Effect of Audio Control Technology on Lettuce Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. The Effect of the Plant Acoustic Frequency Technology Generator on Lettuce Growth (Experiment 1)
2.3. The Effects of Different Types of Music on Lettuce Growth (Experiment 2)
3. Results
3.1. The Results and Analysis of Experiment 1 (The Effect of the Plant Acoustic Frequency Technology Generator on the Growth Morphology of Lettuce)
3.2. The Results and Analysis of Experiment 2 (The Effects of Different Kinds of Music on the Growth Morphology of Lettuce)
4. Discussion
4.1. Effect of the Plant Acoustic Frequency Technology Generator on Plant Growth
4.2. Effect of Music on Plant Growth
4.3. Difference in Effect of the Plant Acoustic Frequency Technology Generator and Music on Lettuce
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopacki, M.; Pawłat, J.; Skwaryło-Bednarz, B.; Jamiołkowska, A.; Stępniak, P.M.; Kiczorowski, P.; Golan, K. Physical Crop Postharvest Storage and Protection Methods. Agronomy 2021, 11, 93. [Google Scholar] [CrossRef]
- Mazur-Wierzbicka, E. The Application of Corporate Social Responsibility in European Agriculture. Misc. Geogr. 2015, 19, 19–23. [Google Scholar] [CrossRef]
- Gerhardt, K.E.; Gerwing, P.D.; Greenberg, B.M. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Sci. 2017, 256, 170–185. [Google Scholar] [CrossRef]
- Wassermann, B.; Korsten, L.; Berg, G. Plant Health and Sound Vibration: Analyzing Implications of the Microbiome in Grape Wine Leaves. Pathogens 2021, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.C.; Ghosh, R.; Bae, H. Plant acoustics: In the search of a sound mechanism for sound signaling in plants. J. Exp. Bot. 2016, 67, 4483–4494. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, H.; Li, F.; Xiao, Q. A Study on the Soundscape of Underground Commercial Space in Lu’an City and Hefei City, China. Int. J. Environ. Res. Public Health 2023, 20, 1971. [Google Scholar] [CrossRef]
- Hou, T.Z.; Mooneyham, R.E. Applied studies of the plant meridian system: II. Agri-wave technology increases the yield and quality of spinach and lettuce and enhances the disease resistant properties of spinach. Am. J. Chin. Med. 1999, 27, 131–141. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, B.C.; Jia, Y.; Duan, C.R.; Sakanishi, A. Effect of sound wave on the synthesis of nucleic acid and protein in chrysanthemum. Colloids Surf. B 2003, 29, 99–102. [Google Scholar]
- Kim, J.Y.; Lee, J.S.; Kwon, T.R.; Lee, S.I.; Kim, J.A.; Lee, G.M.; Park, S.C.; Jeong, M.J. Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes. Postharvest Biol. Technol. 2015, 110, 43–50. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Hou, T.Z.; Li, Y.F.; Li, B.M. Advances in effects of sound waves on plants. J. Integr. Agric. 2014, 13, 335–348. [Google Scholar] [CrossRef]
- Spillan, M. Brave new waves. TCI Plants 1991, 6, 36. [Google Scholar]
- Lee, W.C. The plants growing with music. Korea Agrafood 1997, 6, 41–43. [Google Scholar]
- Foster, B.; Pearson, S.; Berends, A.; Mackinnon, C. The Expanding Scope, Inclusivity, and Integration of Music in Healthcare: Recent Developments, Research Illustration, and Future Direction. Healthcare 2021, 9, 99. [Google Scholar] [CrossRef]
- Ciborowska, P.; Michalczuk, M.; Bień, D. The Effect of Music on Livestock: Cattle, Poultry and Pigs. Animals 2021, 11, 3572. [Google Scholar] [CrossRef]
- Wang, S.; Shao, Y.; Duan, J.; He, H.; Xiao, Q. Effects of Sound Wave and Water Management on Growth and Cd Accumulation by Water Spinach (Ipomoea aquatica Forsk.). Agronomy 2022, 12, 2257. [Google Scholar] [CrossRef]
- Xiao, Q.Q.; Wong, M.H.; Huang, L.; Ye, Z.H. Effects of cultivars and water management on cadmium accumulation in water spinach (Ipomoea aquatica Forsk.). Plant Soil 2015, 391, 33–49. [Google Scholar] [CrossRef]
- Ozkurt, H.; Altuntas, O. Quality Parameter Levels of Strawberry Fruit in Response to Different Sound Waves at 1000 Hz with Different dB Values (95, 100, 105 dB). Agronomy 2018, 8, 127. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Li, B.M.; Hou, T.Z. Dual effect of audible sound technology on the growth and endogenous hormones of strawberry. Agric. Eng. Int. CIGR J. 2020, 22, 262–273. [Google Scholar]
- Hendrawan, Y.; Rizky, A.; Susilo, B.; Prasetyo, J.; Damayant, R. The Effct of Javanese Gamelan Music on the Growth of Chinese Broccoli. Pertanika J. Sci. Technol. 2020, 28, 69–90. [Google Scholar]
- Creath, K.; Schwartz, G.E. Measuring effects of music, noise, and healing energy using a seed germination bioassay. J. Altern. Complement. Med. 2004, 10, 113–122. [Google Scholar] [CrossRef]
- Sarvaija, N.; Kothari, V. Audible Sound in Form of Music Can Influence Microbial Growth; Metabolism and Antibiotic Sus-ceptibility. J. Appl. Biotechnol. Bioeng. 2017, 2, 212–219. [Google Scholar]
- Bochu, W.; Jiping, S.; Biao, L.; Jie, L.; Chuanren, D. Sound wave stimulation triggers the content change of the endogenous hormone of the Chrysanthemum mature callus. Colloids Surf. B Biointerfaces 2004, 37, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Vicient, C.M. The effect of frequency-specific sound signals on the germination of maize seeds. BMC Res. Notes 2017, 10, 323. [Google Scholar]
- Kim, J.Y.; Lee, S.I.; Kim, J.A.; Park, S.C.; Jeong, M.J. Sound waves increases the ascorbic acid content of alfalfa sprouts by affecting the expression of ascorbic acid biosynthesis-related genes. Plant Biotechnol. Rep. 2017, 11, 355–364. [Google Scholar] [CrossRef]
- Ozkurt, H.; Altuntas, O. The Effect of Sound Waves at Different Frequencies upon the Plant Element Nutritional Uptake of Snake Plant (Sansevieria trifasciata) Plants. Indian J. Sci. Technol. 2016, 9, 48–55. [Google Scholar] [CrossRef]
- Jiang, S.R.; Rao, H.J.; Chen, Z.J.; Liang, M.M.; Li, L.L. Effects of sonic waves at different frequencies on propagation of Chlorella pyrenoidosa. Agric. Sci. Technol. 2012, 13, 2197–2201. [Google Scholar]
- Jeong, M.J.; Cho, J.I.; Park, S.H.; Kim, K.H.; Siddiqui, Z.S. Sound frequencies induce drought tolerance in rice plant. Pak. J. Bot. 2014, 46, 2015–2020. [Google Scholar]
- Li, Y.Y.; Wang, B.C.; Long, X.F.; Duan, C.R.; Sakanishi, A. Effects of sound field on the growth of Chrysanthemum callus. Colloids Surf. B 2002, 24, 321–326. [Google Scholar]
- Qin, Y.C.; Lee, W.C.; Choi, Y.C.; Kim, T.W. Biochemical and physiological changes in plants as a result of different sonic ex-posures. Ultrasonics 2003, 41, 407–411. [Google Scholar] [CrossRef]
- Monshausen, G.B.; Gilroy, S. Feeling green: Mechanosensing in plants. Trends Cell Biol. 2009, 19, 228–235. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, B.C.; Wang, X.J.; Duan, C.R.; Yang, X.C. Effect of sound stimulation on roots growth and plasmalemma H+-ATPase activity of chrysanthemum (Gerbera jamesonii). Colloids Surf. B 2003, 27, 65–69. [Google Scholar]
- Grasso, S.; Di Marcello, F.; Sabatini, A.; Zompanti, A.; Di Loreto, M.V.; Cenerini, C.; Lodato, F.; De Gara, L.; Cherubini, C.; Pennazza, G.; et al. Micromachined Tools Using Acoustic Wave Triggering for the Interaction with the Growth of Plant Biological Systems. Micromachines 2022, 13, 1525. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.C.; Bae, H. Plant Cognition: Ability to Perceive ‘Touch’ and ‘Sound’. In Sensory Biology of Plants; Sopory, S., Ed.; Springer: Singapore, 2019; pp. 137–162. [Google Scholar]
- Choi, B.; Ghosh, R.; Gururani, M.A.; Shanmugam, G.; Jeon, J.; Kim, J.; Bae, H. Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Sci. Rep. 2017, 7, 2527. [Google Scholar] [CrossRef]
- Joshi, N.; Nautiyal, P.; Papnai, G.; Supyal, V.; Singh, K. Render a sound dose: Effects of implementing acoustic frequencies on plants’ physiology, biochemistry and genetic makeup. IJCS 2019, 7, 2668–2678. [Google Scholar]
- Jung, J.; Kim, S.K.; Kim, J.Y.; Jeong, M.J.; Ryu, C.M. Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants. Front. Plant Sci. 2018, 9, 25. [Google Scholar] [CrossRef]
- López-Ribera, I.; Vicient, C.M. Drought tolerance induced by sound in Arabidopsis plants. Plant Signal. Behav. 2017, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Sarvaiya, N.; Kothari, V. Effect of audible sound in form of music on microbial growth and production of certain important metabolites. Microbiology 2015, 84, 227–235. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, H.-J.; Kim, J.A.; Jeong, M.-J. Sound Waves Promote Arabidopsis thaliana Root Growth by Regulating Root Phy-tohormone Content. Int. J. Mol. Sci. 2021, 22, 5739. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kang, Y.E.; Lee, S.I.; Kim, J.A.; Muthusamy, M.; Jeong, M.J. Sound waves affect the total flavonoid contents in Medicago sativa, Brassica oleracea, and Raphanus sativus sprouts. J. Sci. Food Agric. 2020, 100, 431–440. [Google Scholar] [CrossRef]
- Takakashi, H.; Suge, H.; Kato, T. Growth promotion by vibration at 50 Hz in rice and cucumber seedlings. Plant Cell Physiol. 1992, 32, 729–732. [Google Scholar] [CrossRef]
- Ghosh, R.; Mishra, R.C.; Choi, B.; Kwon, Y.S.; Bae, D.W.; Park, S.C.; Jeong, M.J.; Bae, H.H. Exposure to sound vibrations lead to transcriptomic, proteomic, and hormonal changes in Arabidopsis. Sci. Rep. 2016, 6, 33370. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.C.; Chen, X.; Wang, Z.; Fu, Q.Z.; Zhou, H.; Ran, L. Biological effect of sound field stimulation on paddy rice seeds. Colloids Surf. B Biointerfaces 2003, 32, 29–34. [Google Scholar]
- Singh, P.; Srivastava, N.; Joshi, N.; Shastri, I. Impact of different musical nodes and vibrations on plant development. Plant Sci. Today 2019, 6, 639–644. [Google Scholar] [CrossRef]
- Uchida, A.; Yamamoto, K.T. Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol. 2002, 43, 647–651. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, Y.; Wu, Y. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12. PeerJ 2016, 4, e1920. [Google Scholar] [CrossRef] [PubMed]
- Munasinghe, D.S.P.; Weerakoon, S.R.; Somaratne, S. The effect of Buddhist pirith chanting and Western pop music on growth performance of “Pranajeewa”, Codariocalyx motorius (Houtt.) H. Ohashi. Ceylon J. Sci. 2018, 47, 357–361. [Google Scholar] [CrossRef]
- Munasinghe, D.S.P.; Liyanage, K.C.M.; Weerakoon, S.R.; Somaratne, S.; Dissanayake, D.M.L.C. A preliminary study on effect of Buddhist pirith chanting and pop music on the growth and yield performance in rice (Oryza sativa L.). Sri Lankan J. Biol. 2018, 3, 44–51. [Google Scholar] [CrossRef]
- Jeong, M.J.; Shim, C.K.; Lee, J.O.; Kwon, H.B.; Kim, Y.H.; Lee, S.K.; Byun, M.O.; Park, S.C. Plant gene responses to frequencyspecific sound signals. Mol. Breed. 2008, 21, 217–226. [Google Scholar] [CrossRef]
- Del Stabile, F.; Marsili, V.; Forti, L.; Arru, L. Is There a Role for Sound in Plants? Plants 2022, 11, 2391. [Google Scholar] [CrossRef]
- Gagliano, M.; Grimonprez, M.; Depczynski, M.; Renton, M. Tuned in: Plant roots use sound to locate water. Oecologia 2017, 184, 151–160. [Google Scholar] [CrossRef]
- Allievi, S.; Arru, L.; Forti, L. A Tuning Point in Plant Acoustics Investigation. Plant Signal. Behav. 2021, 16, 1919836. [Google Scholar] [CrossRef] [PubMed]
- Frongia, F.; Forti, L.; Arru, L. Sound perception and its effects in plants and algae. Plant Signal. Behav. 2020, 15, 1828674. [Google Scholar] [CrossRef] [PubMed]
- Khait, I.; Lewin-Epstein, O.; Sharon, R.; Saban, K.; Perelman, R.; Boonman, A.; Hadany, L. Plants Emit Informative Airborne Sounds under Stress. bioRxiv 2019, 12, 507590. [Google Scholar] [CrossRef] [Green Version]
- Ozkurt, H.; Altuntas, O.; Bozdogan, E. The Effects of Sound Waves upon Plant Nutrient Elements Uptake of Sword Fern (Nephrolepis exaltata) Plants. J. Basic Appl. Sci. Res. 2016, 6, 9–15. [Google Scholar]
Treatments | Kinds of Music | Song Name | Features | Play Time |
---|---|---|---|---|
1 | Electronic music(EM) | Bandari “Annie’s Wonderland” | Elegant and quiet | 9:00–17:00 |
2 | Rock music(RM) | The Beatles “Hey Jude” | High pitched and excited | |
3 | Classical Music(CM) | Glazunov “Concerto pour Saxophone op.109” | Solemn and thick | |
CK2 | No music | —— | —— | —— |
Plant Height (cm) | Shoot FW (g) | Root Length (cm) | Root FW (g) | Chlorophyll (mg/g) | |||||
---|---|---|---|---|---|---|---|---|---|
CK1 | AFT | CK1 | AFT | CK1 | AFT | CK1 | AFT | CK1 | AFT |
26.39 ± 0.61 | 33.55 ± 1.13 ** | 31.21 ± 0.62 | 38.76 ± 0.66 ** | 23.25 ± 0.65 | 27.15 ± 0.87 | 11.95 ± 0.53 | 13.52 ± 0.43 | 1.47 ± 0.12 | 1.98 ± 0.15 ** |
Treatments | Plant Height (cm) | Root Length (cm) | Shoot FW (cm) | Root FW (g) | Root-Shoot Ratio R/S | Chlorophyll (mg/g) |
---|---|---|---|---|---|---|
EM | 22.30 ± 0.62A | 14.37 ± 0.61A | 18.28 ± 0.53A | 9.23 ± 0.56A | 0.56 ± 0.02A | 1.48 ± 0.07A |
RM | 20.27 ± 0.65A | 11.71 ± 0.31B | 13.21 ± 0.92B | 6.35 ± 0.73B | 0.49 ± 0.03A | 1.12 ± 0.11B |
CM | 17.28 ± 0.61B | 9.89 ± 0.23C | 16.76 ± 0.91A | 8.21 ± 0.58A | 0.47 ± 0.02A | 1.37 ± 0.03A |
CK2 | 15.65 ± 0.82B | 9.67 ± 0.25C | 10.26 ± 0.52C | 4.81 ± 0.15B | 0.46 ± 0.03A | 0.82 ± 0.02C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xiao, Q. Effect of Audio Control Technology on Lettuce Growth. Sustainability 2023, 15, 2776. https://doi.org/10.3390/su15032776
Wang S, Xiao Q. Effect of Audio Control Technology on Lettuce Growth. Sustainability. 2023; 15(3):2776. https://doi.org/10.3390/su15032776
Chicago/Turabian StyleWang, Su, and Qingqing Xiao. 2023. "Effect of Audio Control Technology on Lettuce Growth" Sustainability 15, no. 3: 2776. https://doi.org/10.3390/su15032776
APA StyleWang, S., & Xiao, Q. (2023). Effect of Audio Control Technology on Lettuce Growth. Sustainability, 15(3), 2776. https://doi.org/10.3390/su15032776