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Abstract: Blue carbon has made significant contributions to climate change adaptation and mitigation
while assisting in achieving co-benefits such as aquaculture development and coastal restoration,
winning international recognition. Climate change mitigation and co-benefits from blue carbon
ecosystems are highlighted in the recent Intergovernmental Panel on Climate Change Special Report
on Ocean and Cryosphere in a Changing Climate. Its diverse nature has resulted in unprecedented
collaboration across disciplines, with conservationists, academics, and politicians working together to
achieve common goals such as climate change mitigation and adaptation, which need proper policy
regulations, funding, and multi-prong and multi-dimensional strategies to deal with. An overview
of blue carbon habitats such as seagrass beds, mangrove forests, and salt marshes, the critical role
of blue carbon ecosystems in mitigating plastic/micro-plastic pollution, as well as the utilization of
the above-mentioned blue carbon resources for biofuel production, are critically presented in this
research. It also highlights the concerns about blue carbon habitats. Identifying and addressing
these issues might help preserve and enhance the ocean’s ability to store carbon and combat climate
change and mitigate plastic/micro-plastic pollution. Checking out their role in carbon sequestration
and how they act as the major carbon sinks of the world are integral parts of this study. In light
of the global frameworks for blue carbon and the inclusion of microalgae in blue carbon, blue
carbon ecosystems must be protected and restored as part of carbon stock conservation efforts
and the mitigation of plastic/micro-plastic pollution. When compared to the ecosystem services
offered by terrestrial ecosystems, the ecosystem services provided by coastal ecosystems, such as the
sequestration of carbon, the production of biofuels, and the remediation of pollution, among other
things, are enormous. The primary purpose of this research is to bring awareness to the extensive
range of beneficial effects that can be traced back to ecosystems found in coastal environments.

Keywords: climate change; plastic/micro-plastic pollution; blue carbon ecosystems; carbon sinks;
circular economy

1. Introduction

Blue carbon was established as a metaphor to highlight that, apart from terrestrial
ecosystems, coastal ecosystems also contribute significantly to carbon sequestration [1].

Sustainability 2023, 15, 2682. https://doi.org/10.3390/su15032682 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15032682
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1483-7691
https://orcid.org/0000-0002-5645-0137
https://orcid.org/0000-0003-3360-3636
https://doi.org/10.3390/su15032682
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15032682?type=check_update&version=1


Sustainability 2023, 15, 2682 2 of 29

Apart from being recognized as a helpful carbon sink, blue carbon ecosystems provide
various other services, including shelter for different migratory birds, fishes, and crabs [2,3].
It is also vital in minimizing net carbon emissions. But various lines of evidence, including
remote sensing data and other studies about land use land cover (LULC), depict the drastic
reduction of mangrove ecosystems in different coastal areas environments. In 2003, the
first carbon storage global budget highlighted the planetary significance of mangroves and
salt marshes as carbon sinks. In 2005, it was revealed that fifty percent of all marine carbon
sequestered comes from seagrasses, mangroves, and tidal marshes [2]. Threats from natural
and human activities are responsible for destroying these productive ecosystems, thereby
reducing their capability to absorb and store carbon [4]. A surge in the sea level, natural
and human-made disasters, and large-scale coastal development are responsible for the
rapid change in the blue carbon landscapes [5]. The Holocene’s glacial and interglacial eras
have caused the mean sea level to fluctuate by up to 120 m [6]. Therefore, urgent research
is needed at the international and national levels to preserve and restore the blue carbon
ecosystems and tackle climate change [2].

The critical role of “Blue Carbon” in tackling climate change has become increasingly
understood in recent years. To date, initiatives have helped achieve co-benefits such as
aquaculture and coastal conservation, thus gaining international prominence. Beyond the
scientific community, blue carbon has captivated awareness among various stakeholder
groups, including government and non-governmental bodies responsible for protecting
marine environments and mitigating climate change [7]. Indeed, blue carbon not only
plays an important role in mitigating climate change but also could be used as a potential
biomass source for biofuel production. As depicted in Figure 1, blue carbon could play a
role as a critical intermediate in the circular process of CO2.
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Figure 1. Role of blue carbon in climate change mitigation and circular economy.

The research related to blue carbon received impetus after UNEP’s report ‘Blue Carbon:
A rapid response assessment’ in 2009 which focused on the importance of marine and
coastal areas [1]. Soon after the report, the blue carbon initiative was established in
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2010. Blue carbon science is evolving fast, accelerated through scalable and reproducible
observations, but is yet to achieve its maturity. Therefore, there should be proper policy
regulations and funding options to avail the maximum possible benefits from these blue
carbon ecosystems, showing that there should be multi-prong and multi-dimensional
strategies for the protection and conservation of such ecosystems. In this paper, the role
of blue carbon in the ecosystems, in mitigating plastic/micro-plastic pollution, as well
as the utilization of blue carbon for biofuel production are scrutinized. Indeed, the blue
carbon discussion has a long way to go but needs harmonious collaboration from various
stakeholders to build a positive future and help reduce carbon emissions, amongst many
other benefits. This review broadens the conversation on the importance of blue carbon
in climate change mitigation efforts by underlining the difficulties in measuring, valuing,
managing, and governing carbon in the coastal, open ocean, and deep-sea ecosystems. In
the section under “Role of Blue Carbon ecosystems in mitigation of microplastic pollution,”
we especially report how important coastal ecosystems are in dealing with plastic pollution.
We conclude with the potential of coastal ecosystems in biofuel production which is one of
the pathways to developing sustainable economies. The importance of coastal ecosystems
has increased as a result of the degradation of terrestrial ecosystems brought about by
human activities such as land use change, deforestation, fossil fuel consumption, etc. The
ecosystem services provided by coastal ecosystems, such as carbon sequestration, biofuel
production, pollution remediation, and so on, are immense in comparison to those provided
by terrestrial ecosystems. The primary objective of this study was to draw attention to the
wide variety of positive outcomes that can be attributed to coastal ecosystems.

2. Spatiotemporal Distribution of Blue Carbon Ecosystems

Coastal vegetated habitats including salt marshes, seagrasses, and mangroves have
long provided humans with advantages. More recently, notwithstanding data limitations,
their importance as carbon reserves has been recognized in climate change mitigation [1,8].
As illustrated in Figure 2, spatiotemporal distribution and the importance of blue carbon
ecosystems in controlling climate change can be seen [9].
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Coastal zone environments, including seagrass beds, rocky reefs and corals, intertidal
marshes, sandy beaches, kelp forests, and mangrove forests [10], help combat climate
change by effectively storing and sequestering CO2, known as “coastal Blue Carbon” [11].
Salt marshes, seagrasses, and mangroves, for example, often form a spatially connected
continuum of intertidal ecosystems. Unvegetated mudflats and sandbars are ecosystems
that contain and sequester vast quantities of organic carbon [12,13]. Blue carbon soil is
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anaerobic, mainly in contrast to the terrestrial ground, which causes carbon stored in these
soils to decay at a slow rate, and thus the carbon accumulates for hundreds to thousands of
years [14,15]. The coastal wetland vegetation acts as a buffer zone between land and oceans,
capable of storing surplus water during the rainy season and preventing floods [16]. They
also help to protect coastlines and are considered to be more cost-effective than complicated
structures such as seawalls and levees, as they are cheaper to manage and will be able to
keep up with rising sea levels [17,18]. They also exhibit high burial rates leading to the
seafloor’s rise, acting as a barrier against rising sea levels and wave actions linked with
climate change [19]. They serve as a motivator for ecosystem-based adaptation to protect
humans, infrastructure, and property from the negative impacts of climate change [20].

Mangroves occur in tropical and sub-tropical regions [21]. They are found in 118
countries worldwide, with 15 countries accounting for 75% of their overall coverage. West
Africa is home to nearly a quarter of the world’s mangroves, containing almost 0.854 bil-
lion metric tons of carbon in below-ground and above-ground biomass [22]. Similarly,
Indonesia alone accounts for 23% [23]. But a considerable loss of 0.16–0.39% per year has
been recorded in the mangroves since 2000 [24]. Mangroves have an excellent ability to
store carbon in the root system and act as carbon-rich forests in the tropics; hence their
management and conservation need to be prioritized [25]. Geological evidence indicates
the adaptation of mangroves to earlier climate and sea-level change [26,27]. They play a
crucial role in promoting sedimentation in sensitive coastal regions, hence withstanding
climate-induced impacts such as rising sea levels [28]. Their wide variety of aerial root
structures such as pneumatophores, prop roots, plank roots, and knee roots help prevent
soil erosion and differ in their efficacy to reserve sediments [29]. Moreover, mangroves
speed up land development through a rise in sedimentation, lower wave exposure, and
peat formation, consequently mitigating exposure to tropical storm surges and sea-level
rise [30].

Seagrasses are another blue carbon ecosystem found mainly in shallow coastal margins
across zero latitudes. Seagrasses use photosynthesis to take in carbon dioxide and assimi-
late it into their biomass. The above-ground/water vegetation traps suspended particulate
matter (sedimentation) that later adds to the sedimentary storage component [31]. They
have colossal mitigation potential for neutralizing CO2 emissions, which leads to improve-
ments in carbon estimates stored in seagrass sediments and incorporate seagrass ecosys-
tems [32,33]. The total global area under seagrass ranges from 300,000–600,000 km2 [34].
However, there has been a sharp decrease in recent decades, with a sevenfold decline
reported from 1990 to 2009 [35]. Globally, seagrasses are declining by 2–5% each year as
30,000 Km2 of seagrass have been destroyed in recent decades [36]. Every year, organic
carbon oxidation in degraded seagrass meadows potentially releases 0.03–0.33 petagrams
of carbon dioxide back into the atmosphere [37]. Seagrasses cover 4.8 million hectares in
West Africa, holding an estimated 673 million tons of carbon [22]. In coastal waters, the
restoration of seagrasses has led to increased sequestration of blue carbon [38]. However,
they have a poor carbon storage capacity compared to mangroves.

Unlike seagrasses and mangroves, salt marshes differ in having low methane emis-
sions [39,40]. Salt marshes cover 1.2 million hectares in West Africa, holding 303 million
metric tons of CO2 [22]. In recent studies, an area of 45,000 Km2 has been reported for salt
marshes [41]. Apart from carbon sinks, they are prodigious inorganic carbon sources of
coastal oceans [42]. Tidal marshes, mapped only in 43 countries of the world, represent
14% of the global coastal area [43]. The minimum yearly global loss rate of tidal marshes is
1–2% [44]. Although the blue carbon ecosystems have proved their ability as ideal carbon
sinks, both natural and artificial threats destroy these ecosystems. Due to the rise in sea
level, marshes sink to stress and shrink with time [45]. Further, marine accidents, such as
massive oil spills, are also responsible for the damage to these ecosystems [46–48]. Hence,
to avail the maximum benefits of these ecosystems, proper policymaking and guiding
mechanisms should be established to preserve and manage these blue carbon ecosystems.
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Other coastal ecosystems such as barrier islands, dunes, and beaches made of sand,
play a pivotal role in dispersing wave energy, besides having vital sediment reserves that
aid in preserving coastlines, and to a certain extent, in adapting to rising sea levels [49,50].
It is debatable if coral reefs are the sinks or sources of atmospheric CO2 [51]. However,
they make remarkable structures, ranging from deep oceans to their surfaces and parallel
to coastlines in many places extending up to several kilometres, in such a way that they
form a significant part of the coastal defense. The mass flow of energy from overlying
waters into the coral systems significantly reduces wave activity—a vital function of reef
roughness [52,53]. However, as per Pendleton et al. [37], enormous reserves of carbon
sequestered in the past are affected by the transformation of these coastal ecosystems, as
blue carbon present in the sediments is released into the atmosphere when these ecosys-
tems are degraded [37]. As a result, the value of blue carbon habitats in sequestering
organic carbon has boosted conservation efforts as a means to reduce climate change and
offset CO2 emissions [54]. Furthermore, their contribution to strengthening coastal re-
silience to weather disasters and changing climate has led to their participation in many
countries’ nationwide defined commitments (NDCs) for climate change adaptation and
mitigation [55,56].

3. Role of Blue Carbon Ecosystems
3.1. Role of Blue Carbon Ecosystems in Mitigation of Climate Change

In recent years, the use of fossil fuels for industrial and agricultural activities and
transportation means have resulted in high pollutant emissions such as CO2, NOx, and PM,
causing the serious consequences of environmental pollution and climate change [57–61],
proof of which could be seen from the COVID-19 pandemic [62–64]. Due to this reason,
seeking efficient and useful solutions relating to technology, management, and policy is
very important [65–69]. Among these, shifting to renewables is considered one of the
most potential approaches in mitigating environmental pollution and climate change since
renewables are available, have biodegradation, and have non-toxic properties [70–73].
Indeed, the popular renewable sources are wind, solar, ocean, hydropower, biomass,
and biofuels, which have all been used the most in recent years [74–83]. Besides, the
development of the natural ecosystems is also considered an extremely important solution
because the natural ecosystems could keep a large amount of carbon emissions [84].

Being a natural ecosystem, blue carbon has accrued global consideration for its poten-
tial role in mitigating carbon dioxide emissions, as shown in Figure 3 [85]. However, its
contribution is restricted worldwide because it is limited to coastlines [86]. Coastal environ-
ments have been found to store tremendous amounts of carbon in sediments, multiple times
more than numerous types of temperate and tropical forests [87]. Carbon sequestration
via vegetated coastal ecosystems helps to reduce anthropogenic CO2 emissions. However,
their adequacy contrasts with the spatial scale of evaluating the “Blue Carbon” ecosystem
provider. It is a powerful management tool for maintaining environmental wellbeing and
productivity by offering enhanced assurance, protection, preservation, and services [88].
Because of the high carbon reserves and sequestration rates and the high assessment of
their other ecological resources, coastal blue carbon habitats have been positioned as one
of the best ocean-based solutions for climate change mitigation. Mangrove trees, seagrass
meadows, and salt swamps are examples of coastal vegetated environments that have long
benefited human populations and ecosystems. More recently, their role in storing large
volumes of carbon and therefore contributing to tackling climate change has been well
recognized [1,8]. The UN Sustainable Development Goals (SDGs) have been agreed upon
as the global priorities through to 2030 by countries worldwide. Amongst the 17 SDGs
are goals that are directly relevant to tackling climate change (SDG 13) and protecting and
sustaining the use of coasts, oceans, and aquatic resources (SDG 14). Mangrove restoration
would contribute to SDG 13 (strengthening resistance and resilient potential of all nations
to climate-related threats and catastrophic events). It also contributes towards SDG 14
(sustainably maintaining and ensuring marine and seaside ecosystems to avoid crucial
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unfavorable effects, including enhancing their intensity and pushing toward their reclama-
tion to accommodate climate change by 2020). [89]. Climate change threatens mangroves,
causing an additional 10–15% loss by 2100 [90].
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Blue carbon systems help tackle climate change by storing and sequestering carbon;
however, these ecosystems are susceptible to global warming, resulting in uncertainty
about their long-term effectiveness [56]. Sea-level rise, droughts, intensified hurricanes,
changes in temperature regimes, precipitation levels, and coastal heatwaves threaten the
blue carbon environment and its carbon reserves. The vulnerability of climatic stressors on
the blue carbon ecosystem depends on the exposure of such systems to disturbances, which
is a function of the sensitivity and resilience of these ecosystems. Moreover, it also depends
on the stressor’s frequency and intensity [91]. The increase in sea level has been a big
challenge to coastal habitats. Still, there is regional and temporal variability in its rate [56].
For example, climate-induced storms and rising sea levels can affect mangroves by exposing
previously buried organic carbon to oxidation, further increasing CO2 concentrations in
the atmosphere [92] and acting as a positive feedback loop contributing to global warming.
Mangroves and salt marshes’ ability to sequester carbon can be improved or preserved
by sustaining an altitude above sea level in the wake of the sea-level rise [93]. They
can, however, be eroded or submerged if there is insufficient sediment or root growth
to sustain altitude [3]. Further, sea-level rise can slow the decay rate of organic matter,
which may increase the carbon storage potential of intertidal sediments. Mangroves
are also found to migrate landward (to adjust to climate change) where the sea-level
escalation outpaces sediment deposits [94,95]. During accelerating sea-level rise, salt
marsh ecosystems restructure occurs, increasing the resilience and thus carbon storage [96].
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Mudd et al. [97] detected that the rate of carbon accumulation in salt marshes in South
Carolina rose with a sea-level increase until it reached a critical speed, flooding the swamp
vegetation and stopping carbon accumulation [3]. Increased inundation due to rising
sea levels changes salt marshes and mangroves [98]. Under certain conditions, some of
the salt marshes are proposed to be entirely covered by mangroves by the end of the
century [99,100].

3.2. Blue Carbon Ecosystems as Carbon Sequestration and Sinks

Coastal habitats are critical carbon sinks that store almost half of all organic carbon [56,
101]. Sediments of blue carbon ecosystems store vast carbon stocks [102,103]. Most of the
CO2 from the atmosphere, taken through photosynthesis, is recompensed to the air through
the respiration of microbes and plants or stored short-term in plant foliage. In contrast,
the rest is stored for a prolonged period in woody biomass and soil. Depending on the
vegetation type, 50–90 percent of all coastal wetland carbon is found in the ground [37,104].
The high photosynthetic strength and gradual decomposition of these ecosystems result
in higher production and carbon sequestration per unit area [105,106]. Because of their
tremendous productivity, they can sequester significantly more carbon than terrestrial
ecosystems [3,106]. In vegetated coastal ecosystems, primary development usually is
higher than respiration [2,107], enhancing their ability to produce surplus organic carbon
and thus function as carbon sinks [19]. A dynamic space-time transition between carbon
flows and stocks is required for blue carbon conversion, absorption, and conservation
in coastal zones [106]. It includes interactions between land, sea, plants, animals, and
microbes, as shown in Figure 4.
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Despite their importance as carbon sinks, there is concern that in some situations, they
could be a source of methane emissions, which could contribute to global warming [108,109].
However, evidence shows that methane emissions from marine wetland habitats are
marginal, relative to the amount of carbon sequestered [110,111]. On average, carbon
stock in the uppermost meter of the soil of saltmarshes and seagrass meadows is nearly
equal to that of the top 1 m soil of terrestrial forests. In comparison, the organic carbon
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stored by the top 1 m of mangrove forests is thrice as contained in top terrestrial soil [19].
The rate of carbon burial in the sediments of these three ecosystems is relatively large.
Coastal vegetated ecosystems contribute significantly to long-term carbon sequestration, a
contribution equivalent to terrestrial ecosystem carbon sinks, despite covering a smaller
area than inland forests [3].

Mangrove ecosystems make up 30% of all coastal ecosystems’ carbon burial and 5%
of the net primary production of carbon, even though they cover just 1.9% of the tropical
and subtropical coasts [26,112]. Mangroves sequester 174 gCm−2yr−1 on average, and
the global mean burial amount of mangrove soil carbon is 24 TgCyr−1 (10–15 percent of
sediment carbon storage) [113]. According to a study of mangroves in desert inlets off the
coast of Baja California, carbon sequestration in mangroves is most likely in the form of
organic peat and soil [114,115]. It revealed nearly 2000 years of carbon storage in organic
soils and below-ground carbon content of 1130 metric tonnes per hectare [115].

Salt marshes are one of the world’s most active habitats (sequestering up to
3900 gCm−2yr−1). On average, salt marsh soils store around 210 gCm−2yr−1, converted to
770 g of CO2 m−2yr−1 due to rapid burial rates [116,117]. The world’s coastal salt marshes
hold an estimated 437 to 1210 million tonnes of carbon in their trees and soil [91,115]. The
top 50 cm of sediment in coastal salt marshes sequesters 430 Tg C globally. However,
this is an exaggeration since most studies only look at the top meter of soil, even though
organic-rich soil profiles extend several meters deep [104].

Although seagrass meadows cover less than 0.2% of the ocean’s surface, annual
carbon sequestration of seagrass sediments accounts for 10–15% of total ocean carbon
sequestration. It is also estimated that seagrass environments sequester carbon at around
21 times the rate of tropical rainforests (43 gCm2yr−1) [106,118]. Seagrass meadows are
expected to store 27 and 40 TgCyr−1 in the short and long term, respectively [117,119].
Furthermore, global organic carbon accumulation in the sediments of seagrass habitats
is up to 19.9 petagrams (Pg) (between 4.2 and 8.4 Pg if a more traditional approach is
used) [33,102], with carbon storage lasting centuries or even millennia [33]. However,
owing to the interaction of various biotic and abiotic causes, there is a significant variation
in the C storage amounts fixed under seagrass beds [19,120]. Recent studies indicate
that salt marshes, mangroves, and seagrasses have average carbon sink capabilities of
218 gCm−2yr−1, 226 gCm−2yr−1, and 138 gCm−2yr−1, respectively, while terrestrial forests
have just 5 gCm−2yr−1 or less [3,106]. The lack of understanding about the fate of imported
organic matter is to blame for the variance in estimates of coastal ecosystems’ overall
susceptibility to climate change [121,122].

Macroalgae (or seaweed) is an extensive and the most productive vegetated coastal
ecosystem. They grow on a hard substratum where no carbon accumulation occurs because
they do not have a vascular root system and stockpile a huge quantity of carbon in their
above-ground living biomass [123]. They are the source of the world’s highest carbon
dioxide flux [124] and contribute significantly to the carbon sink of the world [107,125]. As
they fail to absorb below-ground carbon relative to saltmarshes, seagrasses, and mangroves,
macroalgae have been underestimated in the blue carbon domain. However, it has been
stated that they play a significant role as “carbon donors”, that is, they donate carbon to
the receiving habitats. They export macroalgal material to the deep sea and sediments as
detritus [123], thus indirectly contributing to global carbon sequestration, an assumption
recently validated by the study of Ortega et al. [126] which examined the metagenomes
of macroalgae. Up to 14TgC yr−1 macroalgal carbon was found in coastal sediments and
152 TgC yr−1 in deep-sea; so, proposed was the inclusion of macroalgae in blue carbon
assessments. Another study by Queiros et al. [124] validated the entry or presence of
macroalgal detritus in deep coastal sediments using bulk isotope analysis and eDNA
sequencing as complementary bio-tracing techniques. They found that the study area
sequesters an average of 8.75 g (0.73 mol) of macroalgal carbon per m2 of deep coastal
sediment every year as particulate organic carbon. The study also highlighted the role of
macroalgae in helping sea-bed species during the winter months when other food supplies
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are scarce in contributing to carbon sequestration. Several reports have been published
regarding the microalgal carbon sequestration potential being buried in marine sediments
or exported to the deep sea [123,127]. Kelp forests (Ecklonia Radiata) absorb 1.3–2.8 TgC
per year, according to Dexter et al. [128], accounting for almost 30% of the total blue carbon
stored and sequestered over the Great Southern Reef. Studies have also shown the presence
of refractive carbon compounds [129], which may be the essential organic carbon reservoir
in the oceans [130]. According to some findings, organic carbon extracted from macroalgae
is buried alongside organic carbon derived from seagrass [131–133]. Although macroalgae
(especially kelp organisms) contribute significantly to the carbon cycle along the coast, most
species and regions still lack accurate carbon fixation estimates [134,135]. More research
into the methods and eventual disposal of this waste, as well as the significance of these
ecosystems in the carbon cycle and as a potential source of blue carbon, is necessary [135].
Furthermore, detailed assessments of the macroalgal ecosystem’s global surface area are
desperately required to extend the reach of carbon sequestration research from a local to a
worldwide scale [136].

Temperature affects carbon accumulation in salt marshes, seagrass meadows, and
mangroves because it impacts the metabolic cycles of carbon gain via photosynthesis and
carbon loss via plant and microbial respiration [3]. A slight temperature rise improves
efficiency, but higher temperatures induce stress, which decreases productivity and thus
carbon storage. Temperature fluctuations affect productivity and, therefore, carbon stor-
age [137]. Increasing sea temperature also impacts seagrass habitats and their ability to
retain carbon. As a case in Australia depicts, a large amount of organic carbon storage
loss from seagrass has recently been recorded after a period of rising sea temperature.
Ocean heatwaves have emerged as a threat to coastal ecosystems and have resulted in
seagrass meadows’ mortality. Arias-Ortiz et al. [138] estimated a substantial loss of sea-
grass carbon stocks (2–9) Tg CO2 over three years, following a heatwave in Shark Bay
(Western Australia).

Another climate-induced factor is rainfall [139], increasing carbon stock below-ground
in tropical Mangroves, as indicated by Sanders et al. [140]. This is because most of the
carbon stored in mangrove forests is contained within soils, and an increase in rainfall
leads to a decline in the decomposition of organic matter [141,142]. Climate change is
amplified by anthropogenic disruptions, increasing the vulnerability of coastal ecosystems.
For example, the coastal squeeze and submergence of the intertidal zone’s seaward edge
due to rising sea levels has a big influence on coastal habitats and hence blue carbon
stocks [143]. Similarly, the damming of rivers affects the sediment supply to the coastal
wetlands, thus increasing the vulnerability of submergence and decreasing the tendency
of sediment accretion and soil carbon accumulation [56]. Extreme weather seems to alter
blue carbon supplies, but more research is needed to predict future effects. So, there is
a considerable need to improve and understand how climate change affects blue carbon
storage to scale up the ecological restoration, which further helps mitigate climate change.

3.3. Role of Blue Carbon Ecosystems in Mitigation of Microplastic Pollution

Plastic was widely produced and employed after 1950 owing to its properties such
as high water resistance, low expenses, durability, flexibility, as well as lightness [144,145].
Significantly, in 2018, plastic generation reached 359 million tons globally [146–148] and
Yang et al. [149] showed that its yield is increasing by 300 million tons every year. Plastic
would not entirely disappear due to the impacts of typical environmental conditions (such
as temperature or salinity), ultraviolet radiation, biological activity (namely aggregation,
biofilm formation, and so on), and mechanical stress that was caused by the wave as
well as the current action. However, plastic would be separated into smaller pieces,
weathered, corroded, etc. [150–152]. This was found especially true for coastal wetlands
that received plastic waste from not only terrestrial habitats near the rivers but also the
ocean via currents [153]. It was noticed that plastic debris was highly retained in low-
energy environments that had weak hydrodynamics [154–156], and then plastic debris
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was gradually degraded to form plastic fibers, fragments, or particles with less than 5 mm
in size, so-called microplastics. Microplastics were produced in the marine environment
through coastal fishing activity, which was driven by currents and winds from beaches [157],
and transported by rivers, sewage from industrial zones, and effluents to the coastal
areas, where sewage discharges, for instance, were a necessary source of fibers from
washing activity [158,159]. The accumulation of microplastics in the ecosystem could cause
harm to organisms by reducing individual growth, reproduction, and adaptability [160].
Furthermore, because the size of microplastics was small and their specific surface area was
large, they frequently absorbed environmental contaminants such as organic pollutants or
heavy metals [161,162], which severely threatened plant and animal growth. As a result, the
detrimental effects mentioned above endangered the ecosystem and primary functions of
coastal wetlands including flood defense [163,164] as well as carbon sequestration [165,166].
Hence, it was critical to prevent and control microplastic contamination. The blue carbon
ecosystem could highly block and intercept microplastics, which provided significant
benefits [167,168].

The majority of microplastics were less than 1 mm, which included sizes of less than
0.5 mm (13.7%), in the range of 0.5–1 mm (42.9%) and 1–2 mm (24.2%). In addition, a small
portion of 2–3 mm (7.8%), 4–5 mm (6.4%), and 3–4 mm (5.0%) were also observed. Thus, the
small size of microplastics could be due to the fact that the smaller size made them easier
to be washed to the intertidal area by the tide [169]. Noticeably, compared to in mangroves,
the number of microplastics less than 1 mm in saltmarshes was found significantly greater,
which was associated with the saltmarsh sediments which had larger particle sizes as plas-
tics could be easily broken into smaller fragments via coarser sediments’ abrasion during
transportation [170,171]. Additionally, saltmarshes being closer to the sea in comparison
with mangroves and being swept by more tidal kinetic power could also be the reason
for smaller microplastics in saltmarshes [171,172]. Interestingly, coastal sediments were
thought to be primary sinks of marine microplastics [155,173,174]. Besides, significant
microplastic stocks were frequently observed in vegetated coastal habitats with high rates
of sedimentation, including mangroves, tidal marshes, and seagrasses [160,173,175]. In
addition, the abundance and features of MPs in the aforementioned habitats frequently
changed between places. As reported, the range of plastic abundances in mangroves was 0
to 11,256 items kg1 sediment, in seagrass was 0 to 1466, and in a tidal marsh, sediments
were 22.7 to 296. The most frequently observed forms were fragments and fibers, in which
polyethene and polypropylene were the most common polymers [173].

More significantly, mangrove ecosystems were identified as important sinks for dif-
ferent contaminants from both marine and terrestrial activities because of the mangrove
ecosystem’s unique properties (such as abundant organic carbon as well as high primary
productivity), [176–178]. Indeed, mangroves were important blue carbon ecosystems that
were found in the subtidal and intertidal areas, where they were subjected to microplas-
tic contamination [179]. According to previous investigations, blue carbon ecosystems
were capable of capturing microplastics and POCs from surface sediments [180,181]. It
was obvious that mangroves could not only clean and retain contaminants generally, but
they also acted as an ecological interception system for microplastics [160]. It was noted
that mangrove plants could alter hydrological conditions as well as have an effect on the
microplastic separation and distribution in various tidal areas. In particular, microplastics
of varying sinking rates, sizes, and shapes might exhibit distinct distribution patterns in
varying mangrove intertidal zones [182–184].

It was not hard to see that seagrasses were able to reduce water flow velocity, and
at the same time increase particle retention and sedimentation [185–187]. Remarkably,
seagrass meadows could trap particulate matter indicating that they could also be a con-
siderable trap for microplastics. Notably, some microplastics were integrated into the
epiphytic communities that were attached to seagrass blades, so not all reached the sed-
iment [175,188,189]. When microplastics reached the seagrass ecosystem, the seagrass
blades’ architectural complication as well as above-ground biomass reduced water currents,
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which made particulate matter, namely microplastics, get trapped among the blades and
then they settled into the sediment underneath [155,190]. Besides epiphytes, known as
small sessile plants including macroalgae, cyanobacteria, crustose coralline algae, diatoms
that attached to seagrass blades created a rough substrate for microplastics to adhere to
and be trapped. Once trapped, microplastics were overgrown with epiphytes, which kept
them adhered to the blade surface, which led to an increase in the likelihood of microplastic
uptake by herbivores and hence entering the food web [189]. More noticeably, with an
average of approximately two items per individual, the probability of microplastics recov-
ery in shellfish was 46.3% and in fish was 47.2% in the Mediterranean [191]. Seagrasses
were not only a direct source of food for a variety of herbivores, such as sea turtles and
dugongs [192], but they were also a main nursery ground for fauna living near shore [193].
Goss et al. [189] and Datu et al. [188] discovered that several microplastics on seagrass
blades were included within epiphyte assemblages. Moreover, there also existed evidence
showing the significant relation between microplastic abundances and epiphyte density,
implying that the presence of more epiphytes on a blade and more microplastics had a
direct correlation. On the other hand, several seagrass genera, such as Posidonia, were
able to trap microplastics not only within their habitats but also within their exported
ball-shaped wrack, implying the role of seagrasses in both trapping microplastics within
their ecosystem and removing them from marine environments [194]. Furthermore, in situ
research revealed a high level of plastic accumulation in seagrass ecosystems, existing both
on seagrass blades and in sediment. Additionally, according to Huang et al. [179], seagrass
ecosystem sediments were enriched with microplastics 1.3–17.6 times more than unveg-
etated sites, whereas an enrichment factor was found of up to 2.9 by Huang et al. [195].
Moreover, Goss et al. [189] discovered 4.0 ± 2.1 microplastics in each tropical seagrass blade.
More importantly, seagrass meadows, one of the most crucial blue carbon ecosystems and
wetlands, were considered important global carbon sinks that contributed to alleviating
climate change around the world [196].

4. Blue Carbon as a Potential Source for Biofuel Production

The sustainability of the first-generation bio-based fuels (1G) was also called into
doubt since their utilization threatened the traditional food supply, particularly in devel-
oping nations [197,198]. The second-generation biofuels (2G/cellulosic biofuels) which
were derived from cellulosic energy crops including municipal solid wastes, lignocellulosic
residues, or agro-industrial wastes, provided an alternative option because of their plentiful
availability [199–204]. However, this type of fuel also coped with a lot of failures due to
higher investment expenses and technical problems in down streaming. Furthermore,
the generation of 1G/2G biofuels necessitated additional crop cultivation acreage, and
hence they could not be viewed as a viable alternative to fossil fuels because the yield
gained might not fulfil the global energy demand. In addition, the third-generation biofuels
(3G/advanced biofuels) were made from aquatic biomass such as algae [205,206]. Algae
gained a lot of interest among third-generation biofuels because of their low lignin concen-
tration and high productivity, which reduced the consumption of energy throughout fuel
generation [207,208]. Moreover, blue carbon sources were biomasses that were morphologi-
cally and systematically more similar to plants on the ground than seaweeds [209]. Hence,
exploiting blue carbon sources appeared to be an appealing solution for renewable energy
generation, avoiding the significant drawbacks related to 1G and 2G bio-derived fuels.
Indeed, the biofuel production pathway from blue carbon sources could be illustrated in
Figure 5.



Sustainability 2023, 15, 2682 12 of 29

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 30 
 

 

plentiful availability [199–204]. However, this type of fuel also coped with a lot of failures 

due to higher investment expenses and technical problems in down streaming. Further-

more, the generation of 1G/2G biofuels necessitated additional crop cultivation acreage, 

and hence they could not be viewed as a viable alternative to fossil fuels because the yield 

gained might not fulfil the global energy demand. In addition, the third-generation biofu-

els (3G/advanced biofuels) were made from aquatic biomass such as algae [205,206]. Algae 

gained a lot of interest among third-generation biofuels because of their low lignin con-

centration and high productivity, which reduced the consumption of energy throughout 

fuel generation [207,208]. Moreover, blue carbon sources were biomasses that were 

morphologically and systematically more similar to plants on the ground than seaweeds 

[209]. Hence, exploiting blue carbon sources appeared to be an appealing solution for re-

newable energy generation, avoiding the significant drawbacks related to 1G and 2G bio-

derived fuels. Indeed, the biofuel production pathway from blue carbon sources could be 

illustrated in Figure 5. 

 

Figure 5. Suggested technologies for biofuel production from blue carbon sources-based biomass. 

It could be seen from Figure 5 that transesterification, direct combustion, gasification, 

or pyrolysis were all methods for producing biofuel from dry blue carbon-based biomass 

[210–213]. Meanwhile, energy generation techniques from wet blue carbon-based biomass 

included enzyme hydrolysis, hydrothermal treatments, anaerobic digestion, and fermen-

tation to biobutanol/bioethanol/biohydrogen [214–217]. It was noted that utilizing blue 

carbon-based biomass for biofuel generation was in the early stages of research and de-

velopment. Besides, a lot of non-glucose-derived sugars such as cell wall polysaccharides 

and mannitol were accumulated in seaweed, but not so many glucose-originated polysac-

charides [218]. As a result, industrial bioethanol synthesis from blue carbon-based bio-

mass necessitated the fermentation of not only non-glucose but also glucose-based sugars 

[219]. For chemical compositions, the blue carbon sources and terrestrial plants differed 

substantially in general. For example, seaweeds have high water content (90% fresh wt), 

protein content (from 7 to 15% dry wt), carbohydrate content (25–50% dry wt), as well as 

low concentration of lipid (between 1 and 5% dry wt) in comparison with terrestrial bio-

mass [220].  

Figure 5. Suggested technologies for biofuel production from blue carbon sources-based biomass.

It could be seen from Figure 5 that transesterification, direct combustion, gasifica-
tion, or pyrolysis were all methods for producing biofuel from dry blue carbon-based
biomass [210–213]. Meanwhile, energy generation techniques from wet blue carbon-based
biomass included enzyme hydrolysis, hydrothermal treatments, anaerobic digestion, and
fermentation to biobutanol/bioethanol/biohydrogen [214–217]. It was noted that utilizing
blue carbon-based biomass for biofuel generation was in the early stages of research and
development. Besides, a lot of non-glucose-derived sugars such as cell wall polysaccha-
rides and mannitol were accumulated in seaweed, but not so many glucose-originated
polysaccharides [218]. As a result, industrial bioethanol synthesis from blue carbon-based
biomass necessitated the fermentation of not only non-glucose but also glucose-based
sugars [219]. For chemical compositions, the blue carbon sources and terrestrial plants
differed substantially in general. For example, seaweeds have high water content (90%
fresh wt), protein content (from 7 to 15% dry wt), carbohydrate content (25–50% dry wt), as
well as low concentration of lipid (between 1 and 5% dry wt) in comparison with terrestrial
biomass [220].

As reported, the lipid content in the blue carbon sources was low; however, their
carbohydrate content was high, permitting them to be employed as a feedstock for the
generation of different fermentative bio-base fuels [221]. Though fermentation facilities
using macroalgae were known as relatively expensive to operate and build, they were
dependable and provided large yields [222]. This is partly because of the high content
of water (from 70 to 90%), the protein concentration of around 10%, and the presence of
various amounts of carbohydrates [223]. Furthermore, because there was a small amount
of lignin and hemicellulose in macroalgae cells, the enzymatic and chemical pretreatment
stages in the production of biofuel were removed [224]. More significantly, the carbo-
hydrate concentration of macroalgae varied greatly depending on strains, species, and
cultivars. In addition, because the potential growth speed and carbohydrate concentration
of the green macroalgae Ulva lactuca were high, it was thought of as a promising aquatic
energy crop [225]. Regarding brown macroalgae Laminaria spp., there could be up to 55%
carbohydrates in it with dry weight, principally free sugars, cellulose, hemicellulose as
well as the energy storage molecules mannitol and laminarin [226]. Indeed, biohydrogen
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generation from blue carbon received a lot of interest because of carbohydrate-rich blue
carbon. In a study by Yukesh et al. [227], they improved the generation of biohydrogen from
seagrass using new ozone-linked rotor-stator homogenization. In particular, rotor-stator
homogenization required 510 kJ/kg TS of specific energy to accomplish 10.45% seagrass
lysis while ozone-linked rotor-stator homogenization obtained 23.7% seagrass lysis with
less energy (only 212.4 kJ/kg TS) input. It was noted that the ozone-coupled rotor-stator
homogenization sample’s biohydrogen generation capability was evaluated and compared
with using biohydrogenesis.

The generation of biogas was considered a long-time technology. Interestingly, there
were multiple operational biogas systems, ranging from large-scale to small-scale and they
were supplied by a variety of feedstocks such as animal wastes, agricultural products,
certain residential rubbish, and sewage sludge [228,229]. Additionally, because macroalgae
contained more water than terrestrial biomass (ranging between 80 and 85%), they were
more suited for microbial conversion instead of thermochemical conversion [230,231]. In-
deed, producing biogas from macroalgae was more technically feasible than generating
biogas from other fuels because all organic components in macroalgae (such as protein, car-
bohydrates, and so on) could be transformed into biogas via anaerobic digestion [232,233].
Besides, a low lignocellulose concentration of macroalgae facilitated biodegradation more
than that of their relative microalgae to create considerable amounts of biogas [234,235].
However, microalgae could be cultivated using pollutant water and CO2 [236,237] and
could be used to synthesize many types of biofuels such as bioethanol, biodiesel, and
bio-oil [238–241].

Many works successfully established the practical usefulness of seaweed as a feedstock
for the anaerobic digestion process. For example, the generation of biogas from marine
wrack might reduce GHG emissions while also bringing economic benefits to local island
people. Apart from that, Marquez et al. [242] discovered biogas generation by employing
three different microbial seeds including marine sediment, marine wrack-related microflora,
and manure of cow. Accordingly, the authors discovered that the average biogas generated
was 1223 mL from marine wrack-related microflora, 2172 mL from marine sediment, and
551 mL from the manure of cow. Although the methane potential at 396.9 mL CH4/g
volatile solid was calculated using marine wrack proximate values in comparison with
other feedstock, this parameter was low when the greatest methane yield of 94.33 mL
CH4/g volatile solid was considered. Interestingly, among the microbial seeds tested, sedi-
ment in the marine platform was found to be the most effective source of microorganisms
in terms of using seawater and marine wrack biomass to produce biogas. Nonetheless,
sand deposition in salinity and digesters might cause trouble in the long-term anaero-
bic digestion process [243,244]. As observed, several factors, including growing method,
species type, harvesting time, and seaweed production per hectare all made a great con-
tribution to the anaerobic digestion process. It was noted that the balance of material and
energy, harvesting biomass cost, carbon balance, as well as expenses of creating biogas from
seaweed were not evaluated [245,246]. As reported, methane yields in biogas produced
from the anaerobic digestion process of blue carbon sources could be changed with bio-
chemical composition and they were linked to ash concentration and the degree of sugars
stored [234]. Therefore, to increase methane yields, Banu et al. [247] used disperser-tenside
(polysorbate 80) disintegration so as to improve the biomethanation ability of seagrass
(namely Syringodium isoetifolium). Indeed, dispersion-assisted tenside disintegration had
a more significant influence on bio-acidification as well as biomethanation assays in terms
of methane production (0.256 g/g COD) and volatile fatty acid content (1100 mg/L) when
compared to dispersion disintegration, which was 0.198 g/g COD; 800 mg/L. As a result, S.
isoetifolium was seen as a potential substrate for achieving third-generation biofuel targets
in the foreseeable future.

Apart from that, marine algae, which contained a high concentration of hydrolyz-
able carbohydrates, cellulose, glucan, and galactan, might serve as a possible feedstock
to produce liquid biofuels [248]. As reported, two popular liquid transportation biofuels
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are synthetic biodiesel, bioethanol, and biobutanol using marine macroalgae feedstock.
In comparison with edible as well as lignocellulosic biomass sources, marine macroalgae
biomass was gaining popularity as a renewable feedstock to produce bioethanol [234,249].
As mentioned above, macroalgae possessed a high carbohydrate concentration and low
lignin [250], making them appropriate for use as a substrate in the fermentation process
to generate bioethanol after hydrolysis. The current techniques for bioethanol synthesis
from seaweed were separate hydrolysis and fermentation, and simultaneous saccharifica-
tion and fermentation, as illustrated in Figure 6 [220,251,252]. As for separate hydrolysis
and fermentation, seaweed biomass was hydrolyzed before being fermented in discrete
units using yeast or bacteria [218,253]. Regarding simultaneous saccharification and fer-
mentation, however, both fermentation and hydrolysis occurred concurrently in a single
stage [254,255].
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Even though experiments on bioethanol generation from macroalgae were scarce,
it was not hard to determine that using marine macroalgae waste for bio-derived fuel
feedstock could lead to less rivalry for biofuels among food [221,256]. According to sev-
eral investigations, the findings of using seagrass biowaste for bioethanol production
appeared to be promising in terms of making this a reality [257–259]. In an investigation by
Mahmoud et al. [260], they employed seven samples of beach-cast seagrasses (associated
with Z. marina, S. filiforme, Z. noltii, P. australis, T. testudinum, and P. oceanic) gathered from
maritime environments worldwide with carbohydrate concentration ranging between 73%
and 81% (w/dry weight of biomass). With no pretreatment, enzymatic hydrolysis with a
single step was designed to effectively extract the monomeric sugars present in biomass
originating from seagrass. In shake flasks, P. oceanica hydrolysate was observed to produce
higher lipid yields (at 6.8 g/L) in comparison with the synthetic minimum medium (just
5.1 g /L). Additionally, it was then used as the only fermentation medium for oleaginous
yeast T. oleaginous under the technical scale with the use of a fed-batch bioreactor, yielding
224.5 g /L lipids (0.35 g /L.h). Furthermore, the proportion of sugar/lipid conversion (w/w)
was seen to be 0.41. According to cumulative statistics, roughly 4 million tons of microbial
oils might be created by harvesting just half of the beach-cast seagrass in the world. Besides,
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Ravikumar et al. [257] presented their research on manufacturing bioethanol from seagrass
biowastes with the use of Saccharomyces cerevisiae. The greatest bioethanol generation
(0.047 mL/g) was observed in fresh seagrass leaves under acid pretreatment. As a result,
fresh seagrass leaves might be one of the appropriate substrates for bioethanol synthesis.
Furthermore, an investigation by Uchida et al. [261] studied the seagrass seeds (Zostera
marina) bioethanol fermentation. On a dry weight basis, there were 83.5% carbs in the
seeds, which included 48.1% crude starch. This parameter was equivalent to that of cereals
such as corn and wheat flour. As reported, the saccharification of seeds went smoothly
with no heating pretreatment, which showed that the starch present in seagrass seeds
possessed a molecular form being ready to be digested by glucoamylase. Besides, the
authors proposed that it might be possible to develop alcoholic drinks and foods from
seagrass seeds, resulting in the creation of a unique marine fermentation sector in the
future. The treatment of Laminaria japonica, Gelidium amansii, Ulva fasciata, Ulva lactuca, and
Sargassum fulvellum biomass with acid and hydrolytic enzymes resulted in hydrolyzates
with distinct proportions of mannose, glucose, mannitol, galactose, and other sugars [262].
As reported, Laminaria japonica hydrolyzate produced 0.4 g bioethanol for each gram of
carbohydrate in case hydrolytic enzymes were utilized [263]. In another study, Adams
et al. [264] investigated the generation of ethanol through laminarin polysaccharide yeast
fermentation from the brown macroalga Saccharina latissimi using a variety of pretreat-
ments. Meanwhile, in an experiment by Wi et al. [248], fermentation pretreatments were
researched for a red microalgae species (namely Ceylon moss) with a high carbohydrate
concentration (normally 23% galactose and 20% glucose). Accordingly, they proved that
pretreatment approaches could be utilized to broaden the range of macroalga species ap-
propriate for bioethanol generation. Moreover, Ge et al. [265] investigated the utilization of
floating residual wastes from the industry of alginate from Laminaria japonica (a brown
alga) to generate bioethanol after they were pretreated with diluted sulphuric acid as well
as experienced enzymatic hydrolysis. Likewise, Horn et al. [266] showed the ability of
fermented extracts of Laminaria hyporbea to synthesize ethanol with the employment of
Pichia angophorea (yeast), while El-Sayed et al. [267] assessed the utilization of reducing
sugars from U. lactuca to produce bioethanol via Saccharomyces cerevisiae.

In the case of biobutanol, there existed just a few studies that researched the man-
ufacture of biobutanol from macroalgae. In other words, macroalgae, especially brown
algae, and their potential for biochemical transformation to butanol and other solvents
by Clostridium spp. via acetone-butanol fermentation were not studied. However, the
brown macroalgae biomass’s acetone butanol fermentation feasibility via C. acetobutylicum
was proved, and the results showed that the butanol content in the hydrolysate reached
around 0.26 g butanol/g sugar while 0.29 g butanol/g sugar was obtained in the pilot
investigation [268,269]. In addition, HMF was regarded as among the chemical platforms
that have the most potential for the conversion of industrially important bio-originated
chemical compounds. According to several researchers, a greater starch concentration
was accumulated in seagrass seeds [270,271]. Moreover, several studies showed that raw
biomass sources rich in non-structural carbohydrates, such as sucrose, fructose, starch,
and glucose were employed as biomaterials for HMF generation [272,273]. Furthermore,
by utilizing beach-cast seagrasses without feedstock expenses, seagrass feedstocks might
contribute to sustainably and cost-effectively manufacturing HMF, which showed that
seagrass biomasses were considered the most attractive source of bio-based feedstock to
produce HMF sustainably.

Macroalgae were used to produce biogas and bioethanol instead of biodiesel since they
lacked triglycerides. Typically, macroalgae were transformed into bio-derived oils such
as free fatty acids and lipids, and more importantly, the lipids were separated to generate
bio-based diesel. Even though free fatty acids were a precursor to biodiesel, the excessive
quantity of free fatty acids in the oil might stymie the intended transformation. In an
experiment, Tamilarasan [274] esterified the free fatty acids in Enteromorpha compressa algal
oil from 6.3% to 0.34%, and subsequently, two stages for biodiesel synthesis were developed.
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More notably, Xu [275] recently tried to use macroalgae as a carbon source for oleaginous
yeast aiming to create bio-based diesel, and the maximal lipid concentration was observed
to reach 48.30%. In contrast, the by-product-free fatty acids accompanying mannitol could
be utilized to cultivate the oleaginous yeast. Also, several innovative approaches, such as
ultrasonic irradiation, were employed to support transesterification through the formation
of fine emulsions between alcohol and oil, and the rate of reaction was enhanced due to
cavitation [274]. Furthermore, biodiesel output from wet biomass achieved was nearly
10 times lower compared to that obtained from dry biomass, suggesting that water had a
detrimental influence on transesterification experiments, and hence the dehydration process
was required to attain high efficiency [276]. Moreover, Saengsawang et al. [277] investigated
whether Rhizoclonium sp. oil could be employed as a biodiesel alternative to optimize the
reaction conditions required for the process of chemical transesterification. The biodiesel
weight of 0.174 ± 0.034 g along with 82.2% of the whole FAME was produced during the
transesterification procedure from macroalgae oil. Besides, this research indicated that
biodiesel produced from Rhizoclonium might be utilized as an alternative fuel, and more
research would make it appropriate for large-scale manufacturing.

Thermochemical techniques are also considered potential solutions for converting
biomass sources into biofuels [278–280]. Indeed, pyrolysis was the most used technique
for extracting bio-oil [230,281]. Pyrolytic cracking could quickly transform dried seaweed
biomass into bio-originated oil and solid residue. Furthermore, investigations on the
behaviors of pyrolysis and product properties of some macroalgae, such as brown algae,
green algae, and red algae [238,282], revealed that the macroalgae’s pyrolysis process
to produce biofuels and that of terrestrial plants were alike [283,284], even though the
macroalgae had higher activation energy than that of terrestrial biomass [285]. Importantly,
pyrolysis of macroalgae operating under 500 ◦C was shown to be a favorable temperature
for maximizing bio-oil output [254,286]. Liquefaction was seen as a process where biomass
experienced complex thermochemical reactions in a solvent solution, resulting in mostly
liquid products. Remarkably, hydrothermal liquefaction mostly neglected macroalgae in
the role of a feedstock for bio-originated oil since microalgae were assumed to have a greater
lipid concentration intrinsically [287,288]. Elliott et al. [289] reported on the hydrothermal
liquefaction of Macrocystis sp. with the employment of a batch reactor that was fed with
10% kelp dry mass in water. According to the oil product’s solvent separation, an oil yield
of 19.2 wt% was observed. Utilizing Na2CO3 as a catalyst, Zhou et al. [290] investigated the
hydrothermal liquefaction of the green marine macroalgae named Enteromorpha prolifera
and got a maximal bio-oil output of 23.0% dw as well as an energy density of 29.89 MJ/kg.
In another study, Neveux et al. [291] used hydrothermal liquefaction in a batch reactor to
convert six types of freshwater and marine green macroalgae into bio-crude. The findings
showed that the high ash concentration of macroalgae caused poorer bio-oil yields when
compared to the results achieved from hydrothermal liquefaction of a variety of microalgae
(in the range of 26–57% dw) [292]. Although the gasification of biomass on a wide scale
was successfully demonstrated, it was still comparatively costly in contrast to fossil-fuel
energy [293,294]. Indeed, gasification was able to generate hydrogen and syngas at a
competitive price in the market. Actually, several nations had very few pilot gasification
factories, more widespread industrial penetration appeared to be dependent on integration
into the chain of biofuel from seaweed [295]. Table 1 compared and showed the benefits
and drawbacks of several biofuel generation methods from blue carbon sources.
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Table 1. Advantages and disadvantages of various processing techniques for converting blue carbon
to biofuels [220,296–300].

Processing Techniques Target Products Benefits Drawbacks

Anaerobic digestion Biogas Finishing technology
without drying process High inhibition and salt

Fermentation Bioethanol/biobutanol High content of
carbohydrate

Low efficiency in forming
various mixed sugars

Transesterification Biodiesel No required the
dewatering process Low yield

Pyrolysis/Gasification/Liquefaction Bio-oil, syngas,
hydrogen, bio-char

Fast rate without
required chemicals High energy consumption

5. Global Blue Carbon Framework for Climate Change Mitigation

The blue carbon systems enhance climate mitigation strategies as these ecosystems
store carbon for the long term. The same is recognized in global agreements on climate
change such as the “United Nations Framework Convention on Climate Change” and
“Kyoto Protocol”. It helps countries hit pollution reduction goals and comply with the Paris
Agreement’s Nationally Appropriate Contributions [301]. Clean development mechanisms
are being established to finance the blue carbon initiative at the local level. It was also
included in the 2017 Sixth Climate Change Assessment Report by the IPCC.

The international blue carbon initiative is the world’s first coordinated global pro-
gram, launched jointly by the Intergovernmental Oceanographic Commission of UNESCO,
Conservation International, and the IUCN to combat climate change by protecting and
restoring the ocean. The initiative is coordinating two working groups, the International
Blue Carbon Scientific Working Group and the International Blue Carbon Policy Working
Gropu. International standards for blue carbon monitoring and measurement, data col-
lection and quality control, field survey guides, blue carbon preservation strategies, and
management recommendations have been established by the International Blue Carbon
Scientific Working Group. The International Blue Carbon Policy Working Group is com-
mitted to incorporating blue carbon projects into the UNFCCC and the CBD. It formulates
financial support, and other policy programs and guides needed for research, projects, and
policy priorities.

Nationally Determined Contributions (NDCs) for climate change mitigation and
adaptation have included blue carbon ecosystems because of their role in increasing coastal
vulnerability to climate change and weather catastrophes. The benefits of ecosystem
flood management are also significant, with mangroves being anticipated to offer yearly
flood protection worth US$65bn, saving 15 million people from flood risk. Mangroves,
seagrasses, and saltmarsh inside the Coral Triangles are exceptionally delicate to rising
sea levels and are likewise being menaced by climate change. For example, changes such
as coastal ecosystem pulverization by clearing, infilling, siltation from upland catchment
aggravations, and contamination from industry and metropolitan improvement, destabilize
these significant ecosystems along the coast. The disruption of diverse processes at multiple
geographical and temporal scales occurs as a result of climate change in blue carbon
ecosystems and associated sedimentary carbon deposits. Changes in exposure, affectability
and adaptation potential make blue carbon vulnerable to changing climate. Sea level rise
is affecting carbon-rich silt deposits, as can be seen in the current state and growth of
these stocks. Ocean level rise predictions on beachside regions are the most advanced
of our insights for assessing the effects of blue carbon on climate change [56]. Changes
in the environment have a direct impact on the unique blue carbon ecosystems, which
are threatened by plant and soil destruction and reduced enlistment. Recently, the blue
carbon initiative provided guidelines for incorporating blue carbon into NDCs. These
recommendations offer technical advice for integrating these habitats into the revised
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NDCs in several ways, thus assisting countries in encouraging and maintaining the climate
benefits of blue carbon ecosystems.

A deltaic blue carbon frangibility, such as that seen on sea islands and atolls, may
also suffer from rising sea levels and increased wave heights. When carbon in vegetation
and sediments is disrupted and mineralized to carbon dioxide, the global depletion of
coastal habitats causes significant carbon dioxide discharges. The potential of the surviving
ecosystems to mitigate climate change and offer other environmental functions has been
weakened due to their degradation. Blue carbon habitats and programs aimed at protect-
ing them, on the other hand, are yet to be included in regulatory instruments aimed at
combating climate change [302]. Owing to the dramatic changes in coastal growth and
mismanagement of coastal habitats, coastal areas are being destroyed at a critical pace all
over the world due to acidification, currents, anoxia, precipitation, rising sea level, storm
frequency, and other changes in the environment [87].

Even though blue carbon is being more widely discussed, actual efforts and complete
adoption of the actions and proposed policy proposals are still uncommon. Many nations
are yet to develop and adopt climate and carbon policies specific to coastal carbon ecosys-
tems [55]. Coastal blue carbon habitats, on the other hand, have been included in several
pioneering mitigation initiatives [15,55].

6. Conclusions

The deterioration of coastal ecosystems can be attributed to the hazards caused by
both natural events and human activities. However, it has been found that blue carbon is
essential in the fight against climate change and in reducing the pollution caused by plastic
and microplastics. Additionally, it helps in achieving co-benefits such as developments
in aquaculture and coastal restoration, which has earned it international recognition. In
addition, coastal vegetation systems such as sea grass meadows, coastal marshes, and
mangroves are among the most important carbon sinks on a worldwide scale. Their ability
to store organic carbon is comparable to that of forests found on land, and depending
on the type of plant present, between 50 and 90% of all of the carbon in coastal wetland
ecosystems is located in the soil. In addition, coastal vegetation systems have the capacity
to keep and store substantial amounts of plastic and microplastic, and they also have the
potential to be used as feedstock for the generation of bioenergy. According to the findings
of this study, it is possible for diverse ocean ecosystems to contribute to the promotion of
climate mitigation measures and the conservation of carbon stock, to the contribution of the
circular economy through the use of blue carbon in the production of bioenergy, and to the
mitigation of plastic and microplastic pollution. In order for conservation initiatives to be a
success, local residents need to be involved in the decision-making process. Involvement
in these projects provides immediate benefits, such as meaningful work and consistent
income. To integrate social protection with action on climate change and economic recovery,
global coalitions that result in immediate initiatives are required. This is necessary in order
to rebuild and transform economies from an ecological point of view. Based on the various
studies conducted on coastal ecosystems, future projects may be more focused on the
potential of biofuel production from the biomass that is produced by coastal ecosystems.
This will help in fighting against the increasing levels of greenhouse gases and climate
change at the global level. Furthermore, there is a need for global collective efforts from
various economies for the conservation and protection of coastal ecosystems so that we
keep on deriving various benefits from them.

Author Contributions: S.A.B.: conceptualization, methodology, writing—original draft; F.A.M.:
writing—reviewing and editing; I.Q.: writing—reviewing and editing; H.M.-U.-D.: writing—reviewing
and editing; A.K.B.: writing—reviewing and editing; A.A.: writing—reviewing and editing; S.A.W.:
writing—reviewing and editing; R.B.: writing—reviewing and editing; T.H.T.: writing—reviewing
and editing; N.D.K.P.: writing—reviewing and editing; D.N.C.: writing—reviewing and editing;
S.F.A.: writing-reviewing, supervision. All authors have read and agreed to the published version of
the manuscript.



Sustainability 2023, 15, 2682 19 of 29

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nellemann, C.; Corcoran, E.; Duarte, C.M.; Valdrés, L.; De Young, C.; Fonseca, L.; Grimsditch, G. Blue Carbon: The Role of Healthy

Oceans in Binding Carbon. A Rapid Response Assessment; United Nations Environment Programme, GRID-Arendal: Nairobi,
Kenya, 2009.

2. Duarte, C.M.; Kennedy, H.; Marbà, N.; Hendriks, I. Assessing the capacity of seagrass meadows for carbon burial: Current
limitations and future strategies. Ocean Coast. Manag. 2013, 83, 32–38. [CrossRef]

3. Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M. A blueprint for blue carbon: Toward an improved
understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [CrossRef]

4. Nguyen, H.-H.; McAlpine, C.; Pullar, D.; Johansen, K.; Duke, N.C. The relationship of spatial–temporal changes in fringe
mangrove extent and adjacent land-use: Case study of Kien Giang coast, Vietnam. Ocean Coast. Manag. 2013, 76, 12–22. [CrossRef]

5. Jackson, J.B.C.; Cubit, J.D.; Keller, B.D.; Batista, V.; Burns, K.; Caffey, H.M. Ecological Effects of a Major Oil Spill on Panamanian
Coastal Marine Communities. Science 1989, 243, 37–44. [CrossRef] [PubMed]

6. Mimura, N. Sea-level rise caused by climate change and its implications for society. Proc. Jpn. Acad. Ser. B 2013, 89, 281–301.
[CrossRef] [PubMed]

7. Handa, I.T.; Aerts, R.; Berendse, F.; Berg, M.P.; Bruder, A.; Butenschoen, O. Consequences of biodiversity loss for litter decomposi-
tion across biomes. Nature 2014, 509, 218–221. [CrossRef]

8. Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem
services. Ecol. Monogr. 2011, 81, 169–193. [CrossRef]

9. OzCoasts. About Conceptual Diagrams 2022. Available online: https://ozcoasts.org.au/conceptual-diagrams/introduction/
(accessed on 18 March 2022).

10. Ruttenberg, B.; Granek, E. Bridging the marine–terrestrial disconnect to improve marine coastal zone science and management.
Mar. Ecol. Prog. Ser. 2011, 434, 203–212. [CrossRef]

11. Wylie, L.; Sutton-Grier, A.E.; Moore, A. Keys to successful blue carbon projects: Lessons learned from global case studies. Mar.
Policy 2016, 65, 76–84. [CrossRef]

12. Phang, V.X.H.; Chou, L.M.; Friess, D.A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest,
seagrass meadow, mudflat and sandbar. Earth Surf. Process Landf. 2015, 40, 1387–1400. [CrossRef]

13. Roberts, C.M.; O’Leary, B.C.; McCauley, D.J.; Cury, P.M.; Duarte, C.M.; Lubchenco, J. Marine reserves can mitigate and promote
adaptation to climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 6167–6175. [CrossRef] [PubMed]

14. Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Baasansuren, J.; Fukuda, M. 2013 Supplement to the 2006 IPCC Guidelines for
National Greenhouse Gas Inventories: Wetlands; IPCC: Geneva, Switzerland, 2014.

15. Herr, D.; Landis, E. Coastal blue carbon ecosystems. Opportunities for Nationally Determined Contributions. Policy Brief 2016,
1–28.

16. Zhou, C.; Wong, K.; Zhao, J. Coastal Wetland Vegetation in Response to Global Warming and Climate Change. In Sea Level Rise
and Coastal Infrastructure; InTech: London, UK, 2018. [CrossRef]

17. Beck, M.W.; Lange, G.M. Guidelines for Coastal and Marine Ecosystem Accounting: Incorporating the Protective Service Values of Coral
Reefs and Mangroves in National Wealth Accounts, Wealth Accounting and Valuation of Ecosystem Services; World Bank: Washington,
DC, USA, 2015; pp. 1–15.

18. Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; van Wesenbeeck, B.; Pontee, N. The Effectiveness, Costs and Coastal
Protection Benefits of Natural and Nature-Based Defences. PLoS ONE 2016, 11, e0154735. [CrossRef]

19. Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change
mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [CrossRef]

20. Narayan, S.; Beck, M.W.; Wilson, P.; Thomas, C.; Guerrero, A.; Shepard, C. Coastal Wetlands and Flood Damage Reduction. Using Risk
Industry-Based Models to Assess Natural Defenses in the Northeastern USA; Loyd’s Tercentenary Research Foundation: London, UK,
2012; pp. 1–23. [CrossRef]

21. Alongi, D. The Energetics of Mangrove Forests, 1st ed.; Springer: Dordrecht, The Netherlands, 2009. [CrossRef]
22. Bryan, T.; Virdin, J.; Vegh, T.; Kot, C.Y.; Cleary, J.; Halpin, P.N. Blue carbon conservation in West Africa: A first assessment of

feasibility. J. Coast. Conserv. 2020, 24, 8. [CrossRef]
23. Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T. Status and distribution of mangrove forests of the world using

earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [CrossRef]
24. Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for

the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [CrossRef]

http://doi.org/10.1016/j.ocecoaman.2011.09.001
http://doi.org/10.1890/110004
http://doi.org/10.1016/j.ocecoaman.2013.01.003
http://doi.org/10.1126/science.243.4887.37
http://www.ncbi.nlm.nih.gov/pubmed/17780421
http://doi.org/10.2183/pjab.89.281
http://www.ncbi.nlm.nih.gov/pubmed/23883609
http://doi.org/10.1038/nature13247
http://doi.org/10.1890/10-1510.1
https://ozcoasts.org.au/conceptual-diagrams/introduction/
http://doi.org/10.3354/meps09132
http://doi.org/10.1016/j.marpol.2015.12.020
http://doi.org/10.1002/esp.3745
http://doi.org/10.1073/pnas.1701262114
http://www.ncbi.nlm.nih.gov/pubmed/28584096
http://doi.org/10.5772/intechopen.73509
http://doi.org/10.1371/journal.pone.0154735
http://doi.org/10.1038/nclimate1970
http://doi.org/10.7291/V93X84KH
http://doi.org/10.1007/978-1-4020-4271-3
http://doi.org/10.1007/s11852-019-00722-x
http://doi.org/10.1111/j.1466-8238.2010.00584.x
http://doi.org/10.1111/geb.12449


Sustainability 2023, 15, 2682 20 of 29

25. Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich
forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [CrossRef]

26. Alongi, D.M. The Impact of Climate Change on Mangrove Forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39. [CrossRef]
27. Woodroffe, C.D.; Rogers, K.; McKee, K.L.; Lovelock, C.E.; Mendelssohn, I.A.; Saintilan, N. Mangrove Sedimentation and Response

to Relative Sea-Level Rise. Ann. Rev. Mar. Sci. 2016, 8, 243–266. [CrossRef]
28. Hoque, M.M.; Abu Hena, M.K.; Ahmed, O.H.; Idris, M.H.; Hoque, A.T.M.R.; Billah, M.M. Can mangroves help combat sea level

rise through sediment accretion and accumulation? Malaysian J. Sci. 2015, 34, 78–86. [CrossRef]
29. Krauss, K.W.; McKee, K.L.; Lovelock, C.E.; Cahoon, D.R.; Saintilan, N.; Reef, R. How mangrove forests adjust to rising sea level.

New Phytol. 2014, 202, 19–34. [CrossRef] [PubMed]
30. Chow, J. Mangrove management for climate change adaptation and sustainable development in coastal zones. J. Sustain. For.

2018, 37, 139–156. [CrossRef]
31. Ramesh, R.; Banerjee, K.; Paneerselvam, A.; Raghuraman, R.; Purvaja, R.; Lakshmi, A. Importance of Seagrass Management for

Effective Mitigation of Climate Change. Coast. Manag. 2019, 283–299. [CrossRef]
32. Duarte, C.M. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeo-

sciences 2017, 14, 301–310. [CrossRef]
33. Ricart, A.M.; York, P.H.; Bryant, C.V.; Rasheed, M.A.; Ierodiaconou, D.; Macreadie, P.I. High variability of Blue Carbon storage in

seagrass meadows at the estuary scale. Sci. Rep. 2020, 10, 5865. [CrossRef]
34. Charpy-Roubaud, C.; Sournia, A. The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic

primary production in the oceans. Mar. Microb. Food Webs 1990, 4, 31–57.
35. Waycott, M.; Duarte, C.M.; Carruthers, T.J.B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S. Accelerating loss of seagrasses across the

globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [CrossRef]
36. Sundararaju, V. Why We Must Conserve the World’s Seagrasses; Wildlife Biodiversity: New Delhi, India, 2020.
37. Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S. Estimating Global “Blue Carbon” Emissions from

Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [CrossRef]
38. Greiner, J.T.; McGlathery, K.J.; Gunnell, J.; McKee, B.A. Seagrass restoration enhances “blue carbon” sequestration in coastal

waters. PLoS ONE 2013, 8, e72469. [CrossRef]
39. Drake, K.; Halifax, H.; Adamowicz, S.C.; Craft, C. Carbon sequestration in tidal salt marshes of the Northeast United States.

Environ. Manag. 2015, 56, 998–1008. [CrossRef] [PubMed]
40. Poffenbarger, H.J.; Needelman, B.A.; Megonigal, J.P. Salinity influence on methane emissions from tidal marshes. Wetlands 2011,

31, 831–842. [CrossRef]
41. Greenberg, R.; Maldonado, J.E.; Droege, S.A.M.; McDonald, M.V. Tidal marshes: A global perspective on the evolution and

conservation of their terrestrial vertebrates. Bioscience 2006, 56, 675–685. [CrossRef]
42. Wang, Z.A.; Kroeger, K.D.; Ganju, N.K.; Gonneea, M.E.; Chu, S.N. Intertidal salt marshes as an important source of inorganic

carbon to the coastal ocean. Limnol. Oceanogr. 2016, 61, 1916–1931. [CrossRef]
43. Mcowen, C.J.; Weatherdon, L.V.; Van Bochove, J.-W.; Sullivan, E.; Blyth, S.; Zockler, C. A global map of saltmarshes. Biodivers.

Data J. 2017, 5, e11764. [CrossRef] [PubMed]
44. Duarte, C.M.; Dennison, W.C.; Orth, R.J.W.; Carruthers, T.J.B. The Charisma of Coastal Ecosystems: Addressing the Imbalance.

Estuaries Coasts 2008, 31, 233–238. [CrossRef]
45. Doody, J.P. ‘Coastal squeeze’—An historical perspective. J. Coast. Conserv. 2004, 10, 129–138. [CrossRef]
46. Hoang, A.T.; Nguyen, X.P.; Duong, X.Q.; Huynh, T.T. Sorbent-based devices for the removal of spilled oil from water: A review.

Environ. Sci. Pollut. Res. 2021, 28, 28876–28910. [CrossRef]
47. Wang, H.; Liu, Z.; Wang, X.; Graham, T.; Wang, J. An analysis of factors affecting the severity of marine accidents. Reliab. Eng.

Syst. Saf. 2021, 210, 107513. [CrossRef]
48. Ghasemi, O.; Mehrdadi, N.; Baghdadi, M.; Aminzadeh, B.; Ghaseminejad, A. Spilled oil absorption from Caspian sea water by

graphene/chitosan nano composite. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 42, 2856–2872. [CrossRef]
49. Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A. Threats to sandy beach ecosystems: A review.

Estuar. Coast. Shelf Sci. 2009, 81, 1–12. [CrossRef]
50. Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C. The role of ecosystems in coastal protection:

Adapting to climate change and coastal hazards. Ocean Coast. Manag. 2014, 90, 50–57. [CrossRef]
51. Chisholm, J.R.M.; Barnes, D.J. Anomalies in coral reef community metabolism and their potential importance in the reef CO2

source-sink debate. Proc. Natl. Acad. Sci. USA 1998, 95, 6566–6569. [CrossRef] [PubMed]
52. Kench, P.S.; Brander, R.W. Wave Processes on Coral Reef Flats: Implications for Reef Geomorphology Using Australian Case

Studies. J. Coast. Res. 2006, 221, 209–223. [CrossRef]
53. Monismith, S.G. Hydrodynamics of Coral Reefs. Annu. Rev. Fluid Mech. 2007, 39, 37–55. [CrossRef]
54. Geraldi, N.R.; Ortega, A.; Serrano, O.; Macreadie, P.I.; Lovelock, C.E.; Krause-Jensen, D. Fingerprinting Blue Carbon: Rationale

and Tools to Determine the Source of Organic Carbon in Marine Depositional Environments. Front. Mar. Sci. 2019, 6, 263.
[CrossRef]

55. Herr, D.; von Unger, M.; Laffoley, D.; McGivern, A. Pathways for implementation of blue carbon initiatives. Aquat. Conserv. Mar.
Freshw. Ecosyst. 2017, 27, 116–129. [CrossRef]

http://doi.org/10.1038/ngeo1123
http://doi.org/10.1007/s40641-015-0002-x
http://doi.org/10.1146/annurev-marine-122414-034025
http://doi.org/10.22452/mjs.vol34no1.8
http://doi.org/10.1111/nph.12605
http://www.ncbi.nlm.nih.gov/pubmed/24251960
http://doi.org/10.1080/10549811.2017.1339615
http://doi.org/10.1016/B978-0-12-810473-6.00015-7
http://doi.org/10.5194/bg-14-301-2017
http://doi.org/10.1038/s41598-020-62639-y
http://doi.org/10.1073/pnas.0905620106
http://doi.org/10.1371/journal.pone.0043542
http://doi.org/10.1371/journal.pone.0072469
http://doi.org/10.1007/s00267-015-0568-z
http://www.ncbi.nlm.nih.gov/pubmed/26108413
http://doi.org/10.1007/s13157-011-0197-0
http://doi.org/10.1641/0006-3568(2006)56[675:TMAGPO]2.0.CO;2
http://doi.org/10.1002/lno.10347
http://doi.org/10.3897/BDJ.5.e11764
http://www.ncbi.nlm.nih.gov/pubmed/28765720
http://doi.org/10.1007/s12237-008-9038-7
http://doi.org/10.1652/1400-0350(2004)010[0129:CSAHP]2.0.CO;2
http://doi.org/10.1007/s11356-021-13775-z
http://doi.org/10.1016/j.ress.2021.107513
http://doi.org/10.1080/15567036.2019.1618995
http://doi.org/10.1016/j.ecss.2008.09.022
http://doi.org/10.1016/j.ocecoaman.2013.09.007
http://doi.org/10.1073/pnas.95.11.6566
http://www.ncbi.nlm.nih.gov/pubmed/9601007
http://doi.org/10.2112/05A-0016.1
http://doi.org/10.1146/annurev.fluid.38.050304.092125
http://doi.org/10.3389/fmars.2019.00263
http://doi.org/10.1002/aqc.2793


Sustainability 2023, 15, 2682 21 of 29

56. Lovelock, C.E.; Reef, R. Variable Impacts of Climate Change on Blue Carbon. One Earth 2020, 3, 195–211. [CrossRef]
57. García-Oliver, J.M.; Novella, R.; Micó, C.; Bin-Khalid, U. A numerical investigation of the performance of oxymethylene ethers

blended with fossil diesel to reduce soot emissions in compression ignition engines. Fuel 2022, 324, 124768. [CrossRef]
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