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Abstract: Modular multilevel converters (MMC) play a dominant role in integrating remotely located
renewable energy resources (RER) over the high-voltage direct current (HVDC) transmission network.
The fault ride-through capabilities of the MMC-HVDC network during low-voltage faults and the
power fluctuation due to RER intermittency are the major obstacles to the effective integration
of renewable energy. In response, this article proposes a local voltage-based combined battery
energy control scheme for a PV-wind-battery connected MMC-HVDC system to regulate the HVDC-
link voltage during low-voltage faults at the point of common coupling of alternating current
grids and to reduce the intermittent RER power fluctuation. The proposed technique removes the
dynamic braking resistor from the HVDC-link and smoothly integrates the RER without active
power reduction of renewable energy under low-voltage faults. Symmetrical and unsymmetrical
low-voltage faults have been conducted to validate the effectiveness of the proposed control scheme
for the battery in mitigating surplus energy in the HVDC-link. Additionally, wind speed, solar
radiation, and temperature have been changed to confirm the improved performance of the battery
energy management system. The complete systems have been simulated and tested in a real-time
digital simulator (RTDS) and using dSPACE-based controller hardware in a loop setup.

Keywords: modular multilevel converter; PV-wind integration; battery management system; AC
side low-voltage faults

1. Introduction

The MMC-HVDC connection has been identified as one of the most promising tech-
nologies for integrating the RER because of its scalability, modularity, and compact foot-
print [1–3]. The AC grid can receive stability support from the MMC-HVDC-connected
RER, including frequency regulation [4] and dynamic voltage control [5]. However, the
FRT capabilities of the MMC-HVDC network continue to be a significant obstacle. When
a grid fault occurs, the active power produced by the onshore MMC is abruptly reduced,
making it impossible for wind farms to transmit their generated power to the grid entirely.
Due to the aforementioned power imbalance, the DC-link voltage increases quickly as
the relevant capacitors are charged. The installation of dynamic brake resistors and quick
power reduction of wind farms (WF) are some current practices to prevent overvoltage in
the DC-link. The fault is isolated to improve the voltage profile and power transmission
capacity of the onshore grid, and the DBR is used to dissipate the excess power [6–11]. The
benefit of these techniques is that grid faults do not impact WFs, but they require additional
hardware, including breakers, braking resistors, and series transformers. Rapid active
power reduction can also be accomplished through the utilization of communication-based
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de-loading control [12], voltage droop control [13–27], and frequency modulation [28–30].
The DC-link communication channels with wind turbines (WT) eliminate the need for
additional offshore converter control, but they also cause reliability and latency issues.

As an alternative, the offshore grid frequency is raised in proportion to the DC voltage
variation to perform frequency modulation control. Unfortunately, the delayed active
power response of the WF due to poor DF/DT tolerant capability severely restricts this
technique. Voltage drop management enables a quick reduction in WF active power to
simplify the FRT of coupled offshore MMC-HVDC-connected wind farms. A real power
current reduction control is proposed for WTs to contribute to the fault ride-through require-
ments of the HVDC network, along with a small voltage droop control solution in [13–18].
However, this could lead to significant DC overvoltage because of a voltage signal process-
ing delay in filter and bandwidth constraints in the current signal management of WTs.
To keep the DC voltage at the required level, the offshore converter quickly reduces the
offshore grid voltage to zero in [19–27]. The phase lock loop (PLL)-based wind turbine
converters may experience synchronization problems using this technology, which does
not require any changes to the WT control [31–33]. Two-stage droop control is proposed to
enhance FRT and post-fault recovery for MMC-HVDC-connected offshore wind farms [34].
However, a simplified current source is used to represent the wind turbine, which ignores
the turbine inertia that introduces a delay to the rapid power reduction. Similarly, active
power reduction-based DC-link overvoltage control also encounters a delay due to the
large inertia of the wind turbine, which prevents rapid change in active power.

In addition to the mentioned control strategy, the RER is highly intermittent and
finds it challenging to match users’ demands. Within this context, energy storage systems
(ESS), especially battery ESS, have been recognized as a key technology to address such
intermittency and facilitate effective penetration of the RER into electricity grids. The
demand for light and high-capacity energy storage is rising in many different applications.
One such application is the large-scale ESS with different types of renewable generation. To
mitigate or smooth out the fast transients due to uncontrollable circumstance changes such
as solar radiation, temperature, and wind speed change, more energy storage systems are
now deployed along with these renewable generation stations, thus raising the acceptability
of such methods of electricity generation to utility companies. Due to its light weight
and high energy density, the lithium-ion battery is taking up a large portion of actual
storage devices’ role in grid application [35–37]. A flywheel energy storage device can
rapidly change ample power that can be utilized to control additional energy during a
low-voltage disturbance. In a flywheel ESS-based FRT support, excess energy is collected
as kinetic energy depending on the rotating speed and mass [38–46]. Flywheel energy
storage is connected with an HVDC-link through a separate MMC to mitigate wind energy
fluctuation [41]. Consequently, it requires similar expensive infrastructure to the grid-
connected converter. In addition, a small-scale prototype has been developed to verify
the proposed control scheme’s efficacy. In contrast, non-real-time simulation software
employed an average model to obtain results. In contrast, the high-power density super-
capacitor is a short-duration power source with a fast dynamic response [46–50]. With the
assistance of the voltage source converter (VSC)-based HVDC-link during an AC side fault,
it offers a similar potential for fault riding [39,51]. Both technologies could be utilized for
power smoothing during normal conditions and FRT improvement. Both technologies,
however, are costly and suffer from significant energy loss that limits their capability in
practical implementation.

The battery is the second highest globally installed ESS capacity after pumped hydro
storage [52]. The battery energy storage system (BESS) has a high energy density and can
maintain a charge for a prolonged period. As a result, several utilities are turning to BESS
for power leveling, voltage and frequency management, and FRT improvement. The BESS
is lightweight, and has a high energy density, high power density, quick response time,
and high cycle efficiency [45,53]. Additionally, over the passage of time, the cost of battery
energy storage systems (BESS) has decreased significantly [54]. However, the BESS size
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determines how much time it will take to deliver energy to offset the energy deficiency
caused by the RER intermittency. The work reported in [55,56] connected the battery with
the HVDC-link and onshore AC side through MMC to mitigate wind energy fluctuation. As
a result, it requires expensive infrastructure similar to that of the grid-connected converter.
In addition, non-real-time simulation software employing an average model was used to
perform the simulation. In adddition, AC side faults have not been considered. According
to the article [57,58], there are three configurations of battery-connected MMC. A cascaded
centralized battery string is placed on the DC-link to provide bidirectional active power [59].
However, this increases loss, and undergoes high-voltage stress and no galvanic isolation.
In a cascaded converter with a BESS, the battery forms the DC source with an individual
converter, and the HVDC-link forms with a cascaded converter [60]. The literature [61–65]
has discussed MMC with an integrated battery connected with a submodule. However, this
requires a bidirectional DC-DC converter. Furthermore, the simulation has not considered
the complete system with individual MMC submodules and the distributed battery. One
submodule with a battery was used to scale and present all submodule dynamics.

Considering the aforementioned notes and challenges, this research proposes a novel
local voltage-based battery energy control scheme to control the surplus power in the
HVDC-link during the AC side low-voltage faults. In addition, it combines the control of
the transient performance enhancement to deal with the intermittent nature of the RER. In
summary, the major contributions of this research are:

• A local voltage-based combined energy control approach for the battery (a) to regulate
the HVDC-link voltage during the low-voltage faults at the PCC of AC grids, and (b)
to address intermittency caused by the renewable energy generation fluctuation.

• Simulation and testing of the complete systems in a real-time digital simulator (RTDS) and
dSPACE-based controller hardware in the loop (CHIL), with detailed converter models.

The rest of the article is structured as follows. Section 2 presents the framework
of the controller employed in the PV-wind-battery-based renewable energy integrated
MMC-HVDC system. Section 3 demonstrates the proposed control strategy for the battery
energy management system to control the surplus power in the HVDC-link and smooth
out the transience caused by solar and wind energy variation. Section 4 provides detailed
simulation results for the HVDC-link voltage regulation during low-voltage AC side
transient faults and the enhancement of transient performance due to RER intermittency.
Finally, Section 5 draws conclusions and provides future research directions.

2. Modeling and Controller Design

The system comprises of PV and wind farms with a BESS, as depicted in Figure 1. The
MMC1 manages the HVDC-link voltage, whereas the MMC2 connects the AC grid with
the PV-wind-battery system. Scaling the output (Icom) from one unit of energy storage and
renewable energy through a controlled current source and multiplier (M10) increases the
system’s capacity.
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Figure 1. MMC-HVDC system with energy storage and renewable energy resources.

2.1. Battery Modeling and Sizing

Figure 2 shows the equivalent electrical circuit for the Min/Rincón-Mora lithium-ion
battery model [66]. In the equivalent circuit, the components (RTransient_S and CTransient_S)
determine the short-term transience of the battery; in contrast, the components (RTransient_L
and CTransient_L) refer to the long-term transience of the battery. As employed in the model,
two RC time constants are the best trade-off between the model’s accuracy and complexity.
The non-linear circuit parameters used in the equivalent model are functions of the state of
charge (SOC). Therefore, single variable functions are used to describe those parameters’
behavior mathematically.
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The following relation defines the state of charge of the battery:

SOC = SOC0 −
1

3600AH

∫ t

0
IBatterydt (1)

where, SOC0 is the initial state of charge, AH is the nominal ampere-hour of the battery,
and IBattery is the battery charging/discharging current. Equation (1) is known as coulomb
counting method or ampere-hour counting and current integration technique for calculating
the SOC. This method employs battery current readings mathematically integrated over
the usage period to calculate SOC values. The coulomb counting method then calculates
the remaining capacity simply by accumulating the charge transferred in or out of the
battery. The accuracy of this method resorts primarily to a precise measurement of the
battery current and accurate estimation of the initial SOC. With a pre-known capacity,
which might be memorized or initially estimated by the operating conditions, the SOC of
a battery can be calculated by integrating the charging and discharging currents over the
operating periods. The accuracy or tuning of coulomb counting method is improved by
adding the open circuit voltage method. Besides the coulomb counting method, a smart
battery management system can provide information on the state of charge of the battery.
The battery is rated for 4 MW for 15 min, which implies that if a 4 MW steady power
injection is maintained for 15 min, the battery will be fully charged. The battery will also
be completely discharged after 15 min of draining at a 4 MW rate. Therefore, the energy
density = Power capacity × discharge time = 4 MW × 0.25 h = 1 MWh.

The EssProTM Grid from ABB (Switzerland), SIESTORAGE from Siemens (Germany),
MaxSineTM eStorage from Alstom (France), AEG BESS from AEG Power Solutions (Nether-
lands), Battery Energy Storage System from Toshiba (Japan), GE Energy Storage from GE
(US), Power Storage Solution from Bosch (Germany), Advancion® 4 Energy Storage from
AES (US), and the Eos Aurora® 1000|4000 from Eos (US) are some of the commercially
available BESS solutions [56].

The EssProTM Grid, according to ABB, can be used for a variety of purposes, including
frequency regulation, spinning reserves, smoothing out rapid voltage and power fluctua-
tions brought on by intermittent renewable energy sources, peak shaving and load leveling,
improving power quality, acting as an uninterruptible power supply (UPS), and assisting
in maintaining grid voltage by injecting or absorbing reactive power. The EssProTM Grid
BESS is battery technology independent, which means that based on the application and
requirements, the system may be adjusted for different types of batteries. Lithium-ion,
sodium–sulfur, nickel–cadmium, lead–acid, or flow batteries are all acceptable types of
batteries. The maximum DC voltage of the EssProTM Grid is 1.2 kV, and the output active
power ranges from 100 kW up to 30 MW, with a nominal energy capacity from 200 kWh
up to 7.2 MWh. More information regarding the EssProTM Grid BESS can be found in the
technical brochure on ABB’s website [67]. We require four units of 1 MW discharge power
capacity EssProTM Grid containers connected in parallel. The technical specifications for
one EssProTM Grid container are presented in Table 1.

Table 1. Technical specifications for one EssProTM Grid container [67].

Parameter Value

Discharge power 1 MW 0.5 MW

Maximum DC voltage 1.2 kV 1.2 kV

Battery current 833.3 A 416.7 A

Discharge time 0.25 h 0.25 h

Energy capacity 0.25 MWh 0.125 MWh
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2.2. Solar and Wind Energy Grid Integration

The main purpose of converter control for solar and wind energy is integration with
an MMC2-supported AC grid. The maximum output power of the photovoltaic panel
varies with solar radiation and temperature variation, as is known from the power–voltage
(P–V) characteristics curve. Therefore, the PV side converter adjusts the DC-link voltage to
extract maximum power from the PV system under any operating condition (temperature
and solar irradiation) employing a modified incremental conductance method. The grid
integration of solar energy can be found in more detail in References [9,68–70]. Similarly,
the optimal point of turbine mechanical energy varies with wind speed, as shown in the
wind turbine power–generator speed curve. The rotor side converter (RSC) controls the
optimal electromagnetic torque set by the optimal point of wind energy which employs
field-oriented control. Therefore, the setpoint for electromagnetic torque is varied according
to the wind speed to extract optimum wind energy. The detailed design for DFIG-based
wind energy grid integration can be found in [9,71].

2.3. Modular Multilevel Converter Control

The MMC is the central part of the HVDC transmission system. The equivalent
electrical circuits of the MMC1 used in this research are presented in Figure 3. It also
requires submodule balancing control and arm-circulating current control in addition to
the outer and inner current loops.
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The MMC’s current control dynamics in the steady state dq frame are represented
by [72–74].
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L
2

disq

dt
+

R
2

isq = − L
2

ω0isd + Vq −Vsq (3)

The following equation governs the HVDC-link voltage:

(C d +
6C
N

)
dVdc

dt
= iext − isd (4)

The inner current control loop, which produces the modulating signal for the MMC
converter, is formed by Equations (2) and (3). The inner current control loop is shown
in Figure 4. The HVDC-link voltage control of MMC1 is also shown in Figure 4, based
on Equation (4). A circulating current controller and inner current control are required to
ensure a balanced current between the top and bottom arms. The circulating current cycles
at 2ω0 Hz, and their dynamics, are governed by the equation below [73]:

did1
dt

+ Rid1 = 2Lω0iq1 + Vd1 (5)

diq1

dt
+ Riq1 = −2Lω0id1 + Vq1 (6)
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In the above Equations (5) and (6), the d-q-current transformed from the MMC’s
three arms differential (the arm’s upper and lower) current is id1 and iq1. The PI controller
generates the necessary adjustments in terms of Vd1 and Vq1, which are then converted
into modulating signals. The angle for converting circulating current to dq-frame, and
Vdq1 to modulating signal, is −2θg, as shown in Figure 4. Nearest level modulation (NLM)
selects the submodule’s number after merging the modulating signals from the inner
current control and circulation current control. In addition to the circulating current,
the submodule (SM) capacitor voltage within each arm drifts. Such drifts are caused by
unregulated charging and discharge. To reduce voltage imbalance between the SMs, a
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higher voltage SM is placed when the current leaves; in contrast, a lower voltage submodule
is placed when the current enters. This article uses a submodule-sorting algorithm (SSA) to
insert a suitable submodule from the submodule set in the bottom and top arms, as per the
current direction and the submodule capacitor voltage. Figure 4 shows the arm-circulating
current control and submodule voltage-balancing control.

3. Proposed Energy Management System

The low-voltage fault at the PCC1 of the MMC1 side limits MMC1′s power transfer
capability, which raises the HVDC-link voltage. Usually, the DBR is placed in parallel
with the transmission line for dissipation of the surplus energy to regulate the HVDC-link
voltage within limits. To dissipate a significant quantity of the HVDC power during the
three-line-to-ground (LLLG) low-voltage fault at the PCC1 of the AC grids, several series-
parallel combination semiconductor switches are needed. The HVDC connection voltage is
subject to multiple switching introduced by the dynamic braking resistor, which may cause
variations in the real power flow. Solar and wind energy are highly intermittent and change
with the solar radiation, temperature, and wind speed change. Therefore, battery-based
energy storage has been considered to address intermittency, smooth out the fast transients,
and match users’ demands. Additionally, a battery is utilized to remove the DBR from the
system. However, the battery is far away from the HVDC-link and placed with the same
AC bus that connects wind and solar energy. This work proposes a battery-based, novel
energy management system to protect the HVDC-link voltage and mitigate fluctuation
caused by solar and wind energy variation. The purpose of the MMC2 controller is to
control the AC link voltage used to integrate renewable energy and energy storage.

3.1. Surplus Energy Control Strategy in the HVDC Link during Low-Voltage Faults at PCC1

In the event of an unusual HVDC-link voltage rise due to any faults at the PCC1, the
MMC2 controller shifts its operation from the constant AC voltage to varying AC voltage
control, which increases the PCC voltage. The overall changes in the system are illustrated
in Figure 5. The detailed changes are described as follows.

(1) A Three-phase-to-ground low-voltage fault occurs at PCC1.
(2) This low-voltage fault reduces the power delivering capacity of MMC1, which in turn

increases HVDC link voltage due to excess energy in the HVDC link.
(3) The reference AC voltage for the MMC2 control loop changes from fixed to variable,

and increases with the HVDC-link voltage. Consequently, the AC side voltage of
the MMC2 rises. As can be seen from Figure 6a, the reference voltage for MMC2 AC
link is changed from 100 kV to Vdc

2 if the HVDC link voltage rises more than 210 kV.
200 kV is the nominal voltage for HVDC link (Vdc). During normal operating mode,
the reference AC link voltage is 100 kV.

(4) The rise in the AC link voltage of MMC2 increases the AC voltage of the PCC point
or the magnitude of VPCC. It provides the sensing signal for the charging and dis-
charging controller of the BESS. As can be seen from Figure 6b, an increased VPCC
(>1.05 pu) provides a negative real current command that means the battery is charged.
Therefore, the solar and wind energy is delivered to the battery due to the charging
command, instead of going to HVDC-link. Hence, the HVDC-link voltage remains
regulated within its limit. The inner current control loop of MMC2 is the same
as MMC1.
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In summary, during the low-voltage faults at PCC1 of MMC1, the AC voltage control
strategy of the MMC2 controller, as shown in Figure 6a, raises the AC side reference voltage
(Vsd-ref) slightly with the HVDC-link voltage. As a result, it increases the PCC voltage,
which is then used as the battery controller’s input command. To preserve the HVDC-link
voltage in the PV-wind-battery-coupled MMC-HVDC system, the excess energy is delivered
to the battery if the PCC voltage increases beyond 1.05 pu, as displayed in Figure 6b. The
battery side converter (VSC-B) controls the battery charging and discharging. It has an
outer loop to generate the reference current, and an inner current control loop to follow the
reference current. The constant power reference yields the reference current. The reference
real current is obtained by the following [71]:

Igd−ref =
PBattery

1.5×Vgd
(7)

Here, Vgd is the d-axis voltage of VPCC.
The reactive current of the battery side converter is maintained at zero. PBattery is

the reference battery power generated from the VPCC voltage error or from the power
fluctuation caused by the wind speed or solar radiation variation. The inner current
dynamics of the VSC-B converter in the dq-frame are expressed using the following equation
during the steady-state condition [71]:

L
digd

dt
+ Rigd = Lω0igq + Vd −Vgd (8)

L
digq

dt
+ Rigq = −Lω0igd + Vq −Vgq (9)

Equations (8) and (9) dictate the current dynamics of VSC-B using the dq voltage
of the converter for the generation of the modulating signal (Ma,b,c). The current control
loops of the battery side converter are presented in Figure 7. The proportional-integral (PI)
controller (PI3) follows the reference current. After comparing the modulating signal with
the triangular carrier wave, the PWM gate pulse is produced.
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outer control (b) reference power of battery for the HVDC-link’s surplus energy control (c) power
leveling during the change in weather condition (wind speed, solar radiation, and temperature)
(d) charging and discharging control of battery.
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3.2. Renewable Energy Intermittency Improvement Control Strategy

The combined nominal power of the PV and wind generator equals the maximum set
point (PSet) for battery’s charging or discharging power. The battery covers any departure
from the rated PV power induced by the variable temperature and solar irradiance during
normal PCC voltage, as presented in Figure 6c. Similarly, the battery fills any power
variation from the nominal wind power induced by wind speed changes. The battery is
discharged if it receives a positive power command, and charges if it receives a negative
power command. The PV inverter and wind generator side converter operate in peak
power tracking in both normal and abnormal conditions at PCC1 and PCC.

3.3. Charging and Discharging Control during Normal Voltage at PCC

The charging and discharging of battery is performed by making the reference power
PBattery negative or positive of the outer control loop of VSC, as shown in Figure 6d. The
positive value of PBattery indicates that the battery is being discharged, while the negative
value refers to battery charging. The battery is rated for 4 MW for 15 min, which implies
that if a 4 MW steady power injection is maintained for 15 min, the battery will be fully
charged. The battery is generally depleted at night and fully depleted if 4 MW continuous
power is delivered for 15 min into the PCC terminal. It is worth noting that the PCC
voltage remains constant during battery charging and discharging. Any symmetrical and
asymmetrical voltage disturbance affects the PCC voltage, which shifts the battery’s regular
power leveling mode to HVDC-link’s excess energy control mode. Furthermore, the battery
charging and discharging thresholds are 95 percent and 15 percent, respectively. During
symmetrical and asymmetrical faults at PCC1, the battery is kept below 100% charge to
facilitate surplus power control in the HVDC-link.

4. Result and Discussion

The MMC and dSPACE controllers have a sample time of 100 µs, while the other
controller has a sample time of 50 µs. Due to the extensive system’s complexity, a multi-
rack RTDS platform was utilized to implement the entire system. The RTDS multi-rack
hardware platform was made up of a Nova Core and PB5 CPUs. The Rack-2 has MMC2
with PV, wind, and battery, while the Rack-1 has MMC1. The dSPACE controller was
used to implement the MMC1 controller. The dSPACE-RTDS hardware setups, runtime
interface, and MMC1 controller signal in the dSPACE controller are shown in Figures 8–10,
respectively. A 100 MW (megawatts) PV-wind-battery system was modeled by scaling
the PCC terminal input current from one entire 1.74 MW PV array and one 2 MW wind
generator unit with a battery system. Tables 2 and 3, as given in the appendix, provide the
required information on the MMC-HVDC system used in this article.
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Temperature coefficient of Isc 0.065%/degree Stator voltage (L-L) 690 V 

Temperature coefficient of Voc −0.56%/degree Nominal frequency, f 50 Hz 

PV array parameter Nominal power 2.2 MVA 

Series connected modules per string 115 Stator resistance, 𝑅𝑠 1 mΩ 

Parallel strings 285 Rotor resistance, 𝑅𝑟 1.3 mΩ 

Grid side VSC parameters for battery Inductance of stator, 𝐿𝑠 2.55 mH 
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Table 2. PV module, wind turbine, DFIG generator, and converter data.

PV Module Parameters Wind Turbine Parameters

Quantity Value Quantity Value

Cells per module 36 Nominal wind speed 12 m/s

Short circuit current 3.35 A Nominal generator
speed, DFIG 1.2 pu

Open circuit voltage 21.7 V Nominal turbine
power 2 MW

Current at MPP 3.05 A DFIG and controller parameters

Voltage at MPP 17.4 V Quantity Value

Temperature
coefficient of Isc

0.065%/degree Stator voltage (L-L) 690 V

Temperature
coefficient of Voc

−0.56%/degree Nominal frequency, f 50 Hz

PV array parameter Nominal power 2.2 MVA

Series connected
modules per string 115 Stator resistance, Rs 1 mΩ

Parallel strings 285 Rotor resistance, Rr 1.3 mΩ

Grid side VSC parameters for battery Inductance of stator,
Ls

2.55 mH

Quantity Value Inductance of rotor,
Lr

2.56 mH

Nominal DC-link
voltage 2 kV Magnetizing

inductance, Lm
2.44 mH

Rated power 2.2 MVA High pass filter
(HPF) parameters

Resistance, R 0.004 pu Filter inductance, LF 4.3 µH

Inductance, L 0.15 pu Filter capacitance, CF 1.47 mF

PI3 (1 + 100/s) pu Filter resistance, RF 0.054 Ω
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Table 3. MMC and battery controller parameters.

Parameters Value Parameters Value

Rated power 200 MW C 16 mF

Rated HVDC-link
voltage 200 kV Cd 100 µF

Rated AC voltage
(L-L) 100 kV SM/arm 200

Nominal frequency 50 Hz DC line resistance per
km 1.39 mΩ

Reactor resistance, R 0.002 pu DC line inductance
per km 0.159 mH

Reactor inductance, L 0.2 pu DC line capacitance
per km 0.231 µF

Modulation Nearest level M10 26

PI4 (4 + 100/s) pu Parameters of battery controller

PI7 0.6+6/s pu Battery discharge
power capacity 4 MW

PI10 0.8+100/s pu Duration 15 min

PI8 0.6+6/s pu PI51 (20 + 15/s) pu

AC grids’ short
circuit ratio 10 PI52 (3+10/s) pu

Number of cells in
series in a stack 325

Number of stacks in
parallel 834

Capacity of a single cell 1.00 AH

Nominal cell voltage 3.7 V

4.1. HVDC-Link Voltage Control during Low-Voltage Faults at PCC1

A power system network is large complex network and is subject to low-voltage faults.
During low voltage, the power transfer capacity of the converter is reduced significantly,
which in turns causes the HVDC link voltage to rise. Therefore, a proper protection scheme
is provided to control surplus energy for HVDC voltage regulation. A dynamic braking
resistor-based traditional controller for HVDC link voltage regulation during low-voltage
faults is presented in Figure 11. It is clearly visible from Figure 12 that the excess energy in
the HVDC link is dissipated across the parallelly connected DBR during low-voltage faults.
Although DBR controls the HVDC link voltage, it introduces several switches that affects
the HVDC voltage as well as the power flow.
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Figure 11. DBR-based traditional controller. Figure 11. DBR-based traditional controller.
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Figure 12. Traditional controller performance during low-voltage faults.

The proposed work controls the HVDC link voltage without the DBR. The severe
balanced and unbalanced faults were applied at PCC1 to test the battery controller’s
efficacy in controlling the HVDC-link voltage within the threshold for the PV-wind-battery-
coupled MMC-HVDC network. During the fault at PCC1, the battery absorbed the surplus
energy from the HVDC-link, while PV and wind generation were unaffected. As shown
in Figure 13, a one-second duration LLLG fault is introduced to PCC1 at 1 s. During the
three-phase-to-ground faults at PCC1, the MMC1’s provided real power decreased to a
minimum, as seen in Figure 14. PV and wind power generation stayed stable during the
fault by proportionately charging the battery to increase the PCC voltage, as illustrated in
Figure 15. The PV and wind energy were transferred to the battery when the PCC voltage
surpassed 1.05 pu, keeping the HVDC-link voltage around 1.2 pu. The battery SOC was
raised from 60% to 63% throughout this time. The line-to-line-ground (LLG) fault, like
the LLLG fault, was a 1 s duration low-voltage fault introduced to PCC1, as illustrated in
Figure 16.
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During the LLG fault at PCC1, the MMC1’s provided real power is reduced, whereas
the injected reactive current is increased, as seen in Figure 17. As shown in Figure 18, an LLG
fault at PCC1 raised the high-voltage transmission line voltage, which increased the AC
voltage magnitude of PCC. As a result, when the AC voltage magnitude of PCC surpasses
1.05 pu, the battery was charged, while PV and wind power remain constant. The HVDC-
link voltage has been restricted to 1.06 pu due to battery charging. However, compared
to the LLLG fault, the energy transferred to the battery was lower. Figure 17, on the other
hand, shows that the MMC1 delivered approximately 50 MW to PCC1 during a low-voltage
LLG fault, which was more than a low-voltage LLLG fault. The battery SOC rose from 63%
to 63.3% during the LLG failure. The battery efficiently controlled the surplus energy from
the high-voltage transmission line in all circumstances, protecting the HVDC-link without
needing PV and wind power reduction or a dynamic braking resistor. In addition, during
low-voltage LLLG and LLG faults at PCC1, the MMC1 injected approximately 720 A and
600 A reactive current, respectively, as can be seen in Figures 14 and 17.
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Figure 18. PCC voltage, real power change of wind, PV, and battery source, battery SOC, HVDC-link
voltage throughout the LLG fault.

4.2. Power Smoothing for PV System under Solar Irradiance and Temperature Change

To test the battery controller’s efficacy, solar irradiance was reduced from 1000 Wm−2

to 100 Wm−2. As shown in Figure 19, the battery compensated for the PV power deficit
caused by reduced solar radiation. The PV output was reduced to 0.1 MW from 1.74 MW,
while the battery power was increased to 1.6 MW from 0 MW. As a result, the battery
SOC was reduced to 55% from 70%. The interaction between the PV and BESS kept the
MMC1 power delivery almost constant. Likewise, when solar radiation was changed from
100 Wm−2 to 1000 Wm−2, the battery power dropped from 1.6 MW to zero, as seen in
Figure 20. As a result, the PV output grew to 1.74 MW from 0.1 MW and battery SOC
reduced to 35% from 49%. During the transition, real power delivered by the MMC1
did not experience any overshoot. Figures 21 and 22 show that the battery compensated
for the PV power fluctuation induced by temperature variation. As shown in Figure 21,
the temperature was increased from 25 to 50 degrees Celsius, lowering the PV output to
1.55 MW from 1.74 MW. As a result, the battery power was raised to 0.2 MW from zero to
compensate for the deficit, keeping the MMC1 supplied power constant. Similarly, during
the temperature drop from 50 ◦C to 25 ◦C, battery power was lowered to zero from 0.2 MW,
and PV power was raised to 1.74 MW from 1.55 MW, as shown in Figure 22. During such a
transition, the real power delivered by the MMC1 did not experience any overshoot.
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active power of the MMC1 during solar irradiance reduction.
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Figure 20. Solar irradiance, real power change of wind, PV, and battery source, battery SOC, and the
active power of the MMC1 during solar irradiance increase.
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Figure 21. PV temperature, real power change of wind, PV, and battery source, battery SOC, and
active power of the MMC1 during PV cell temperature increase.
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Figure 22. PV temperature, real power change of wind, PV, and battery source, battery SOC, and
active power of the MMC1 during PV cell temperature reduction.

4.3. Battery-Based Power Smoothing under Wind Speed Variation

To test the battery controller’s efficacy, the wind speed was varied from 12 ms−1 to
6 ms−1. The battery compensated for the reduced power due to the lower wind speed,
as shown in Figure 23. The battery power was raised from zero to 1.75 MW as the wind
power was reduced from 2 MW to 0.25 MW. Thus, the battery’s SOC was reduced from 64
percent to 50 percent throughout this time. The active power delivered by the MMC1 was
almost constant. Likewise, when the wind speed was changed from 6 ms−1 to 12 ms−1,
battery power dropped from 1.75 MW to zero, as seen in Figure 24. Wind power was raised
from 0.25 MW to 2 MW during this time, and battery SOC was reduced from 45 percent to
30 percent. During the transition, the MMC1 provided real power and did not experience
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any overshoot, as the battery controller effectively responded to the change in the wind
farm due to wind speed variation.
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Figure 23. Wind speed, real power change of wind, PV, and battery source, battery SOC, and active
power of the MMC1 during wind speed reduction.
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Figure 24. Wind speed, real power change of wind, PV, and battery source, battery SOC, and active
power of the MMC1 during wind speed increase.

4.4. Power Smoothing under Solar Irradiance and Wind Speed Variation

In this section, the solar radiation for the PV system and the wind speed for the
wind farm were simultaneously varied to test the effectiveness of the battery controller.
The radiation was reduced from 1000 Wm−2 to 100 Wm−2

, whereas the wind speed was
reduced from 12 ms−1 to 6 ms−1, as shown in Figure 25. Thus, the PV output was dropped
from 1.74 MW to 0.1 MW, and the wind farm power was lowered from 2 MW to 0.25 MW.
In response to the changes in RER output powers, the BESS injected the required power to
keep the MMC1 output constant, lowering the battery SOC from 85 to 56 percent. Likewise,
when the wind speed was changed from 6 ms−1 to 12 ms−1, and the solar radiation was
varied from 100 Wm−2 to 1000 Wm−2, the power injection from the battery was dropped
from 3.4 MW to zero, as shown in Figure 26, as the PV and wind systems outputs reached
to their rated power. As a result, the battery SOC was reduced from 44% to 20% during the
transition period. Finally, it is evident from Figure 26 that the MMC1 delivered almost the
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same power without experiencing any overshoot even under simultaneous variations in
solar irradiation and wind speed due to the effective operation battery controller.
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Figure 25. Solar irradiance and wind speed, real power change of wind, PV, and battery source,
battery SOC, and active power of the MMC1 during solar irradiance and wind speed reduction.
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Figure 26. Solar irradiance and wind speed, real power change of wind, PV, and battery source,
battery SOC, and active power of the MMC1 during solar irradiance and wind speed increase.

4.5. Charging of Battery

The charging and discharging of battery is performed by making the reference power
PBattery negative or positive of the outer control loop of VSC, as shown in Figure 6d. The
positive value of PBattery indicates that the battery is being discharged, while the negative
value refers to battery charging. The charging of the battery is depicted in Figure 27. The
PBattery was set to a constant value (−1 MW), resulting in a net power injection into the BESS.
As a result, the power injection at PCC1 from 26 PV units and wind farms fell from roughly
96 MW to 72 MW. The battery is rated for 4 MW for 15 min, which implies that if a 4 MW
steady power injection is maintained for 15 min, the battery will be fully charged. However,
the duration was set to 30 s for the simulation to highlight the major charging profile
change in a short period. During this time, the battery SOC was raised from 25 percent to
45 percent.
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5. Conclusions

A battery-based control method was devised to successfully control the HVDC-link
surplus power and keep voltage within limits under low-voltage disturbance at the PCC
of AC grids. In addition, another control strategy was developed for smoothing power
fluctuations due to solar radiation, temperature, and wind speed variation. The entire
system, including all switching converter models, was simulated and tested with a real-
time platform by connecting the dSPACE controller with the RTDS machine by developing
the controller hardware in the loop setup. The findings support the use of battery-based
surplus power control to preserve the HVDC-link voltage during low-voltage disturbance
situations, and the use of a power smoothing control technique to improve transient
performance during variations in irradiance, temperature, and wind speed. Furthermore,
MMC1 delivered reactive current at the PCC of the AC grids during symmetrical and
unsymmetrical faults, improving the low-voltage FRT capability of the MMC-HVDC
system. The combination of renewable energy and batteries can be investigated for the
frequency regulation of AC grids. In addition, it can also be further explored for inertia
emulation and grid forming converters, due to its large power capacity, similar to that of a
synchronous generator.
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Nomenclature

Battery Side Converter:
R, L Reactor resistance and inductance
PCC Point of common coupling
ω0 PCC angular frequency
igd&igq PCC d-q axis current
Vgd&Vgq PCC d-q axis voltage
Vd&Vq VSC terminal d-q axis voltage
C DC link capacitance
VDC DC link voltage
Idc DC link current
VSC-B Battery side converter
Icom Combined current of PV, wind and battery
M10 Scaling factor
HPF High pass filter (LF + RF // CF)
BESS Battery energy storage system
PBattery Battery power
MMC Converter:
R, L Arm reactor resistance and inductance,
PCC1 Point of common coupling of AC grid 1
ω0 Angular frequency at PCC1
Vs, Is 3-Ø voltage and current
Vsd&Vsq d-q axis voltage of PCC1
isd&isq d-q axis current of PCC1
Vd&Vq MMC terminal d-q axis voltage,
VDC HVDC-link voltage
Iext HVDC-link DC current
C Submodule capacitance
Cd DC link pole-to-pole capacitance
N Number of submodules
id1&iq1 Negative sequence d-q axis current
Vd1&Vq1 Negative sequence d-q axis voltage,
LG Single-line-to-ground
LLG Double-line-to-ground
LLLG Three-line-to-ground
DBR Dynamic braking resistor
MMC Modular multilevel converter
HVDC High-voltage DC current
Others:
PPV PV panel array power
Pwind Wind generator power
FRT Fault ride through
PSet Combined power of wind generator and solar array
RER Renewable energy resources
CHIL Controller hardware in loop
RTDS Real-time digital simulator
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