
Citation: Shi, H.; Hou, D.; Li, X.

Center-Aware 3D Object Detection

with Attention Mechanism Based on

Roadside LiDAR. Sustainability 2023,

15, 2628. https://doi.org/10.3390/

su15032628

Academic Editors: Shaopeng Zhong

and Hongmei Zhou

Received: 21 December 2022

Revised: 19 January 2023

Accepted: 30 January 2023

Published: 1 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Center-Aware 3D Object Detection with Attention Mechanism
Based on Roadside LiDAR
Haobo Shi 1,2,3, Dezao Hou 1,2,3,* and Xiyao Li 1,2,3

1 Research Institute of Highway, Ministry of Transport, Beijing 100088, China
2 Key Laboratory of Intelligent Transportation Technology and Transportation Industry, Beijing 100088, China
3 National Intelligent Transport Systems Center of Engineering and Technology, Beijing 100088, China
* Correspondence: dz.hou@rioh.cn

Abstract: Infrastructure 3D Object Detection is a pivotal component of Vehicle-Infrastructure Coop-
erated Autonomous Driving (VICAD). As turning objects account for a high proportion of traffic
at intersections, anchor-free representation in the bird’s-eye view (BEV) is more suitable for road-
side 3D detection. In this work, we propose CetrRoad, a simple yet effective center-aware detector
with transformer-based detection head for roadside 3D object detection with single LiDAR (Light
Detection and Ranging). CetrRoad firstly utilizes a voxel-based roadside LiDAR feature encoder
module that voxelizes and projects the raw point cloud into BEV with dense feature representation,
following a one-stage center proposal module that initializes center candidates of objects based on
the top N points in the BEV target heatmap with unnormalized 2D Gaussian. Then, taking attending
center proposals as query embedding, a detection head with multi-head self-attention and multi-scale
multi-head deformable cross attention can refine and predict 3D bounding boxes for different classes
moving/parked at the intersection. Extensive experiments and analyses demonstrate that our method
achieves state-of-the-art performance on the DAIR-V2X-I benchmark with an acceptable training time
cost, especially for Car and Cyclist. CetrRoad also reaches comparable results with the multi-modal
fusion method for Pedestrian. An ablation study demonstrates that center-aware query as input
can provide denser supervision than a purified feature map in the attention-based detection head.
Moreover, we were able to intuitively observe that in complex traffic environment, our proposed
model could produce more accurate 3D detection results than other compared methods with fewer
false positives, which is helpful for other downstream VICAD tasks.

Keywords: vehicle-infrastructure cooperative autonomous driving; roadside 3D detection; LiDAR-based
detection; central point representation; deformable attention

1. Introduction

In recent years, the driving situation perception for autonomous vehicles has become
one of the most important applications of computer vision. Accurate detection results can
effectively improve the safety of autonomous vehicles as well as transportation efficiency.
The vast majority of current research is based on vehicle-side sensors, such as monocular
or binocular cameras, LiDAR, etc. Due to the inherent disadvantage of installation height
for on-board sensors, however, even well-performing object detection algorithms cannot
effectively identify occluded objects from the ego-vehicle perspective. Conversely, data
captured from roadside sensors has the intrinsic advantages of occlusion robustness and
object detection for dense traffic flow, as they are collected by sensors installed on traffic
poles with a certain height. Intelligent transportation systems using external infrastructure
with modern sensors could offer great potential and the possibility to support connected
vehicles and autonomous driving [1].
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Roadside perception is crucial to the successful operation of Vehicle-Infrastructure
Cooperated Autonomous Driving (VICAD), which is an advanced form of Autonomous
Driving (AD). With the development of roadside perception, automated vehicles will
no longer need as many perception sensors and high-performance computing units as
before. Object detection based on Deep Learning (DL) has been developed for a long
time, and the mean average precision (mAP) from the perspective of the vehicle on the
nuScenes [2] dataset has reached more than 75%. Until now, most research has mainly
focused on the ego-vehicle perspective, and current detection algorithms from the roadside
perspective are generally based on typical machine vision. The traditional pipeline of
roadside perception with LiDAR sensors usually follows three steps: background filtering,
feature clustering and object classification. This requires many steps of calculation and
analysis, and cannot satisfy the real-time requirements in mixed-traffic environments.
Although general 3D object detection has gone through an era of rapid development,
research based on roadside LiDAR is still an emerging topic and has the potential to
provide detection results complementary to the on-board sensors for VICAD.

Both anchor-based and transformer-based detectors have been widely used in 3D
object detection for autonomous driving. However, their performance gap and applications
based on roadside sensors remain to be studied. As one of the most popular anchor-free
detection baselines, center-based representation has several key advantages for roadside
detection. Firstly, left- or right-turning objects generally account for a high proportion at
an intersection. Although both the anchor-based and center-based method could detect
vehicles going straight accurately, bounding boxes of rotated objects are difficult to refine
based on axis-aligned anchors. Secondly, centerpoint-based representation will consider-
ably reduce the search space and training cost of detection models and allows the LiDAR
backbone to learn the rotational invariance and equivalence of objects [3]. Thirdly, center-
based detection results with voxel feature extraction enable more effective multi-sensor
fusion in the shared bird’s-eye view (BEV) representation space. Furthermore, as a kind of
middle-feature representation, center candidates of traffic participants could provide more
accurate query embedding for attention-based blocks.

Taking the aforementioned aspects into consideration, we propose CetrRoad, a simple
yet effective center-aware detector with deformable transformer for roadside Single-View
3D (SV3D) Object Detection. A simplified overview of CetrRoad is shown in Figure 1. Over-
all, our contributions could be summarized as follows: (a) To the best of our knowledge,
motivated by real-world roadside datasets, CetrRoad is the first transformer-based detector
with center-aware proposals for infrastructure LiDAR-only 3D object detection; (b) the
proposed center-aware query embedding could provide dense supervision to bounding box
refinement and prediction, which makes the performance of our model outstanding among
the compared anchor-based methods and transformer-based detectors without dense query
input; (c) the designed detection head with multi-head deformable cross-attention blocks
was able to efficiently aggregate sampled features of center candidates on multi-scale BEV
feature maps; (d) extensive experiments and analyses demonstrate that CetrRoad achieves
a new state-of-the-art performance on the DAIR-V2X-I dataset, with fewer false positive
predictions in Car and Cyclist, as well as results comparable to a multi-modal model in
Pedestrian, which is helpful for other downstream VICAD tasks.
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Figure 1. The pipeline of our CetrRoad framework. CetrRoad is a simple yet effective center-aware
detector with deformable cross-attention for LiDAR-only 3D object detection from the roadside
perspective. CetrRoad firstly utilizes a voxel-based roadside LiDAR feature encoder module that
voxelizes and projects the raw point cloud into BEV with dense feature representation, following
a one-stage center proposal module that initializes center candidates of objects based on the top N
points in the BEV target heatmap with unnormalized 2D Gaussian. Then, taking attending center
proposals as query embedding, a detection head with multi-head self-attention and multi-scale
multi-head deformable cross attention could refine and predict 3D bounding boxes for different
classes moving/parked at the intersection. More details about submodules can be found in Section 3.

2. Related Work
2.1. Camera-Based Roadside Detection

Cameras are the most common sensor at the roadside due to their low cost and ease
of deployment. For cooperative vehicle infrastructure systems (CVIS), a monocular 3D
vehicle detection method [4] was proposed without the need for 3D labels in the contour
of the vehicle. It consists of three steps: (1) clustering arbitrary object contours into linear
equations with instance segmentation and image gradients; (2) estimating the position,
orientation and dimensions of the vehicle regardless of it being moving or stationary by
applying a K-means-like method; (3) fine-tuning the final 3D object detection results by
maximizing the posterior probability of previous 2D results.

Optical and thermal cameras installed on the roadside could be utilized to establish
a roadside detection system for cooperative autonomous driving, including 3D object
detection, tracking, and camera data fusion [5]. The training of this model only relies on 2D
ground-truth annotations with a localization strategy motivated by landmark reference.
Then, 2D predictions would be transformed into 3D with the landmark unicity and multi-
camera intrinsic. Due to the efficient support of MobileNet-v2 [6], the whole framework
could operate timely on the roadside computing unit with a transmission delay of less than
20 ms.

2.2. LiDAR-Based Roadside Detection

Due to a lack of large real-world roadside datasets with annotations, most previous
studies still follow a typical pipeline to realize LiDAR-based object detection, which mainly
consists of three steps: (1) Background Filtering to purify the LiDAR points reflected from
the road surface or buildings by applying filtering methods, such as 3D density statistic
filtering (3D-DSF) for both statistic and actional background [7]; (2) clustering to generate
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clusters for the laser points by implementing clustering methods, such as Density-Based
Spatial Clustering Applications with Noise (DBSCAN) [8] for large spatial LiDAR data
and Multi-Rectified DBSCAN to identify traffic markings; and (3) classification to predict
different labels for vehicles and pedestrians in traffic scenes by back propagation (BP)
neural networks [9]. This pipeline is logically clear and applicable for implementation
on the roadside. But the inference speed cannot meet real-time requirements and the
performance of detection has a large gap compared with deep-learning-based paradigms.
For pedestrian detection based on roadside LiDAR, Gong et al. proposed a real-time
pedestrian detection algorithm by combining traditional and deep learning algorithms with
high reliability in practical application [10]. To satisfy the real-time requirement, Octree
with region-of-interest (ROI) selection and an improved Euclidean clustering algorithm
with adaptive search radius were introduced. The total process of background filtering and
clustering takes 88.7 ms per frame, and the final inference time reaches 110 ms per frame.

As a novel real-time traffic surveillance system for exploring the potential of roadside
sensors for enabling CDA in the real world, Cyber Mobility Mirror (CMM) [11] can utilize
a roadside 3D LiDAR for data collection and 3D object perception. The roadside point
clouds should be first transformed into a vehicle-side coordinate system by Roadside
Point-cloud Encoder and Decoder (RPEaD). Then the detection network will be trained
with open-source onboard dataset configurations, e.g., nuScenes [2], while inferencing on
the roadside. To eliminate the threats of large shifting along the z-axis, only voxelization
on the x–y plane was performed to produce point cloud pillars following the strategy
applied in PointPillars [12]. Next, the aggregated features will be sent to Feature Pyramid
Network (FPN) followed by Single Shot multi-box Detector (SSD) [13], a 3D anchor-based
detection head, to generate predicted bounding boxes. Similarly, DASE-ProPillars [14], a
single-stage LiDAR-only detector, utilizing PointPillars [12] as the baseline model with
additional Attentive Hierarchical modules to improve the 3D detection performance within
roadside LiDARs. The pillar feature net (PFN) takes voxelized pillars as the input, extracts
pillar features, and transforms pillars back to a pseudo-image for 2D convolution operations
in the middle layers. The post-training is motivated by the shape-aware data augmentation
and self-assembling training framework [15], where the predictions of the pre-trained
model can be used as soft supervision and ground truth as hard supervision to simplify the
handling of partial occlusions, sparsity and different shapes of objects in the same class.

Arnold et al. proposed a cooperative detection system which consists of different
roadside sensors, such as LiDAR and depth cameras, with positional correction for multi-
view 3D object detection simultaneously [16]. Their study mainly concentrated on early,
late or mixed fusion strategies at intersections. The result shows that early fusion has the
highest communication transmission with good detection performance, and the hybrid
fusion outperforms late fusion with a lower cost than early fusion, but performs worse
than early fusion due to the loss of crucial original points. The experiment indicates that
a large number of roadside sensors at the intersection is highly profitable in preventing
occlusion and a limited field-of-view with spatially various and repetitive observations
in complex traffic scenes. As the first deep-learning-based cooperative object detection
method which integrated point cloud data from both on-board and roadside LiDARs,
PillarGrid [17] proposed a cooperative-feature fusion module named Grid-wise Feature
Fusion (GFF). After converting the feature data into the grid plane, each grid will include
specific hidden features representing original point cloud data at the particular spatial
location. Then, a CNN backbone and an anchor-based 3D detection head were applied to
predict the oriented 3D bounding boxes for vehicles and pedestrians, respectively.

2.3. Transformer-Based 3D Detection

Transformer [18] was originally designed for natural language processing (NLP) and
achieved excellent results in machine translation. Inspired by the huge success of attention
mechanism in image classification [19,20] and 2D object detection [21], transformer-based
3D object detection has recently become a mainstream research direction. Without predicted
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depth maps or any post-processing, DETR3D [22] uses backward geometric projection
to connect 2D feature extraction and 3D bounding box prediction, fusing information
from multiple camera views in each computation layer. M3DETR [23] simultaneously
models multi-representation, multi-scale, mutual-relation features of point clouds with
transformer blocks and is robust with regard to the hyper-parameter tuning of transformer
architectures. To acquire global information for capturing long-range interactions, Full
Self Attention (FSA) and Deformable Self-Attention (DSA) [24] was proposed in parallel to
convolution networks for the augmentation of standard convolutional features. These two
modules can be applied across a range of modern point-cloud based detector architectures
and systematically improves their original performance, including BEV- [12], voxel- [25],
point- [26] and point-voxel-based [27] 3D detectors.

Point Cloud Transformer (PCT) [28] aims to encode the original points into a new
higher-dimensional feature space, by embedding the input coordinates. The design philos-
ophy is almost the same as for the original Transformer, while discarding the positional
embedding. The proposed offset-attention module serves as a self-attention block, which
produces the offset between the off-attention features and the input queries by element-wise
sampling. PCT has an invariant composition and is suitable for research on unordered
point clouds with irregular territory, but the performance gap in larger real-world datasets
still remains to be studied.

For a more effective and distinguishing feature representation, the Stacked Triple
Attention (TA) module in TANet [29] has been proposed to strengthen the deficient learn-
ing of moving objects and perform better with irrelevant points, which can be applied to
roadside LiDAR with both voxel- and pillar-based feature encoders [14]. The TA mod-
ule extracts features in each pillar grid with a channel-wise, pillar-based and voxel-wise
attention mechanism. The final output feature is integrated with the combination of all
three attention scores. To further utilize the middle feature of the attention block, the input
of each triple attention module is integrated or summed as the output to fuse more informa-
tion, similar to the residual concatenations in ResNet [30]. The inner attention mechanism
simply re-weights the features, without increasing their dimensions, as the following fully
connected forward network. Taking multiple cameras as inputs, BEVFormer [31] is a
spatial-temporal transformer model which utilizes both transformer (spatial) and temporal
modules to generate bird’s-eye-view (BEV) features. BEVFormer employs learnable BEV
features as queries, along with a spatial cross-attention block and a temporal self-attention
block, to search spatial features from overlapping cameras and relevant temporal features
from previous proposals, respectively, and then integrate them into uniform BEV features.
This dense representation is a universal 2D feature map that can be used for various au-
tonomous driving detection heads with tiny modifications, such as 3D object detection and
instance segmentation.

Attention mechanism could also be used for 3D object detection based on multi-
modality sensor fusion, i.e., high-resolution LiDARs, low-resolution LiDARs, cameras and
radars. FUTR3D [32], a unified sensor fusion framework with any sensor configuration
for 3D detection, employs a query-based Modality-Agnostic Feature Sampler (MAFS),
together with a transformer decoder with a set-to-set loss to avoid exploiting late fusion
heuristics and post-processing tricks. FUTR3D also exploits the advantages of multi-sensor
fusion, where lower cost sensor configurations (4-beam LiDAR and camera) could achieve
performance comparable to 32-beam LiDAR.

Specifically, Transfusion [33] is a multi-modal fusion method for 3D detection with
a soft attention mechanism to adaptively select what information should be taken from
multiple sensors under weak conditions. The model includes standard 2D and 3D con-
volutional backbones to separately extract a middle feature map of image and a LiDAR
BEV feature map following two transformer decoder blocks in sequence as the detection
head. An image-based query initialization module is designed to dispose small objects
on the LiDAR BEV feature with the guidance of images. This module includes a query
and corresponding position providing the localization of the object, and a query proposal
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encoding bounding box annotation, such as three-dimensional size and orientation. The
first transformer decoder block predicts initialized 3D bounding boxes by a sparse set of
queries, and the second intensively fuses previous object queries through initial candidates
from the first stage with the image features, predicting dense texture and color information
for better detection results.

To address large inter-modal discrepancies of LiDAR point-clouds and RGB images,
Contrastively Augmented Transformer for multimodal 3D object Detection (CAT-Det) [34]
was proposed. The whole framework consists of three main modules: (1) Two-stream
Pointformer and Imageformer (TPI), (2) Cross-Modal Transformer (CMT), and (3) One-way
Multi-modal Data Augmentation (OMDA). Hierarchical contrastive learning at both the
point and object levels allowed improving accuracy only by augmenting point-clouds with
GT-Paste [35], which pastes extra 3D objects from other LiDAR frames without spatial
collision, and is thus free from a complex generation of paired samples of the two modalities.

2.4. Roadside Dataset for Object Detection

Owing to emerging needs in surrounding perception for autonomous vehicles, as
Figure 2 shows, most existing datasets for object detection are collected from on-board
sensors, such as KITTI [36], NuScenes [2] and Waymo [37]. However, comprehensively
improving the perception ability of roadside infrastructure is the core focus and primary
task for the development of VICAD. BAAI-VANJEE [38], published in 2021, is the first
real-world roadside dataset, which includes 5000 frames of RGB images and 2500 frames
of LiDAR data with 74 k 3D object annotations for 12 classes. In 2022, Rope3D [39] was
proposed to accelerate the progress of camera-only roadside perception, and it contains
50 k images and more than 1.5 M 3D annotations of objects in various traffic conditions.
Particularly, LiDAR equipped on a moving/parked vehicle was adopted to obtain matched
3D point clouds for reliable ground-truth 2D–3D joint annotation.
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Figure 2. Datasets available for Single-View 3D (SV3D) Object Detection in autonomous driving.
DAIR-V2X-I is the first real-world multi-modal dataset with 3D joint annotation of images and point
clouds for infrastructure 3D detection.
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Furthermore, DAIR-V2X [40] serves as the first and only large-scale, multi-modality,
multi-view dataset for VICAD at this time. It consists of 71254 LiDAR frames and 71254 camera
frames, which are all captured from real scenarios with 3D annotations. As a subset of
DAIR-V2X, DAIR-V2X-I concentrates on roadside-centric 3D object detection, such as
monocular 3D detection, LiDAR 3D detection and multi-modal 3D detection. More details
on DAIR-V2X-I can be found in Section 4.

With more and more roadside datasets available, the innovation research and achieve-
ment transformation in the field of VICAD will be actively assisted and accelerated. The
major problem of limited perception range in the ego-vehicle perspective will also be
resolved in future.

2.5. Problems in Previous Work

In summary, LiDAR-based detectors perform better than camera-based detectors.
However, most of the existing perception methods based on roadside LiDAR are traditional
machine vision models. The application of deep-learning tricks for more effective object
perception methods based on roadside LiDAR deserves serious research in the future.
Moreover, transformer-based 3D detection models have achieved impressive results with
on-board sensors, whose applications in the roadside perspective still show a lot of potential
for study.

However, due to the lack of sufficient data collected from the real world, the afore-
mentioned deep-learning-based detectors with LiDAR utilize either simulated datasets
generated by the CARLA simulator [41] or customized datasets without multi-sensor cali-
bration and ground-truth labels. This will significantly prevent the accuracy improvement
of some optimization strategies for roadside detection. The previous object detection mod-
els mainly studied in simulated scenarios are difficult to apply to real roads or intersections.

3. Approach

Our research mainly focuses on how to detect more traffic participants with true
positive annotations based on a limited amount of roadside LiDAR data. In this section,
we present the proposed model, CetrRoad, a simple yet effective center-aware detector
with deformable cross-attention for LiDAR-only 3D object detection from the roadside
perspective. The overall network of CetrRoad is illustrated in Figure 1, consisting of three
main blocks: (1) a voxel-based roadside LiDAR feature encoder module that voxelizes and
projects the raw point cloud into BEV with dense feature representation (Section 3.1); (2) a
one-stage center proposal module that initializes center candidates of objects based on the
top N points in the BEV target heatmap with unnormalized 2D Gaussian (Section 3.2); (3) a
detection head with multi-head self-attention and multi-scale deformable cross attention,
taking outstanding center proposals as query embedding, that can predict 3D bounding
boxes for different classes moving/parked at the intersection (Section 3.3). For the integrity
and coherence of our presentation, a set-to-set loss function between one prediction and its
corresponding ground-truth will also be introduced in Section 3.4.

3.1. Roadside LiDAR Feature Encoder

The aim of our model is to predict a set of 3D bounding boxes B = {bi} in the BEV as
good as the ground truth, where i denotes the number of real annotations in each frame of
the roadside LiDAR point cloud. Each bounding box bi consists of a center location {x, y, z}
relative to the virtual LiDAR coordinate system, 3D size {w, l, h}, and yaw angle α. Modern
LiDAR-based detectors usually utilize a 3D encoder to quantize the point-cloud into regular
voxels or pillars. Then a voxel or point-based backbone, where most of the computation
and quantized operation happens, will extract primary features from all points inside these
bins. Common LiDAR-based 3D backbones include VoxelNet [42] and PointPillars [12].
For better performance of the final predictions, we use SECOND [25] as the 3D backbone
to voxelize roadside LiDAR point clouds, following a sparse convolution encoder to pool
these features into the major feature representation. The input channel of the sparse encoder
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is set to 4 in our model, which depends on the storage format of raw LiDAR data. The
outputs of a previous backbone with diverse channels will then be imported to Feature
Pyramid Network (FPN) [43] for feature upsampling through three layers.

3.2. One-Stage Center Proposal Module

With a BEV overhead feature map, a modern detection head will produce object
detections with predefined anchors. As the turning objects account for a high percentage
at the intersection, 3D bounding boxes of the ground-truth usually come with various
sizes and orientations. Anchor-based 3D detectors have difficulty refining an axis-aligned
2D box into a 3D object which turns right or left randomly. Actually, distances between
any traffic participant are absolute in BEV, and these are distorted by perspective in the
image-view. Compared with hand-designed anchors, center-based representation in BEV is
more efficient and suitable for turning-objects recognition.

Since the center part of traffic participants is usually the highest at the z-axis, we
could use a target heatmap to describe the center of positive locations. Following previous
work [3,44], we propose a one-stage center proposal module based on the last BEV feature
map Z from BEV Feature Pyramid Network (BEV FPN). Taking the projection of 3D centers
of ground-truth bounding boxes as the input of an unnormalized 2D Gaussian distribution,
an l channel heatmap H of object centers can be predicted during training. Each channel
contains a heatmap score of one class. To reduce the penalty to negative locations and
strengthen the positive supervision of the ground-truth object center, we set the smallest
allowable Gaussian radius as 1.

The center candidate generation in this module is under denser supervision from
nearby pixels, as Figure 3 shows. The location of the top N heatmap scores will be extracted
as the center proposals. We determined N = 100 in our model empirically for a trade-off
between performance and training cost.
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Figure 3. Simple illustration of one-stage center proposal module. Taking the projection of 3D centers
of annotated bounding boxes and nearby pixels into BEV as input, a 2D unnormalized Gaussian is
trained for initializing center candidates within a limited Gaussian radius. Note that red color blocks
represent selected center candidates, and surrounding colors serve as referenced pixels.

3.3. Detection Head with Center Proposal and Deformable Attention

Attention mechanism has been widely used in object detection after the proposal of
DETR [21]. Previous work usually takes the whole BEV feature map as the input query of
the self-attention block, following the cross-attention block to refine bounding boxes and
regress final predictions. However, after downsampling and upsampling, even the highest-
dimensional BEV feature map is much sparser than the raw point cloud data, which means
that there are much more zeros in the query vectors at the same input scale. Spatial sparsity
in the transformer will lead to an unnecessary consumption of computing resources. More
false positive predictions will potentially be proposed due to sparse supervision.

In our proposed detection head, taking previous initial center-aware query embedding
as the input, the multi-head self-attention block firstly calculates the similarity between
each query and other queries one by one. The similarity matrix, together with original
input query embedding, will be normalized into a list of weight vectors by the softmax
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function, which will then be multiplied by original center query embedding to purify initial
center proposals. Close center proposals will be integrated as a whole or partially discarded.
The residual connection in attention blocks guarantees that the output of the network will
never be zero. In other words, the output of the self-attention block could quantify the
importance of each initial center position, as a guideline for the further accurate generation
of bounding boxes.

Inspired by FUTR3D [32] and Deformable DETR [45], we designed a multi-scale multi-
head deformable cross-attention block within the detection head of CetrRoad to sample the
outstanding center candidates automatically based on the output of the multi-head self-
attention block, which serves as the input query of multi-head deformable cross-attention.
As Figure 4 shows, the multi-scale feature maps from the BEV FPN module act as key
and value simultaneously. Similarly to a deformable convolutional network, multi-head
deformable cross-attention could learn 2D offsets ∆q of purified center proposals q at
each scale of BEV feature maps in all M subheads. Each subhead of the cross-attention
block comparably acts as a deformable convolution layer, where K points will be randomly
sampled around a reference center point. As with the self-attention block, the relevance of
the updated center query q + ∆q to multi-scale BEV feature maps will be calculated after
bilinear interpolation and sampling. The output of the deformable cross attention module
can be produced as follows:

DCAM(c) =
M

∑
m=1

Wm[
K

∑
k=1

σ(WmkC(p))FB(p + ∆pmk)] (1)

where Wm represents the attention weight of each subhead in the deformable cross attention
block, FB is the multi-scale feature maps from the BEV Feature Pyramid Network, C(p)
is the purified center-aware feature from the self-attention block, and σ(WmkC(p)) is the
attention weight of the k-th sampling point in the m-th deformable attention subhead. K
is the total number of sampled key points in each subhead. We used M = 8 and K = 10 in
our experiments.

3.4. Label Assignment and Matching Losses

Playing the same role as the heuristic assignment strategy used to match region
proposals [46] or hand-designed anchors [43] to the ground truth in typical detectors,
we treat the final prediction generation as a pair-wise set matching problem without any
complicated processing components, such as multiple anchors or non-maximal suppression
(NMS). For a group of N predictions through the decoder layer, a set-to-set matching cost
between prediction ŷσ(i) with index σ(i) and its corresponding ground-truth yi is defined
as follows,

Cmatch(yi, ŷσ(i)) = −1{ci 6=∅} p̂σ(i)(ci) + 1{ci=∅}Lbox(bi, b̂σ(i)) (2)

where p̂σ(i)(ci) denotes the probability of class ci for the prediction with index σ(i), and
bi, b̂σ(i) ∈ RN×8 is a vector with normalized coordinates that contains sine and cosine values
of rotation, center coordinates (x, y, z) of the ground-truth bounding box and prediction,
respectively, and its height, width and length. Since the number of predictions N is generally
larger than the ground truth, we pad the set of ground truth up to N with zeros for brief
computation, represented as ∅ (negative sample or background). The goal of optimization
is to minimize the matching cost as follows:

σ̂ = argmin
N

∑
i

Cmatch(yi, ŷσ(i)) (3)
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Figure 4. An overview of detection head with center proposal and deformable attention. The multi-
head self-attention block could quantify the importance of each initial center position. Based on
purified center queries, each subhead of the multi-head cross attention block will learn 2D offsets at
each scale of BEV feature maps in all subheads, where K points will be randomly sampled around
a reference center point. The output of self-attention and cross attention will be aggregated and
sent to a feed-forward network, following a linear layer and softmax function to regress the final
predictions. After the deformable cross attention block, DCAM(c), together with the output of multi-
head self-attention, will be aggregated and sent to a feed-forward network, following a linear layer
and softmax function to regress the final predictions, which is a dictionary including the annotations
of all predictions. The evaluation results, with more details, can be found in Section 4.3.

Motivated by [21,22,32,33,40], we use the Hungarian algorithm [47] to search for better
bipartite matching results between roadside LiDAR-based predictions and the ground
truth of objects. Similar to the losses of common object detectors, the Hungarian loss for 3D
detection is defined as a linear combination of Focal Loss [48] for the class label predictions
and a L1 loss for the bounding box parameters:

LHungarian(y, ŷ) =
N

∑
1
[λ1Lcls(pi, p̂σ(i)) + λ2Lbbox(bi, b̂σ(i))] (4)

where λ1 = 2.0 and λ2 = 0.25. For notational convenience, we define Lcls as follows:

Lcls(pi, p̂σ(i)) = Ccls(pi, p̂σ(i))ci 6=∅ − Ccls(pi, p̂σ(i))ci=∅ (5)
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In detail, Ccls(pi, p̂σ(i)) is represented as:

Ccls(pi, p̂σ(i)) =

{
−α(1− p̂σ(i))

γ log( p̂σ(i) + ε) , ci 6= ∅
−(1− α)( p̂σ(i))

γ log(1− p̂σ(i) + ε) , ci = ∅ (6)

where α = 0.25, γ = 2 and ε = 1× 10−12 as default. The loss of predicted bounding box
Lbbox is defined as L1 norm between bi and b̂σ(i):

Lbbox(bi, b̂σ(i)) =‖ bi − b̂σ(i) ‖ 1 (7)

4. Experiments

CetrRoad is evaluated on the challenging DAIR-V2X-I benchmark. We first introduce
the main characteristics of the DAIR-V2X-I dataset and a quantitative evaluation metric
for the comparison of detection performance in Section 4.1. Then, we present critical
information about model training and evaluation in Section 4.2 from beginning to end. We
compare CetrRoad with three official DAIR-V2X-I baselines and two other representative
LiDAR-only models on the DAIR-V2X-I validation set. Furthermore, the quantitative and
qualitative analysis are comprehensively presented in Section 4.3, and visualization of some
example predicted results are shown in Figure 5.

4.1. Experimental Setup

Dataset. We evaluated our method on the DAIR-V2X [40] roadside 3D detection
dataset (DAIR-V2X-I). The DAIR-V2X-I dataset is the first large-scale roadside multimodal
dataset with 3D joint annotation of images and point clouds, including 10,084 frames of
roadside image data and 10,084 frames of point cloud data. All the data were captured
by a pair of RGB cameras and LiDAR, which are installed in the same azimuth and
calibrated at the same time, and the images are undistorted. Since there is a pitch angle
between the roadside LiDAR and the ground, for the convenience of research, the roadside
LiDAR coordinate system and corresponding point clouds are uniformly transferred to
the virtual LiDAR coordinate system through the roadside LiDAR external parameter
matrix. Specifically, all images and point cloud frames include exhaustive annotations of
the 10 object classes with their category attributes, occlusion states, truncated states, and
precise seven-dimensional cuboids modeled as x, y, z, width, length, height, and yaw angle.

Evaluation metrics. Following the PASCAL VOC criteria [49], we evaluated the 3D
object detection performance on the DAIR-V2X-I dataset by AP (Average Precision), which
is defined as the area under the Precision-Recall curve. Specially, Precision (also called
positive predictive value) is the proportion of ground truth among all predicted annotations,
while Recall is defined as the number of ground truth predicted successfully divided by
the total number of ground truth. According to object size, occlusion and truncation levels,
the ground-truth labels are categorized into Easy, Moderate and Hard for evaluation. For
impartial comparison, we set [0.7, 0.5, 0.5] as the uniform IoU (Intersection over Union)
threshold for Car and [0.5, 0.25, 0.25] for Pedestrian and Cyclist, respectively.

4.2. Implementation Details

Preprocessing. First of all, we preprocessed the raw DAIR-V2X-I dataset under the
open-source OpenDAIRV2X, which supports the Vehicle-Infrastructure Cooperative 3D
Object Detection (VIC3D) task and two Single-View (SV) 3D detection benchmarks. To
facilitate the effective training and compare the performance with the official benchmark,
we converted the original data into KITTI [36] format, as Figure 6 shows. We divided
DAIR-V2X-I into a training set, validation set and testing set according to 5:2:3. Note that
the testing folder is empty because the testing set of the DAIR-V2X-I dataset has not been
released at this point. The DAIR-V2X-I available dataset contains 7058 frames of roadside
image data and 7058 frames of point cloud data, which are completely utilized by the
methods presented in this paper.
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Figure 5. Visualization of some example qualitative results on the DAIR-V2X-I dataset. The ground-
truth bounding boxes of input images and LiDAR point cloud are shown in orange and blue,
respectively. The predicted results on the raw point cloud are showed in green. It can be seen that
CetrRoad predicts results much better, with fewer false positives than other methods, especially for
pedestrians and cyclists across the zebra crossing.
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Figure 6. The file structure of DAIR-V2X-I after data preprocessing. OpenDAIRV2X preprocessed the
raw data of DAIR-V2X-I for training and evaluation. More details can be found at https://github.
com/AIR-THU/DAIR-V2X (accessed on 12 July 2022).

Configuration. Our implementation is based on the public codebase MMDetection3D
(v0.17.1) [50]. For fair comparison of all methods presented in Section 4, we uniformly
constrained the detection range in every point cloud frame to [0, 70.4 m] for the x-axis,
[−40 m, 40 m] for the y-axis, and [−3 m, 1 m] for the z-axis, respectively. Our model
consists of three parts: a voxel-based roadside LiDAR feature encoder that projects the raw
point cloud into BEV features with dense representation; the size of each voxel is set to
[0.05 m, 0.05 m, 0.1 m] and the total number of voxels in each single frame is 1600 × 1408.
CetrRoad adopts SECOND [25] as a backbone and SparseConv [51] with sparse shape
[41, 1600, 1408] as the middle feature extractor. SparseConv can flatten the 3D feature
tensors into the BEV plane by simply collapsing the z-axis, which consists of four blocks
of [2, 3, 3, 3] 3D sparse convolutional layers with the dimensions [16, 32, 64, 128]. The
input features of the LiDAR backbone will be downsampled to 1/2 and 1/4 of the original
feature map respectively, which is the opposite of the BEV FPN layers.

3D Data Augmentation. Inspired by previous work [25], several new objects from
ground-truth and corresponding points in other frames were partially pasted into the
current training LiDAR frame except specific bounding boxes overlapping with some boxes
in the present frame. The number of sampled points is flexible; the setting is 10 for Cyclist,
10 for Pedestrian and 12 for Car in our experiment. Then, global rotation, translation
and scaling were applied to the whole point cloud in three-dimensional space, where the
probability of flipping in each frame is set to 0.5. The scale of rotation angle is random from
[−π/4, π/4], with the scaling ratio between 0.95 and 1.05. Random flip of bounding boxes
was also applicable in the horizontal direction of BEV, where the probability of rotation
is 0.5.

Training & Evaluation. AdamW [52] was employed to train our model without
any pretrained assistance. The weight decay for AdamW is 10−2. The learning rate was
10−3 initially and finally decreased to 10−7 following a cyclic schedule. We did not use
any post-processing such as NMS. All experimental results presented in this paper were
produced based on the public DAIR-V2X-I dataset, whose training and evaluation were
both implemented on our own devices. In consideration of cost and the lifespan of devices,
multiple computing units in the single Road Side Unit (RSU) are less likely to be deployed.
Therefore, we assumed that there is only one GPU (Graphics Processing Unit) available
for training and evaluation on the DAIR-V2X-I dataset. A total of 24 GB memory of

https://github.com/AIR-THU/DAIR-V2X
https://github.com/AIR-THU/DAIR-V2X
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the NVIDIA RTX3090 GPU was applicable for reimplementing DAIR-V2X-I detection
baselines, including PointPillars [12], SECOND [25] and MVX-NET [53]. However, Object
DGCNN [54] and FSD [55] need more memory for smooth training. We adopted a single
NVIDIA A100 GPU with 40 GB memory instead to produce optimal detection results
for Object DGCNN, FSD and CetrRoad. To achieve the best performance with limited
resources in the shortest time, PointPillars [12] was trained for 160 epochs and the others
for 80 epochs with maximized batch size. More training details and settings are reported in
Table 1. 160 training epochs are sufficient for PointPillars, which is the official setting in
MMDetection 3D and OpenDAIRV2X. For a fair comparison, we also trained CetrRoad with
the same 80 epochs as other models. The evaluation pipeline is consistent with training,
where we used the toolkit provided by MMDetection3D to show the quantitative and
qualitative results clearly.

Table 1. Some detailed training settings for all the models mentioned in our experiment.

Method Environment Memory Cost Training Time Average Iteration
Time Training Epochs

PointPillars

Single NVIDIA
RTX3090 GPU

6.7 GB
(batch size = 6) 24 h 0.2782 s/iter 160

SECOND 6.0 GB
(batch size = 6) 8 h 0.3616 s/iter 80

MVX-NET 3.9 GB
(batch size = 1) 30 h 0.2502 s/iter 80

Object
DGCNN(voxel)

Single NVIDIA
A100 GPU 40G

13.7 GB
(batch size = 4) 17 h 0.5813 s/iter 80

FSD 7.4 GB
(batch size = 2) 26 h 0.4851 s/iter 80

Ours 5.3 GB
(batch size = 4) 16.5 h 0.5917 s/iter 80

4.3. Performance Comparison on DAIR-V2X-I

Quantitative Analysis. We compared the performance of CetrRoad with the following
categories of methods on the DAIR-V2X-I validation set, including (a) PointPillars [12] and
SECOND [25], the anchor-based LiDAR-only detectors without attention mechanism;
(b) Object DGCNN, the representative LiDAR-only detector with attention-based detection
head; (c) FSD [55], the state-of-the-art approach with a fully sparse detector on the Waymo
dataset [37], which utilized five LiDAR sensors simultaneously for 3D object detection;
and (d) MVX-NET, the modern multi-modal (LiDAR + image) fusion method [53]. It is
worth noting that (a) and (d) are three DAIR-V2X-I detection baselines. Table 2 summarizes
the detailed results of BEV Average Precision on the DAIR-V2X-I validation set over
CetrRoad and all aforementioned methods, whose perspective of observation is bird’s-
eye view. Similarly, Table 3 reports more results of 3D Average Precision with the same
evaluation pipeline as Table 2. The observation perspective in Table 3 is a general three-
dimensional view. AP (Average Precision of each class) and mAP (mean Average Precision
of all classes) of each method are both reported for complete evaluation. Tables 2 and 3
present AP of three classes, showing the gap in quantitative results between different
methods more concisely. By virtue of the specially designed center proposal structure with
deformable attention mechanism and effective transformer-based detector, as Tables 2 and 3
show, our method outperforms all other approaches for Car and Cyclists on DAIR-V2X-I,
becoming the new state of the art. For the challenging class of Pedestrian, CetrRoad also
reaches comparable scores to MVX-NET [53], which is a single stage detector for combining
images and point cloud frames with more training data. Object DGCNN [54] with sparse
convolution backbone adopts the multi-scale deformable attention structure as dense
head. However, its performance on DAIR-V2X-I is not as good as that of non-transformer
counterparts. FSD [55] is a fully sparse 3D object detector for enabling efficient long-range
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LiDAR-based object detection, which predicts comparable quantitative results as CetrRoad
in all three classes. It is difficult to compare the computational and spatial cost of FSD and
our model over various batch sizes. With the same training epochs and a single GPU fully
operational, as Table 1 shows, the training time of FSD is much greater than for CetrRoad,
which is the only thing we could confirm.

Table 2. Performance comparison of BEV Average Precision (BEV AP) on the DAIR-V2X-I validation
set. Here ‘L’ denotes LiDAR input and ‘I’ denotes RGB image. We set [0.7, 0.5, 0.5] as the IoU
threshold for Car and [0.5, 0.25, 0.25] for Pedestrian and Cyclist, respectively. The bold results denote
the best of all methods based on the DAIR-V2X-I official leaderboard.

Method
Modality Car BEV AP (%) Pedestrian BEV AP (%) Cyclist BEV AP (%)

L I Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars [12]
√

63.58 54.49 54.50 50.36 44.58 44.56 47.10 24.86 27.08
SECOND [25]

√
63.60 54.51 54.51 70.23 67.18 67.25 60.07 33.29 33.41

Object
DGCNN(voxel)

[54]

√
61.81 52.58 52.79 64.91 62.02 62.53 58.46 32.17 32.53

FSD [55]
√

69.63 54.51 60.61 70.68 69.59 69.77 67.37 35.65 36.70
MVX-NET [53]

√ √
63.54 54.45 54.46 71.59 71.17 71.21 63.42 34.27 34.43

Ours
√

70.97 54.23 61.96 74.43 70.79 70.86 67.85 35.94 38.32

Table 3. Performance comparison of 3D Average Precision (3D AP) over CetrRoad and all aforemen-
tioned methods on DAIR-V2X-I validation split. Best in bold.

Method
Modality Car 3D AP (%) Pedestrian 3D AP (%) Cyclist 3D AP (%)

L I Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars [12]
√

63.57 54.49 54.49 50.23 44.52 44.51 47.08 24.85 27.07
SECOND [25]

√
63.59 54.51 54.51 70.06 67.05 67.12 60.05 33.29 33.41

Object DGCNN
(voxel) [54]

√
61.53 52.34 52.56 64.15 61.01 61.52 58.33 32.14 32.49

FSD [55]
√

69.60 54.51 54.51 70.54 69.38 69.61 67.29 35.64 36.68
MVX-NET [53]

√ √
63.54 54.46 54.46 71.39 70.89 70.97 63.34 34.25 34.41

Ours
√

70.82 54.19 61.83 74.11 70.45 70.50 67.73 35.91 37.28

Qualitative Analysis. Some example qualitative results of CetrRoad and compared
methods on the validation set of the DAIR-V2X-I dataset are visualized in Figure 5 for
unambiguous comparison. To verify the robustness of our proposed model, we selected four
representative scenes for infrastructure 3D detection from day to night, where CetrRoad
performed better than others. As Scenario 1 shows, CetrRoad can produce more accurate
3D detection results of Car at the intersection, especially for the occluded car under roadside
LiDAR. Moreover, our model almost detected all pedestrians and cyclists across the zebra
crossing, with fewer false positives in Scenario 2. Finally, we can intuitively observe that
the predictions of FSD and Object DGCNN are both worse than CetrRoad because they
generate many unnecessary bounding boxes at non-target locations, which may causes
more trouble for other downstream VICAD tasks.

5. Discussion

Both anchor-based and transformer-based detectors have been widely used in 3D
object detection for autonomous driving. But their performance gap based on roadside
sensors remains to be studied. As the ablation study shows in Table 4, we find that the input
query type of transformer-based detection head is a major factor that greatly influences
the accuracy of predictions. Without dense representation of query, an anchor-based
detection head is likely to be better than an attention-based one. Object DGCNN [54]
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is a popular LiDAR-only detector with transformer-based detection head, whose input
query is sparse BEV feature maps. The bounding box predictions and visualized results
of Object DGCNN both demonstrate that a BEV feature map of LiDAR is not a good
type of input query, leading to many false positive predictions with approximately the
same time cost as for our model. It is worth noting that center-aware proposals could
provide dense query embedding for multi-head self-attention. The output of the previous
self-attention block, together with purified multi-scale BEV feature map, also serves as a
strong supervision to the multi-head deformable cross-attention block for bounding box
generation and refinement.

Table 4. Ablation study to evaluate the sub-modules of CetrRoad. Attention-based detection head is
worse than anchor-based if there is no dense query as input.

Method
Input Query Type Detection Head Cyclist 3D AP (%)

BEV Feature Map Center-Aware
Proposal Anchor-Based Transformer-

Based Easy Moderate Hard

Baseline
√ √

60.05 33.29 33.41√ √
58.33 32.14 32.49

CetrRoad
√ √

67.73 35.91 37.28

However, similarly to other compared methods, CetrRoad still cannot effectively
detect long-distance objects at intersections. The main reason is that fewer reference pixels
can be used to supervise the center point generation due to the sparser point cloud in the
far distance. There were widely distributed cameras at the intersection. Supplementing
additional information from cameras and exploring more efficient multi-modal data fusion
algorithms based on roadside sensors may be a solution for this issue. Finally, the resolution
of images is usually much denser than LiDAR point, which could easily generate dense
middle features of images accessible for roadside multi-sensor fusion.

6. Conclusions

In this work, we propose CetrRoad, a simple yet effective center-aware detector
with deformable cross-attention for LiDAR-only 3D object detection from the roadside
perspective. Our model provides a solution for the dilemma of detecting turning and
occluded objects at an intersection. CetrRoad utilizes a voxel-based roadside LiDAR
feature encoder module that voxelizes and projects the raw point cloud into BEV with
dense feature representation, following a one-stage center proposal module that initializes
center candidates of objects based on the top N points in the BEV target heatmap with
unnormalized 2D Gaussian. Then, taking previous center proposals as query embedding,
a detection head with multi-head self-attention and multi-scale multi-head deformable
cross attention can predict 3D bounding boxes for different classes moving/parked at
the intersection.

Quantitative studies show that our method outperforms various strong baselines and
achieves state-of-the-art performance on the DAIR-V2X-I benchmark with an acceptable
training time cost, especially in Car and Cyclist. CetrRoad also reaches comparable detection
results with the multi-modal fusion method in Pedestrian. An ablation study demonstrates
that the attention-based detection head with center-aware proposals could predict more
accurate results than an anchor-based head, as well as a transformer-based head with single
BEV feature map as input query. Moreover, we could intuitively observe that in a complex
traffic environment, our proposed model was able to produce more accurate 3D detection
results than other methods compared, with fewer false positives, which is helpful for other
downstream tasks of Vehicle-Infrastructure Cooperated Autonomous Driving.
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