Conclusions

This paper investigated an MOHFGSP_CS with a limited sublot quantity and various
machine speeds for minimizing makespan and total energy consumption (TEC), which
has a strong application background for green manufacturing. A multiobjective optimal

Sustainability 2023, 15, 2622 27 of 29

model was developed, and the trade-off between the two objectives was evaluated by
using Gurobi. To solve this problem, the decomposition-based multiobjective MDABC
algorithm is proposed, which has proven its effectiveness after comprehensive and in-
depth calculations and statistical tests. In this MDABC, the variable neighborhood descent
(VND) and eight neighborhood structures are designed for intensification, which ensures
further exploitation of the unexplored areas. The weight adjustment strategy (WAS) for
population diversification has been presented. The solution interaction strategy (SIS) has
been produced for skipping the local optima. Furthermore, the MDABC parameters were
calibrated by the Taguchi experimental design method. Finally, to demonstrate the validity
of the strategy to solve the multiobjective HFSP_CS, we have conducted 400 instances. The
experimental results reveal that the proposed MDABC has the ability to obtain PFs with
good uniform distribution.

We will consider two directions in our future research. One is exploring more advanced
optimization algorithms for MOHFGSP_CS. Specific practices are as follows: (1) combining
the traditional mathematical programming method and the modern meta-heuristic algo-
rithm, the accuracy and efficiency of the algorithm in the evolution process are studied;
(2) introducing machine learning into a meta-heuristic algorithm to realize self-learning
and self-adaptation to enhance the performance of the algorithm. In addition, we will apply
advanced optimization algorithms to various fields. There are many different domains
where advanced optimization algorithms have been applied as solution approaches, such
as online learning and medicine. Online learning is a new field of scheduling problems [46].
The same strategy may behave differently when dealing with problems with various fea-
tures when optimizing multiobjective problems. Therefore, analyzing problem features
aids in the development of superior solutions. In actuality, the problem features are un-
known when the optimization process is taking place. It is difficult in this situation to learn
how to modify techniques to match the problem features. Large-scale and sudden public
health events require hospitals to receive patients with high efficiency, and the problem of
rescue vehicle routing is particularly prominent. Masoud Rabbani [47] proposed am MILP
model according to the needs and characteristics of different patient groups to minimize
the service completion time. Therefore, we will promote the application of MOHFGSP in
various fields in future studies and verify the feasibility and effectiveness of the advanced
algorithm combined with the needs of real-world MOHFGSP.

Author Contributions: W.W.: conceptualization, methodology, data curation, software, validation,
writing—original draft preparation, writing—review and editing; B.Z.: provided methodological guid-
ance, writing review, and funding support; B.J.: provided methodological guidance, writing review and
funding support. All authors have read and agreed to the published version of the manuscript.

Funding: This research is partially supported by the Natural Science Foundation of Shandong
Province (Grant No. ZR2021QF036, ZR2021QE195), National Science Foundation of China (Grant
No. 52175490), Shandong Province Colleges and Universities Youth Innovation Talent Introduction
and Education Program, China, the “Guangyue Young Scholar Innovation Team” of Liaocheng
University (Grant No. LCUGYTD2022-03), and Discipline with Strong Characteristics of Liaocheng
University—Intelligent Science and Technology (Grant No. 319462208).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Low, C.; Hsu, C.-J.; Su, C.-T. A two-stage hybrid flowshop scheduling problem with a function constraint and unrelated alternative

machines. Comput. Oper. Res. 2008, 35, 845–853. [CrossRef]
2. Ruiz, R.; Vázquez-Rodríguez, J.A. The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 2010, 205, 1–18. [CrossRef]

http://doi.org/10.1016/j.cor.2006.04.004
http://doi.org/10.1016/j.ejor.2009.09.024

Sustainability 2023, 15, 2622 28 of 29

3. Pan, Q.-K.; Gao, L.; Li, X.-Y.; Gao, K.-Z. Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent
setup times. Appl. Math. Comput. 2017, 303, 89–112. [CrossRef]

4. Ribas, I.; Leisten, R.; Framiñan, J.M. Review and classification of hybrid flow shop scheduling problems from a production system
and a solutions procedure perspective. Comput. Oper. Res. 2010, 37, 1439–1454. [CrossRef]

5. Qin, W.; Zhang, J.; Song, D. An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain
processing time. J. Intell. Manuf. 2015, 29, 891–904. [CrossRef]

6. Reiter, S. A System for Managing Job-Shop Production. J. Bus. 1966, 39, 371. [CrossRef]
7. Cheng, M.; Mukherjee, N.J.; Sarin, S.C. A review of lot streaming. Int. J. Prod. Res. 2013, 51, 7023–7046. [CrossRef]
8. Zhang, B.; Pan, Q.-K.; Meng, L.-L.; Zhang, X.-L.; Ren, Y.-P.; Li, J.-Q.; Jiang, X.-C. A collaborative variable neighborhood descent

algorithm for the hybrid flowshop scheduling problem with consistent sublots. Appl. Soft Comput. 2021, 106, 107305. [CrossRef]
9. Fang, K.; Uhan, N.; Zhao, F.; Sutherland, J.W. A new approach to scheduling in manufacturing for power consumption and

carbon footprint reduction. J. Manuf. Syst. 2011, 30, 234–240. [CrossRef]
10. Liu, Y.; Dong, H.; Lohse, N.; Petrovic, S. Reducing environmental impact of production during a Rolling Blackout policy—A

multi-objective schedule optimisation approach. J. Clean. Prod. 2015, 102, 418–427. [CrossRef]
11. Meng, L.; Zhang, C.; Ren, Y.; Zhang, B.; Lv, C. Mixed-integer linear programming and constraint programming formulations for

solving distributed flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 142, 106347. [CrossRef]
12. Meng, L.; Gao, K.; Ren, Y.; Zhang, B.; Sang, H.; Chaoyong, Z. Novel MILP and CP models for distributed hybrid flowshop

scheduling problem with sequence-dependent setup times. Swarm Evol. Comput. 2022, 71, 101058. [CrossRef]
13. Gupta, J.N. Two-stage, hybrid flowshop scheduling problem. J. Oper. Res. Soc. 1988, 39, 359–364. [CrossRef]
14. Yang, J. A new complexity proof for the two-stage hybrid flow shop scheduling problem with dedicated machines. Int. J. Prod.

Res. 2010, 48, 1531–1538. [CrossRef]
15. Guirchoun, S.; Martineau, P.; Billaut, J.-C. Total completion time minimization in a computer system with a server and two

parallel processors. Comput. Oper. Res. 2005, 32, 599–611. [CrossRef]
16. Cheng, M.; Sarin, S.C. Two-stage, Multiple-lot, Lot Streaming Problem for a 1 + 2 Hybrid Flow Shop. IFAC Proc. Vol. 2013, 46,

448–453. [CrossRef]
17. Zhang, W.; Liu, J.; Linn, R.J. Model and heuristics for lot streaming of one job in M-1 hybrid flowshops. Int. J. Oper. Quant. Manag.

2003, 9, 49–64.
18. Kim, J.-S.; Kang, S.-H.; Lee, S.M. Transfer batch scheduling for a two-stage flowshop with identical parallel machines at each

stage. Omega 1997, 25, 547–555. [CrossRef]
19. Nejati, M.; Mahdavi, I.; Hassanzadeh, R.; Mahdavi-Amiri, N.; Mojarad, M. Multi-job lot streaming to minimize the weighted

completion time in a hybrid flow shop scheduling problem with work shift constraint. Int. J. Adv. Manuf. Technol. 2013, 70,
501–514. [CrossRef]

20. Lalitha, J.L.; Mohan, N.; Pillai, V.M. Lot streaming in [N − 1](1) + N (m) hybrid flow shop. J. Manuf. Syst. 2017, 44, 12–21.
[CrossRef]

21. Nejati, M.; Mahdavi, I.; Hassanzadeh, R.; Mahdavi-Amiri, N. Lot streaming in a two-stage assembly hybrid flow shop scheduling
problem with a work shift constraint. J. Ind. Prod. Eng. 2016, 33, 459–471. [CrossRef]

22. Dai, M.; Tang, D.; Giret, A.; Salido, M.A.; Li, W.D. Energy-efficient scheduling for a flexible flow shop using an improved
genetic-simulated annealing algorithm. Robot. Comput. Manuf. 2013, 29, 418–429. [CrossRef]

23. Fernandez-Viagas, V.; Prata, B.; Framinan, J.M. A critical-path based iterated local search for the green permutation flowshop
problem. Comput. Ind. Eng. 2022, 169, 108276. [CrossRef]

24. Gu, W.; Li, Z.; Dai, M.; Yuan, M. An energy-efficient multi-objective permutation flow shop scheduling problem using an
improved hybrid cuckoo search algorithm. Adv. Mech. Eng. 2021, 13, 16878140211023603. [CrossRef]

25. Lu, C.; Huang, Y.; Meng, L.; Gao, L.; Zhang, B.; Zhou, J. A Pareto-based collaborative multi-objective optimization algorithm for
energy-efficient scheduling of distributed permutation flow-shop with limited buffers. Robot. Comput. Manuf. 2021, 74, 102277.
[CrossRef]

26. Meng, L.; Zhang, B.; Gao, K.; Duan, P. An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and
Sequence-Dependent Setup Times. Sustainability 2023, 15, 776. [CrossRef]

27. Bai, J.; Liu, H. Multi-objective artificial bee algorithm based on decomposition by PBI method. Appl. Intell. 2016, 45, 976–991.
[CrossRef]

28. Pan, Q.-K.; Gao, L.; Wang, L.; Liang, J.; Li, X.-Y. Effective heuristics and metaheuristics to minimize total flowtime for the
distributed permutation flowshop problem. Expert Syst. Appl. 2019, 124, 309–324. [CrossRef]

29. Yan, J.; Li, L.; Zhao, F.; Zhang, F.; Zhao, Q. A multi-level optimization approach for energy-efficient flexible flow shop scheduling.
J. Clean. Prod. 2016, 137, 1543–1552. [CrossRef]

30. Zhang, B.; Pan, Q.-K.; Gao, L.; Meng, L.-L.; Li, X.-Y.; Peng, K.-K. A Three-Stage Multiobjective Approach Based on Decomposition
for an Energy-Efficient Hybrid Flow Shop Scheduling Problem. IEEE Trans. Syst. Man Cybern. Syst. 2019, 50, 4984–4999.
[CrossRef]

31. Ding, J.-Y.; Song, S.; Wu, C. Carbon-efficient scheduling of flow shops by multi-objective optimization. Eur. J. Oper. Res. 2016, 248,
758–771. [CrossRef]

http://doi.org/10.1016/j.amc.2017.01.004
http://doi.org/10.1016/j.cor.2009.11.001
http://doi.org/10.1007/s10845-015-1144-3
http://doi.org/10.1086/294867
http://doi.org/10.1080/00207543.2013.774506
http://doi.org/10.1016/j.asoc.2021.107305
http://doi.org/10.1016/j.jmsy.2011.08.004
http://doi.org/10.1016/j.jclepro.2015.04.038
http://doi.org/10.1016/j.cie.2020.106347
http://doi.org/10.1016/j.swevo.2022.101058
http://doi.org/10.1057/jors.1988.63
http://doi.org/10.1080/00207540802691374
http://doi.org/10.1016/j.cor.2003.08.007
http://doi.org/10.3182/20130619-3-RU-3018.00310
http://doi.org/10.1016/S0305-0483(97)00015-7
http://doi.org/10.1007/s00170-013-5265-6
http://doi.org/10.1016/j.jmsy.2017.04.018
http://doi.org/10.1080/21681015.2015.1126653
http://doi.org/10.1016/j.rcim.2013.04.001
http://doi.org/10.1016/j.cie.2022.108276
http://doi.org/10.1177/16878140211023603
http://doi.org/10.1016/j.rcim.2021.102277
http://doi.org/10.3390/su15010776
http://doi.org/10.1007/s10489-016-0787-x
http://doi.org/10.1016/j.eswa.2019.01.062
http://doi.org/10.1016/j.jclepro.2016.06.161
http://doi.org/10.1109/TSMC.2019.2916088
http://doi.org/10.1016/j.ejor.2015.05.019

Sustainability 2023, 15, 2622 29 of 29

32. Zhang, B.; Pan, Q.-K.; Gao, L.; Li, X.-Y.; Meng, L.-L.; Peng, K.-K. A multiobjective evolutionary algorithm based on decomposition
for hybrid flowshop green scheduling problem. Comput. Ind. Eng. 2019, 136, 325–344. [CrossRef]

33. Worasan, K.; Sethanan, K.; Pitakaso, R.; Moonsri, K.; Nitisiri, K. Hybrid particle swarm optimization and neighborhood strategy
search for scheduling machines and equipment and routing of tractors in sugarcane field preparation. Comput. Electron. Agric.
2020, 178, 105733. [CrossRef]

34. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

35. Peng, K.; Pan, Q.-K.; Gao, L.; Li, X.; Das, S.; Zhang, B. A multi-start variable neighbourhood descent algorithm for hybrid
flowshop rescheduling. Swarm Evol. Comput. 2019, 45, 92–112. [CrossRef]

36. Ma, X.; Yu, Y.; Li, X.; Qi, Y.; Zhu, Z. A Survey of Weight Vector Adjustment Methods for Decomposition-Based Multiobjective
Evolutionary Algorithms. IEEE Trans. Evol. Comput. 2020, 24, 634–649. [CrossRef]

37. Zhou, J.; Yao, X.; Chan, F.T.; Gao, L.; Jing, X.; Li, X.; Lin, Y.; Li, Y. A decomposition based evolutionary algorithm with direction
vector adaption and selection enhancement. Inf. Sci. 2019, 501, 248–271. [CrossRef]

38. Liu, Y.; Hu, Y.; Zhu, N.; Li, K.; Zou, J.; Li, M. A decomposition-based multiobjective evolutionary algorithm with weights updated
adaptively. Inf. Sci. 2021, 572, 343–377. [CrossRef]

39. Gharib, Z.; Yazdani, M.; Bozorgi-Amiri, A.; Tavakkoli-Moghaddam, R.; Taghipourian, M.J. Developing an integrated model for
planning the delivery of construction materials to post-disaster reconstruction projects. J. Comput. Des. Eng. 2022, 9, 1135–1156.
[CrossRef]

40. Lu, C.; Gao, L.; Li, X.; Pan, Q.; Wang, Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective
backtracking search algorithm. J. Clean. Prod. 2017, 144, 228–238. [CrossRef]

41. Gharib, Z.; Tavakkoli-Moghaddam, R.; Bozorgi-Amiri, A.; Yazdani, M. Post-Disaster Temporary Shelters Distribution after a
Large-Scale Disaster: An Integrated Model. Buildings 2022, 12, 414. [CrossRef]

42. Zhang, B.; Pan, Q.-K.; Gao, L.; Zhang, X.-L.; Peng, K.-K. A multi-objective migrating birds optimization algorithm for the hybrid
flowshop rescheduling problem. Soft Comput. 2018, 23, 8101–8129. [CrossRef]

43. Zhang, B.; Pan, Q.-K.; Meng, L.-L.; Lu, C.; Mou, J.-H.; Li, J.-Q. An automatic multi-objective evolutionary algorithm for the hybrid
flowshop scheduling problem with consistent sublots. Knowl. Based Syst. 2022, 238, 107819. [CrossRef]

44. Chen, T.-L.; Cheng, C.-Y.; Chou, Y.-H. Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot
streaming. Ann. Oper. Res. 2018, 290, 813–836. [CrossRef]

45. Lu, C.; Gao, L.; Pan, Q.; Li, X.; Zheng, J. A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem
considering noise pollution. Appl. Soft Comput. 2019, 75, 728–749. [CrossRef]

46. Zhao, H.Z.; Chang, S. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2019, 509, 1–21. [CrossRef]
47. Rabbani, M.; Oladzad-Abbasabady, N.; Akbarian-Saravi, N. Ambulance routing in disaster response considering variable patient

condition: NSGA-II and MOPSO algorithms. J. Ind. Manag. Optim. 2022, 18, 1035. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cie.2019.07.036
http://doi.org/10.1016/j.compag.2020.105733
http://doi.org/10.1109/TEVC.2007.892759
http://doi.org/10.1016/j.swevo.2019.01.002
http://doi.org/10.1109/TEVC.2020.2978158
http://doi.org/10.1016/j.ins.2019.05.083
http://doi.org/10.1016/j.ins.2021.03.067
http://doi.org/10.1093/jcde/qwac042
http://doi.org/10.1016/j.jclepro.2017.01.011
http://doi.org/10.3390/buildings12040414
http://doi.org/10.1007/s00500-018-3447-8
http://doi.org/10.1016/j.knosys.2021.107819
http://doi.org/10.1007/s10479-018-2969-x
http://doi.org/10.1016/j.asoc.2018.11.043
http://doi.org/10.1016/j.ins.2019.08.069
http://doi.org/10.3934/jimo.2021007

	Introduction
	Literature Review
	The Classical Hybrid Flowshop Scheduling Problem
	The Hybrid Flowshop Scheduling Problem with Lot Streaming
	The Hybrid Flowshop Green Scheduling Problem

	Problem Statement
	Mathematical Model
	Trade-Off Relationship of the Objectives

	Proposed Algorithm
	Solution Encoding and Population Initialization
	Solution Decoding
	Decomposition Approaches and Objective Normalization
	VND-Based Employed Bee Phase
	WAS-Based Onlooker Bee Phase
	SIS-Based Scout Bee Phase

	Experiments and Results
	Test Data
	Performance Metrics
	Parameter Setting
	Evaluation of the Proposed Strategies
	Comparison of the Proposed MDABC with Other Algorithms in Small-Scale Instances
	Comparison of the Proposed MDABC with Other Algorithms in Large-Scale Problems
	Experimental Analysis

	Conclusions
	References

