Using Machine Learning Methods to Predict Consumer Confidence from Search Engine Data
Abstract
:1. Introduction
2. Literature Review
2.1. Prediction Research Based on Deep Learning
2.2. Prediction Research Based on an Online Search Index
2.3. Factors Influencing Consumer Confidence
3. Research Method
3.1. Research Model
3.2. Variable and Data Source
3.3. Model Prediction Independent Variable Determination
3.3.1. Construction of Keyword Database
3.3.2. Screening of Independent Variables
3.3.3. Final Model Independent Variable Determination
3.4. Model Input Set Construction
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleinberg, J.; Lakkaraju, H.; Leskovec, J.; Ludwig, J.; Mullainathan, S. Human Decisions and Machine Predictions. Soc. Sci. Electron. Publ. 2018, 133, 237–293. [Google Scholar]
- Ming, Y.; Zhang, J.; Qi, J.; Liao, T.; Wang, M.; Zhang, L. Prediction and Analysis of Chengdu Housing Rent Based on Xgboost Algorithm. In Proceedings of the 2020 3rd International Conference on Big Data Technologies, Qingdao, China, 18–20 September 2020; pp. 1–5. [Google Scholar]
- Li, B.; Shao, X.; Li, Y. Research on Machine Learning Driven Quantamental Investing. China Ind. Econ. 2019, 8, 61–79. [Google Scholar]
- Qing, Y.; Chenwei, W. A Study on Forecast of Global Stock Indices Based on Deep LSTM Neural Network. Stat. Res. 2019, 36, 65–77. [Google Scholar]
- Tang, X.B.; Zhang, R.; Liu, L.X. Research on Forecast of Second-Hand House Price in Beijing Based on SVR Model of Bat Algorithm. Stat. Res. 2018, 35, 71–81. [Google Scholar]
- Eysenbach, G. Infodemiology: Tracking Flu-Related Searches on the Web for Syndromic Surveillance. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 11–15 November 2006; Volume 2006, p. 244. [Google Scholar]
- Askitas, N.; Zimmermann, K.F. Google Econometrics and Unemployment Forecasting. Appl. Econ. Q. 2009, 55, 107–120. [Google Scholar] [CrossRef]
- Smith, P. Google’s MIDAS Touch: Predicting UK Unemployment with Internet Search Data. J. Forecast. 2016, 35, 263–284. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, B.; Peng, G.; Liu, Y.; Yuan, Q. A Study on Correlation between Web Search Data and CPI. In Recent Progress in Data Engineering and Internet Technology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 269–274. [Google Scholar]
- Ying, L.; Benfu, L.; Geng, P. Predictive Power of Internet Search Data for Stock Market: A Theoretical Analysis and Empirical Test. Econ. Manag. 2011, 33, 172–180. [Google Scholar]
- Yang, X.; Ben-Fu, L.V.; Peng, G.; Liu, Y.; Management, S.O. A Study of Emergency on Stock Market Based on Web Search Data Evidence from Yongwen Railway Accident. Math. Pract. Theory 2013, 43, 17–28. [Google Scholar]
- Xiong, R.; Nichols, E.P.; Shen, Y. Deep Learning Stock Volatility with Google Domestic Trends. arXiv 2015, arXiv:1512.0491. [Google Scholar]
- Choi, H.; Varian, H. Predicting the Present with Google Trends. Econ. Rec. 2012, 88, 2–9. [Google Scholar] [CrossRef]
- Fang, J.; Gozgor, G.; Lau, C.-K.M.; Lu, Z. The Impact of Baidu Index Sentiment on the Volatility of China’s Stock Markets. Financ. Res. Lett. 2020, 32, 101099. [Google Scholar] [CrossRef]
- Lijun, L.U. On the Prediction of Tourist Volume Based on Network Search Index and EMD-ARIMA-BP Combination Model: A Case Study of Zhangjiajie. J. Jishou Univ. Social Sci. Ed. 2019, 40, 138. [Google Scholar]
- Qiu, Y. Forecasting the Consumer Confidence Index with Tree-Based MIDAS Regressions. Econ. Model. 2020, 91, 247–256. [Google Scholar] [CrossRef]
- Shayaa, S.; Ainin, S.; Jaafar, N.I.; Zakaria, S.B.; Phoong, S.W.; Yeong, W.C.; Al-Garadi, M.A.; Muhammad, A.; Zahid Piprani, A. Linking Consumer Confidence Index and Social Media Sentiment Analysis. Cogent Bus. Manag. 2018, 5, 1509424. [Google Scholar] [CrossRef]
- Juhro, S.M.; Iyke, B.N. Consumer Confidence and Consumption Expenditure in Indonesia. Econ. Model. 2020, 89, 367–377. [Google Scholar] [CrossRef]
- Perić, B.Š.; Sorić, P. A Note on the “Economic Policy Uncertainty Index. ” Soc. Indic. Res. 2018, 137, 505–526. [Google Scholar] [CrossRef]
- Ekici, T. Subjective Financial Distress in the Formation of Consumer Confidence: Evidence from Novel Household Data. Boğaziçi J. 2016, 30, 11. [Google Scholar] [CrossRef]
- Tiep, N.C.; Wang, M.; Mohsin, M.; Kamran, H.W.; Yazdi, F.A. An Assessment of Power Sector Reforms and Utility Performance to Strengthen Consumer Self-Confidence towards Private Investment. Econ. Anal. Policy 2021, 69, 676–689. [Google Scholar] [CrossRef]
- Guo, Y.; He, S. Does Confidence Matter for Economic Growth? An Analysis from the Perspective of Policy Effectiveness. Int. Rev. Econ. Financ. 2020, 69, 1–19. [Google Scholar] [CrossRef]
- Svensson, H.M.; Albæk, E.; Van Dalen, A.; De Vreese, C.H. The Impact of Ambiguous Economic News on Uncertainty and Consumer Confidence. Eur. J. Commun. 2017, 32, 85–99. [Google Scholar] [CrossRef]
- Cogoljević, D.; Gavrilović, M.; Roganović, M.; Matić, I.; Piljan, I. Analyzing of Consumer Price Index Influence on Inflation by Multiple Linear Regression. Phys. A Stat. Mech. Its Appl. 2018, 505, 941–944. [Google Scholar] [CrossRef]
- Farmer, R.E.A. The Importance of Beliefs in Shaping Macroeconomic Outcomes. Oxford Rev. Econ. Policy 2020, 36, 675–711. [Google Scholar] [CrossRef]
- Winter-Nelson, A. International Food Safety Regulations in the United States and the European Union-Balancing Consumer Confidence and Trade: Discussion. Am. J. Agric. Econ. 2009, 91, 1491–1492. [Google Scholar] [CrossRef]
- Kasztelan, A. How Circular Are the European Economies? A Taxonomic Analysis Based on the INEC (Index of National Economies’ Circularity). Sustainability 2020, 12, 7613. [Google Scholar] [CrossRef]
- Mukherjee, A.; Sinha, U.B. Export Cartel and Consumer Welfare. Rev. Int. Econ. 2019, 27, 91–105. [Google Scholar] [CrossRef]
- McIntyre, K.H. Reconciling Consumer Confidence and Permanent Income Consumption. East. Econ. J. 2007, 33, 257–275. [Google Scholar] [CrossRef]
- Bianchi, C.; Reyes, V.; Devenin, V. Consumer Motivations to Purchase from Benefit Corporations (B Corps). Corp. Soc. Responsib. Environ. Manag. 2020, 27, 1445–1453. [Google Scholar] [CrossRef]
- Ghafoori, E.; Mata, F.; Borg, K.; Smith, L.; Ralston, D. Retirement Confidence: Development of an Index. Inq. J. Health Care Organ. Provision Financ. 2021, 58, 00469580211035732. [Google Scholar] [CrossRef]
- Kilic, E.; Cankaya, S. Consumer Confidence and Economic Activity: A Factor Augmented VAR Approach. Appl. Econ. 2016, 48, 3062–3080. [Google Scholar] [CrossRef]
- Gholipour Fereidouni, H.; Tajaddini, R. Housing Wealth, Financial Wealth and Consumption Expenditure: The Role of Consumer Confidence. J. Real Estate Financ. Econ. 2017, 54, 216–236. [Google Scholar] [CrossRef]
- Gupta, R.K. Effects of Confidence and Social Benefits on Consumers’ Extra-Role and in-Role Behaviors: A Social Identity and Social Exchange Perspective. J. Retail. Consum. Serv. 2022, 65, 102879. [Google Scholar]
- Singh, J.; Dall’Olmo Riley, F. Consumer Perceptions and Behaviour towards Branded Commodities. J. Consum. Behav. 2022, 21, 19–32. [Google Scholar] [CrossRef]
- Li, S.-W.; Chen, Z.H.U.; Chen, Q.-H.; Liu, Y.-M. Consumer Confidence and Consumers’ Preferences for Infant Formulas in China. J. Integr. Agric. 2019, 18, 1793–1803. [Google Scholar] [CrossRef]
- Bildirici, M.E.; Badur, M.M. The Effects of Oil and Gasoline Prices on Confidence and Stock Return of the Energy Companies for Turkey and the US. Energy 2019, 173, 1234–1241. [Google Scholar] [CrossRef]
- Binder, C. Interest Rate Prominence in Consumer Decision-making. Econ. Inq. 2018, 56, 875–894. [Google Scholar] [CrossRef]
- Reed, M. A Study of Social Network Effects on the Stock Market. J. Behav. Financ. 2016, 17, 342–351. [Google Scholar] [CrossRef]
- Luca, D.; Schmeiser, H.; Schreiber, F. Investment Guarantees in Financial Products: An Analysis of Consumer Preferences. Geneva Pap. Risk Insur. Pract. 2022, 1–35. [Google Scholar] [CrossRef]
- Ferrer, E.; Salaber, J.; Zalewska, A. Consumer Confidence Indices and Stock Markets’ Meltdowns. Eur. J. Financ. 2016, 22, 195–220. [Google Scholar] [CrossRef]
- Demir, E.; Alıcı, Z.A.; Chi Keung Lau, M. Macro Explanatory Factors of Turkish Tourism Companies’ Stock Returns. Asia Pacific J. Tour. Res. 2017, 22, 370–380. [Google Scholar] [CrossRef]
- Caleiro, A.B. Learning to Classify the Consumer Confidence Indicator (in Portugal). Economies 2021, 9, 125. [Google Scholar] [CrossRef]
- Singh, P.; Suri, B. Quality Assessment of Data Using Statistical and Machine Learning Methods. In Computational Intelligence in Data Mining-Volume 2; Springer: New Delhi, India, 2015; pp. 89–97. [Google Scholar]
Macroeconomic factors | Taxes, Prices, Investment [21], Economic Growth [22], Economic Situation [23], Money Supply, Monetary Policy, Inflation [24], Macroeconomic Control, Employment [25], International Trade [26], International Settlement, National Economy [27], Expenditure [18], Industrial Value Added, Import and Export [28], Economy [23], US Dollar |
Family financial situation | Population, Income [29], Quality of Life [30], Retirement [31], Family Economic Status [32], Commercial Housing [33], Utility Bills, Rent, Social Security [34], Medical Care, Savings, Deposit Rates, Housing Prices |
Commodity supply [35] | Car [36], Air Conditioner Price, Food Price, Washing Machine Price, Pork Price, Decoration Material Price, Refrigerator Prices, Peanut Oil Prices, Cosmetics, Oil Prices [37], Vegetable Prices, Gasoline Prices [37], Travel, Tourist Attractions, Smart TV Prices, Liquid Petroleum Gas Prices [37], Culture |
Financial environment | Interest Rate Cut [38], Financial Markets [39], Financial Investment [40], Financing, Central Bank, Interest Rate [38], Stock market [41], RMB Exchange Rate [42], Bank of China, Foreign Exchange Rate Rrid, Stocks |
Employment situation | Unemployment Rate [43], Employment Situation [25], Employment Rate [25], Age |
Variables | Correlation Coefficient | Variables | Correlation Coefficient |
---|---|---|---|
House price | 0.3500 | Car | −0.4535 |
National economy | 0.4093 | Gasoline price | 0.3345 |
Macro-control | −0.4440 | Population | 0.3537 |
Peanut oil price | −0.3061 | Unemployment rate | 0.3087 |
Cosmetics | −0.3820 | Inflation | 0.3520 |
House price | −0.3500 | Washing machine price | −0.3246 |
Air conditioner price | −0.3817 | Oil price | 0.4585 |
Tourism | −0.3952 | Smart TV price | −0.3441 |
Tourist attractions | −0.3159 | Age | 0.4772 |
CCI | Coefficient | Std. Err | t | p > |t| |
---|---|---|---|---|
House price | −0.0003103 | 0.0000488 | −6.36 | 0.000 |
Peanut oil price | −0.0035622 | 0.0012912 | −2.76 | 0.006 |
Air conditioner price | 0.0015601 | 0.0002707 | −5.76 | 0.000 |
Tourism | 0.000177 | 0.0000492 | 3.60 | 0.000 |
Automobile | −0.0000403 | 0.0000121 | −3.34 | 0.001 |
Population | 0.0011956 | 0.0003957 | 3.02 | 0.003 |
Inflation | 0.0003821 | 0.0001415 | 2.70 | 0.007 |
Oil price | 0.0000423 | 0.0000559 | 7.57 | 0.000 |
Cons | 105.3676 | 0.5075212 | 207.61 | 0.000 |
DATE | TRUE | BPNN | RFR | SVR | ELMAN | ELM | CNN |
---|---|---|---|---|---|---|---|
August 2021 | 108.309 | 108.394165 | 107.8359 | 107.2346738 | 106.218712 | 106.74613 | 107.572832 |
September 2021 | 108.9626 | 108.605077 | 108.2389 | 107.7928709 | 106.6612107 | 106.94792 | 108.130195 |
October 2021 | 109.4258 | 109.454897 | 109.2639 | 108.7083261 | 106.9071076 | 107.92557 | 109.395235 |
November 2021 | 109.7463 | 109.03774 | 109.3563 | 108.3975876 | 106.8571451 | 107.96292 | 109.009328 |
December 2021 | 109.815 | 109.942503 | 109.4511 | 108.545021 | 106.6652814 | 107.60155 | 109.68998 |
January 2022 | 109.6322 | 108.729639 | 108.1444 | 107.6673171 | 106.8873609 | 107.64436 | 108.533012 |
February 2022 | 109.2735 | 109.065115 | 108.8455 | 108.9324908 | 110.2593407 | 108.99475 | 109.12965 |
Match 2022 | 108.8485 | 108.800697 | 108.8 | 108.7563591 | 108.4962227 | 109.13962 | 108.8893175 |
April 2022 | 108.3104 | 108.716093 | 108.2861 | 108.589573 | 107.5439924 | 108.25041 | 108.450708 |
May 2022 | 107.7686 | 107.58529 | 107.5692 | 107.6994682 | 108.3479212 | 108.35107 | 107.6327675 |
June 2022 | 107.3337 | 107.616705 | 107.2682 | 107.5320267 | 108.0668133 | 108.38024 | 107.497395 |
July 2022 | 107.1 | 107.831361 | 107.3091 | 107.5510443 | 109.1909602 | 109.7658 | 107.27576 |
ERROR BP | ERROR RFR | ERROR SVR | ERROR ELMAN | ERROR ELM | ERROR CNN |
---|---|---|---|---|---|
0.085212163 | −0.4731 | −1.07428 | −2.09024 | −1.56282 | −0.73612 |
−0.35756486 | −0.72379 | −1.16977 | −2.30143 | −2.01472 | −0.83245 |
0.029133199 | −0.16185 | −0.71744 | −2.51866 | −1.50019 | −0.03053 |
−0.70855535 | −0.39003 | −1.34871 | −2.88915 | −1.78338 | −0.73697 |
0.127486923 | −0.3639 | −1.27 | −3.14974 | −2.21347 | −0.12504 |
−0.90252581 | −1.48776 | −1.96485 | −2.7448 | −1.98781 | −1.09915 |
−0.20841109 | −0.42806 | −0.34104 | 0.985814 | −0.27877 | −0.14388 |
−0.04779769 | −0.04852 | −0.09214 | −0.35227 | 0.291121 | 0.040823 |
0.405707295 | −0.02432 | 0.279187 | −0.76639 | −0.05998 | 0.140322 |
−0.18330337 | −0.19939 | −0.06913 | 0.579328 | 0.582477 | −0.13583 |
0.282965945 | −0.06551 | 0.198287 | 0.733074 | 1.046502 | 0.163656 |
0.731360881 | 0.209056 | 0.451044 | 2.09096 | 2.665804 | 0.17576 |
BP | RFR | SVR | ELMAN | ELM | CNN | |
---|---|---|---|---|---|---|
MAE | 0.339169 | 0.381273 | 0.747988 | 1.766822 | 1.332254 | 0.363376 |
RMSE | 0.193975 | 0.295483 | 0.89833 | 4.061642 | 2.457531 | 0.26007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Li, Z.; Li, Z. Using Machine Learning Methods to Predict Consumer Confidence from Search Engine Data. Sustainability 2023, 15, 3100. https://doi.org/10.3390/su15043100
Han H, Li Z, Li Z. Using Machine Learning Methods to Predict Consumer Confidence from Search Engine Data. Sustainability. 2023; 15(4):3100. https://doi.org/10.3390/su15043100
Chicago/Turabian StyleHan, Huijian, Zhiming Li, and Zongwei Li. 2023. "Using Machine Learning Methods to Predict Consumer Confidence from Search Engine Data" Sustainability 15, no. 4: 3100. https://doi.org/10.3390/su15043100
APA StyleHan, H., Li, Z., & Li, Z. (2023). Using Machine Learning Methods to Predict Consumer Confidence from Search Engine Data. Sustainability, 15(4), 3100. https://doi.org/10.3390/su15043100