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Abstract: Traffic congestion has become a growing concern in cities, with both economic and en-
vironmental impacts on both individuals and the logistics industry. Therefore, a model of freight
distribution in urban areas considering economic and environmental objectives needs to be estab-
lished to alleviate the consequences. In this paper, a multi-stage heuristic algorithm is designed for
solving the route planning based on time-dependent arc travel durations. The algorithm includes
a savings method, a modified tabu search heuristic and a cycle transforming optimization (CTO)
algorithm. Benchmark instances and the case of Jingdong, one of the largest e-commerce platforms in
China, have been adopted to verify the accuracy and feasibility of the model and algorithm. Results
of the performance test reveal that the designed algorithm is suitable for addressing large-scale
instances. Based on the single objective models, two objectives referring to economical-related and
environmental-related factors are considered in the proposed sustainability oriented bi-objective
model, and a modified solution framework using a multi-objective decision making method with
a relaxation coefficient which is designed for addressing the bi-objective model. Finally, the time-
dependent arc travel durations based on real-time traffic information have been incorporated into the
optimization algorithms, simulation of distribution process and dynamic route updating strategy,
which can reduce costs and route-associated emissions of logistics companies.

Keywords: sustainability; vehicle routing problem; time-dependent arc travel durations;
bi-objective optimization

1. Introduction

Efficient distribution and/or collection plays a significant role in urban logistics. To
date, traffic congestion has been seriously affecting the development of urban logistics.
For instance, bakeries need to deliver a variety of products to their shops or franchisees
distributed throughout the city and collect the bread that is about to expire. On school days,
school buses need to collect or send students from different communities on time, and large-
scale supermarket chains need to deliver goods from the warehouse to the store. Route
planning can improve transportation efficiency, cost saving and emission reduction [1]. In
short, sustainability-oriented vehicle route planning in urban areas is a challenging and
meaningful research topic.

Cities with a variety of high-quality resources attract a large number of people. An
increasing number of citizens leads to the rapid rise in travel and logistics demand. Due to
the limited transportation resources, traffic congestion occurs in the urban road network
frequently. The time-dependent characteristics of traffic congestion have an important
impact on the cost of urban logistics. For example, time-dependent travel durations affect
vehicle speed, which in turn influences distribution cost. At the same time, the closer to
the urban core, the more carbon emissions arise. The carbon emission is proportional to
gross domestic product (GDP) per capita. Therefore, it is necessary to consider the impact
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of vehicles on the environment in the route optimization of urban logistics. The sustainable
development of urban logistics includes economic factors and environmental aspects.
The enterprise of urban logistics focuses on reducing the operational costs and impact of
distribution vehicles on the environment through optimization models and algorithms.

This study focuses on providing a general methodology that contributes to the solution
of urban logistics. Our methodology includes a calculation method of time-dependent
arc durations, capacitated vehicle routing problem (CVRP) models, multi-stage heuristic
algorithms, a simulation method, and a dynamic route updating strategy. The utilizing
of the simulation method and dynamic route updating strategy is conducted to achieve
sustainability-oriented vehicle routing planning in urban areas.

The residual parts are organized as follows: Section 2 is the literature review focusing
on vehicle routing problems (VRP) and its variations. In Section 3, we present a formal
description of the problem to be investigated as well as the calculation method of time-
dependent arc durations in detail. Section 4 introduces two models with economic objective
or environmental objective, respectively, and the detailed process of the multi-stage heuris-
tic algorithm and the solution framework for bi-objective models are described in Section 5.
The performance test of the multi-stage heuristic algorithm is implemented in Section 6.
Section 7 includes a case study of a supermarket daily delivery. Finally, this study has been
concluded in Section 8.

2. Literature Review

The literature review starts with the existing exact algorithm and heuristic algorithm.
Then, the research focusing on time-dependent vehicle routing problems (TDVRP) is
introduced. Finally, the studies closely related to sustainability-oriented vehicle routing
problems are analyzed in objectives and solution methods.

A large number of exact algorithms have been developed for solving models related
to CVRPs and its variants. Letchford et al. [2] proposed the first exact algorithm for the
open version of the CVRP based on branch-and-cut (BC). Christiansen and Lysgaard [3]
introduced a new branch-and-price (BP) algorithm for CVRP considering stochastic de-
mands. The algorithm included the branch-and-bound and column generation subproblem.
Xie et al. [4] established a multimodal hazmat location and routing model, and converted
the model into a mixed integer linear program for using the CPLEX or other exact solvers.
Gauvin et al. [5] proposed a branch-cut-and-price (BCP) algorithm for the vehicle routing
problem with stochastic demands. Santos et al. [6] presented a BCP algorithm for the
two-echelon vehicle routing problem. Dinh et al. [7] applied BCP and dynamic program-
ming to solve the chance-capacitated vehicle routing problem. Munari et al. [8] proposed a
BCP method based on a set partitioning formulation of the robust vehicle routing problem
with time windows, which relies on the resource-constrained elementary shortest-path
problem. Aiming at the vehicle routing problem with stochastic demands under optimal
replenishment, Florio et al. [9] proposed a BCP algorithm that relies on an efficient labeling
procedure, many dominance rules, and completion boundaries to column generation. Xiao
et al. [10] constructed a linear programming model based on ε-accurate method, and the
experimental results showed that the AMPL/CPLEX can solve the benchmark test instance
of vehicle routing problems with a maximum of 25 clients. Based on a modified label setting
algorithm, Zhang et al. [11] developed a BP algorithm to solve the shared autonomous
electric vehicle routing problem.

Closely related to the algorithm designed in this study are the savings method and
tabu search algorithm. The former was proposed for a larger truck dispatching problem [12],
the results revealed that it was able to quickly obtain good solutions during the iterative
process in a limited time. Since then, the algorithm has been widely developed and applied.
Given that solutions generated by the savings method have a larger gap compared with
the best solution, it needs to be further optimized, and a large number of works have used
the tabu search algorithm to do so. Zidi et al. [13] designed a hybrid simulated annealing
tabu search algorithm to provide an effective routing selection method for ambulances. The
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experimental results showed that the proposed algorithm performed better than the particle
swarm optimization (PSO) and the genetic algorithm and exhibited less time consumption.
Omidvar et al. [14] developed a two-phase model to solve time-dependent vehicle routing
and scheduling problems. A mixed-integer programming model dealt with speed variations
in road networks and generated a fixed node sequence for each route in the first phase,
then the departure time of each fixed route was rearranged to avoid traffic jams as much
as possible in the second phase. Combined with the multiple phase neighborhood search
algorithm and greedy randomized adaptive search algorithm, a hybrid PSO algorithm
was designed to deal with supply chain management problems [15]. Rong and Xu [16]
developed a Stackelberg game analytical framework to obtain the stakeholder’s optimal
solutions for green supply chain management. Akeb et al. [17] developed a multi-stage
heuristic algorithm to solve the capacitated vehicle routing problem with time windows
(CVRPTW). The three stages included clustering customers (grouping), constructing routes
and intensification.

Various time-dependent functions between vehicle speed and departure time have
been introduced in the TDVRP. Ichoua et al. [18] proposed time-dependent travel speeds
with the “first-in-first-out” property to further enrich the TDVRP and considered many
factors such as time of the day and different vehicle speeds. Lecluyse et al. [19] proposed
a parallel tabu search algorithm for a static and dynamic TDVRP case. Jabali et al. [20]
established a TDVRP model considering travel time, fuel consumption and CO2 emission
cost. The carbon emission was reduced by limiting vehicle speed and avoiding driving in
peak hours. Qian and Eglese [21] considered time dependence and vehicle speed as decision
variables to establish the vehicle routing problems with minimizing total greenhouse
gas emissions, and adopted a column generation algorithm based on tabu search for
verification in real cases. Cimen and Soysal [22] proposed a Markov decision model and
used heuristic algorithms of approximate dynamic programming to solve TDVRP. Aiming
at minimizing carbon emissions and total cost, Wang et al. [23] proposed a hybrid heuristic
algorithm based on the savings method, scanning algorithm and multi-objective particle
swarm optimization algorithm to solve the multi-depot vehicle routing problem with
time-varying speeds. Huang et al. [24] regarded the problem of route selection as a kind
of comprehensive decision in TDVRPs and established a TDVRP-path flexibility model
under deterministic and random traffic conditions. Combined the order selection problem
with TDVRP, Ma et al. [25] introduced an optimization model considering the delivery
order, service order and the start time of the delivery task, and proposed an ant colony
algorithm with local search operators. Fan et al. [26] proposed a hybrid metaheuristic
algorithm to solve the time-dependent multi-depot vehicle routing problem. Combined the
greedy randomized adaptive search procedure (GRASP) with the iterated local search (ILS),
Allahyari et al. [27] designed a hybrid algorithm for solving the secure TDVRP considering
time-dependent travel speeds. Recently, Schmidt et al. [28] proposed a metaheuristic based
on an evolutionary search for the time-dependent fleet size and mix multi-depot vehicle
routing problem. The modeling of sustainability-oriented vehicle routing problems mainly
considers economic factors, environmental impacts or customer satisfaction, etc. Costa
et al. [29] investigated a bi-objective green vehicle routing problem with time windows
in which the minimization of CO2 emission costs conflicts with the optimal economic
cost of total driver wage that is associated with each passed unit of time. Poonthalir and
Nadarajan [30] established a bi-objective green vehicle routing problem with variable
speed constraints considering the minimization of path cost and fuel consumption, and
designed a particle swarm optimization algorithm with greedy mutation operator to
solve the problem. Zhao et al. [31] studied the time-varying bi-objective vehicle routing
problem with time windows. The proposed mixed integer linear programming model
with minimizing total transportation cost and time cost was solved by non-dominated
sorting genetic algorithm (NSGA-II). Zhou et al. [32] proposed a NSGA-III algorithm with
simulated annealing for the multi-objective waste collection routing problem. The economy,
society, and environment objectives were considered for sustainable development of cities.
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Aiming at the multi-objective heterogeneous vehicle routing problem, Ghannadpour and
Zarrabi [33] presented a bi-objective model based on fuel consumption and customer
service priority to ensure the minimization of total vehicle driving distance, fleet size,
fuel consumption and the maximization of customer satisfaction. Ren et al. [34] studied a
mixed-energy fleet green vehicle routing problem with minimizes pollutant emissions and
the total delay time. A modified variable neighborhood search algorithm with a selection
mechanism was presented to find the Pareto frontier of the bi-objective model. Islam
et al. [35] proposed a new hybrid PSO algorithm to deal with the mixed-fleet-based green
clustered logistics problem under carbon emission cap in logistic industry. Amiri et al. [36]
established a bi-objective model minimizing total cost and carbon emissions, and designed
three multi-objective solutions (linear weighted sum, ε-constraint and hybrid method)
based on the adaptive large neighborhood search (ALNS) algorithm. Glize et al. [37]
introduced a ε-constraint method for the bi-objective vehicle routing problem based on
column generation and enumeration algorithm. Zarouk et al. [38] constructed a bi-objective
model for minimizing energy consumption and maximizing customer satisfaction and
proposed a hybrid metaheuristic algorithm based on genetic algorithm and simulated
annealing algorithm.

On the basis of the existing works mentioned above, four weaknesses can be found
as follows. (a) Large-scale cases in real-world applications cannot be solved by exact
algorithms in a reasonable time because the algorithms are time-consuming even when
performing on small-scale instances. (b) Although the previous studies have solved the
TDVRP in different ways, there is a significant research gap, i.e., few of them consider the
real traffic information of target areas. (c) Common algorithms for solving bi-objective or
multi-objective vehicle routing problems include multi-objective particle swarm optimiza-
tion algorithm, multi-objective evolutionary algorithm and ε-constraint method. There
are few works using multi-objective decision making methods. (d) Most of the existing
work of vehicle routing problems focus on the theoretical optimization, and there are few
application studies on whether the distribution scheme can be successfully fulfilled in the
road network of the target area and how to fulfil it.

To fix the above weaknesses, a fast multi-stage hybrid heuristic algorithm is designed,
which includes the savings method, the tabu search algorithm and the cycle transforming
optimization algorithm. Based on the basic road network data and real-time traffic informa-
tion of the target area, a segmental time-dependent arc travel duration calculation method
is presented to address the time-dependent parameters in the vehicle routing problem.
Meanwhile, a multi-objective decision making method with relaxation coefficient is used to
solve the bi-objective problem. By adding constraints and control relaxation coefficient to
the problem, the algorithm for solving the single-objective problem is transformed into the
algorithm for solving the bi-objective or multi-objective problems. A simulation method
and a dynamic route updating strategy are designed to verify whether the distribution
scheme can be implemented and how to implement in the road network of the target area.

Based on the above analysis, this study focuses on the extension of providing effi-
cient routes for freight distribution in urban areas. The contributions of this paper are
summarized as follows:

• The establishment of a multi-stage heuristic algorithm to solve single-objective vehicle
routing problems;

• The proposal of multi-objective decision-making method with relaxation coefficient to
solve bi-objective or multi-objective vehicle routing problems;

• The design of a time-dependent arc duration calculation method and applying it to
the optimization algorithms and simulation method;

• The development of a simulation method and dynamic route updating strategy.
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3. Problem Description
3.1. Formal Description

In the investigated vehicle routing planning based on time-dependent arc travel
durations, the locations of customers and depot and their corresponding relationship are
modeled in a graph G = (V, A), which consists of a node’s set V and of an arc’s set A.
Assuming the arc length (i, j) = (j, i), ∀i, j = V, the routing problem is referred to as
undirected case, otherwise, it is called directed case. Each arc can be assigned a weight
that may represent the corresponding travel distance and time-dependent travel duration.
In addition, each customer has a request q, and development of optimization algorithms
aims to meet the demands of customers with the minimum cost and emission by assigning
deliver vehicles from the depot. This paper focuses on the undirected cases for benchmark
instances and directed cases for practical scenario.

3.2. Time-Dependent Arc Durations

The time period T is equidistant divided into H time slots by time interval γ, that is
to say, the continuous time range T is discretized into H time slots. Assuming the starting
time is t0, the time range T can be expressed as T = {t0, t0 + γ, . . . , t0 + Hγ}.

Let Th, h ∈ 1 ∼ H denote the number of slots, each time slot can be represented as
a time range [th, th+1], where th is the start time and th+1 is the end time of the time slot
Th Assume that sh

ij represents a time-dependent travel velocity of the arc (i, j) in the time
slot Th, and vehicles pass through arc (i, j) in a sequential mode (FIFO) between nodes i to
j, in which several consecutive time slots could be consumed. Then, the piecewise linear
function τij(t) is defined to calculate the time-dependent arc durations.

τij(depi(t)) =


Lij/sha

ij , i f ha = hb

arrj(t)− arri(t), i f hb = ha + 1
(tha+1 − arri(t)) + (hb − ha − 1)γ + (arrj(t)− thb

), i f hb > ha + 1
(1)

In Formula (1), ha and hb denote the depart slot and arrival slot, respectively, arri(t)
represents the arrival time of the vehicle at node i. Without considering the service time of
nodes, the arrival time at node i is equal to its departure time, i.e., arri(t) = depi(t). Then,
Formula (1) is described below in detail.

(a) If ha and hb in the same time slot, the time-dependent velocity on the arc is equiv-
alent, and the time-dependent arc duration is the ratio of the distance Lij to the
time-dependent velocity sha

ij .

(b) If ha and hb within two adjacent time slots, the travel duration spans two time slots.
The calculation method of time-dependent arc durations is illustrated in Figure 1a.
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As can be seen from Figure 1a, arc length Lij is divided into two segments, and the

arrival time at node j from i is: arrj(t) = arri(t) + Lil/sha
il + Ll j/shb

l j .

(c) If ha and hb in two non-adjacent time slots, the travel duration on arc (i, j) is composed
of three parts, as illustrated in Figure 1b. The first part is equal to the start time
of time slot subtracting the start time of the node i. The second part contains a
number of complete time slots. The third part is equal to the arrival time of the node
j minusing the start time of the time slot ha + 1. As can be seen from Figure 1b, arc
length Lij is divided into n + 1 segments, and the arrival time at node j from i is:

arrj(t) = arri(t) + Lil1 /sha
il1

+(n− 1)γ + Lln j/shb
ln j.

The parameter Lij denotes the actual driving distance provided by the online map
platform application program interfaces (APIs). The speed sij of each time slot is calculated
by the basic data of road networks under the free flow state and traffic performance index
(TPI). By continuously capturing data from the online map platform, the TPI of each time
slot in the future can be predicted by deep learning methods to achieve full coverage of the
time slot in the distribution process.

4. Problem Formulation

Two models are established separately based on the traditional CVRP model. Model
1 is to minimize the total travel distance, which satisfies the business objectives of urban
logistics enterprises. Model 2 represents the minimization of total emissions, which meets
the regulatory requirements of governments. Although the two models have the same
constraints, they represent the interests of different participants. Model 1 represents the
interests of logistics enterprises, whereas Model 2 represents the government’s environ-
mental concerns.

4.1. Model 1

This model aims to minimize the total distance by using two sets of constraints related
to vehicles, i.e., the capacity and maximum range. A three-index vehicle flow model
for minimizing the total distance including a summation of the selected arc lengths is
defined by:

Minz1 =
n

∑
i=0

n

∑
j=0

m

∑
k=1

dijxijk, (2)

where dij is equal to Lij in Formula (1). The capacity constraints in Formula (3) indicates
that the total amount of distribution tasks undertaken by the vehicle is not greater than its
maximum capacity:

n

∑
i=1

qiyik ≤ Q, ∀k ∈ K (3)

Constraints (4) ensure that the total distance of each route cannot exceed the maximum
range of the vehicle:

n

∑
i=0

n

∑
j=0

dijxijk ≤ L, ∀k ∈ K (4)

Although the range of internal-combustion vehicles can be considered as unlimited, it
should be regarded as an important factor with the popularization of new energy vehicles
in the near future. Constraints (5) means that each customer is serviced by exactly one visit
of a single vehicle:

m

∑
k=1

yik = 1, ∀ i ∈ C (5)
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Each vehicle needs to start from and return to the distribution center according to:

m

∑
k=1

y0k =
m

∑
k=1

yk0 = m (6)

The relationship between two kinds of decision variables is defined by constraints
(7) and (8):

n

∑
i=0

xijk = yjk, ∀ j ∈ V , k ∈ K (7)

n

∑
j=0

xijk = yik, ∀ i ∈ V, k ∈ K (8)

The simple sub-tour elimination constraints are defined by:

∑
i∈S

∑
j∈{V\S}

xijk ≥ yhk, ∀S ⊆ C , h ∈ S, k ∈ K (9)

Two sets of decision variables are given by:

xijk ∈ {0, 1} ∀i, j ∈ V, i 6= j, k ∈ K (10)

yik ∈ {0, 1} ∀i ∈ V, k ∈ K (11)

4.2. Model 2

The objective z1 in Formula (2) ensures the lowest total distance of the solution.
However, responsible logistics enterprises, as an important part of urban infrastructure, not
only focus on minimizing their cost but also devote to mitigate the negative environmental
impacts. To this end, another objective z2 is defined and the constraints are the same to
Model 1.

Minz2 = EF ·
n

∑
i=0

n

∑
j=0

m

∑
k=1

dij · f (
dij

tij
) · xijk (12)

The objective represents minimizing the total carbon emission of distribution vehicles,
in which the time-dependent travel duration tij can be calculated by Formula (1) under a
specific depart time. Meanwhile f (·) refers to regression functions defined in the computer
program to calculate emissions from road transport (COPERT) model [39,40].

The COPERT is a method to estimate emissions for various types of vehicles on the
road network. The method requires only a small amount of input data and can achieve
accurate emission assessment for fuel vehicles. In addition to assessing carbon dioxide
emissions, COPERT can also calculate emissions of four major pollutants, namely carbon
monoxide, nitrogen oxides, volatile organic compounds and particulate matter. Meanwhile,
the method uses a large number of actual activity data to construct emission factor functions
for these substances. The key activity data include the number of vehicles in different
emission categories/technologies, vehicle speed on different highway conditions (urban or
rural), and the number of miles travelled under the same driving conditions, many other
emission evaluation models are published except for the COPERT model. The COPERT
model is adopted in this paper to calculate emission factors of carbon dioxide because the
raw data it analyzed comes from the real-world intelligence traffic information system and
the emission standard of vehicles used in the case study belongs to Euro III that is clearly
pre-defined in the COPERT model.

Model 1 belongs to the mixed integer linear programming model and can be solved
directly by off-the-shelf commercial solvers such as CPLEX. Unfortunately, the CPLEX
solver becomes powerless when facing the large-scale instances (n > 18) because constraints
(9) contain an exponential operation to enumerate all subsets of the set C. Model 2 is a
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mixed integer nonlinear programming model because of a nonlinear objective function
contained. Therefore, a multi-stage heuristic algorithm is designed in the next section.

5. Solution Algorithm

The process of the multi-stage heuristic algorithm is shown in Figure 2. The first stage
is to obtain a giant traveling salesman problem (TSP) tour by means of the savings method;
the second stage is to perform a modified tabu search on the giant TSP tour and output a
new one, and then this new giant TSP tour is split into multiple small TSP tours according
to the capacity constraints; in the last stage, the small TSP tours representing each vehicle
route are intensified by the CTO algorithm, separately.
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5.1. First Stage: Savings Method

The principle of Clarke and Wright’s savings heuristic algorithm (CW) is to combine
the two sub-tours in the transportation process into one tour [12]. Each combination
is to reduce the total transportation distance as much as possible. The new vehicle is
used until the loading of the current vehicle is full. The CW generates the distribution
plan that minimizes the total travel distance according to the transportation capacity of
the distribution center and the distance between the distribution center and customers.
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Meanwhile, the following constraints should be considered during the optimization process,
i.e., all demands of customers, no vehicle is overloaded and the total daily operating time
or mileage of each vehicle does not exceed the specified limit.

Natural numbers are used to encode nodes in this paper. During the execution of the
first two stage heuristics, the depot is considered as a normal node and finally generates an
optimized TSP tour. To increase the search space and to fully account for the performance
of modern computers, the capacity constraints are temporarily relaxed in the first stage and
second stage. The savings method used in this paper is shown in Figure 3.
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5.2. Second Stage: Modified Tabu Search Algorithm

The tabu search was first proposed as a meta-heuristic for guiding and controlling
heuristics, and five main concepts are included—initialization, moving and neighborhood,
a tabu list, aspiration criteria and termination conditions [41]. A modified tabu search with
four neighborhood operators based on node-exchanging is proposed in this paper. The
detailed description of the modified tabu search algorithm is described in Algorithm 1.
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Algorithm 1: Pseudo-code for the modified tabu search

1: Input X: a result of the CW
2: Preprocessing
3: Set the parameters e.g.history optimal solution (best), current solution (current)
4: Initialize counter: iteration, stop
5:While iteration < MAXiter and stop < MAXstop
6: For i = 0 to M
7: Randomly select a move operator and generate a new solution X*
8: Add X* to candidate list TL
9: End For
10: Sort the candidate list by fitness
11: If TL (1) < best Then
12: stop = 0
13: Update parameters
14: If Tabu list not full Then
15: Add best to Tabu list
16: Else:
17: Pop the first item of Tabu list
18: Add best to the rear of Tabu list
19: End If
20: Else:
21: stop = stop + 1
22: search current from the Tabu list
23: update the Tabu list
24: End If
25: iteration = iteration + 1
26: End While
27: Output Current solution

In each iteration, candidate solutions are obtained by randomly selecting a neighbor-
hood operator, and the candidate with the minimum objective is added to the tabu table.
Because the tabu search is sensitive to the quality of initial solution, a good initial solution
can make it converge quickly. For this reason, CW is utilized to generate initial solution
obtained in advance.

Inspired by the variable neighborhood search algorithm, the four neighborhood opera-
tors, the inverse neighborhood search operator, 1-opt insert search operator, 2-opt* exchange
search operator and 3-opt exchange search operator, are designed. The operators are
introduced as follows and illustrated in Figure 4.
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(a) Inverse neighborhood search operator: that is, randomly selecting a segment of route
and reverse its order;

(b) 1-opt insert search operator: randomly selecting a node inserted into another location
in the route;

(c) 2-opt* exchange search operator: randomly selecting two nodes to swap;
(d) 3-opt exchange search operator: randomly selecting three nodes to reassign its location.

The optimized TSP tour obtained by the modified tabu search is split into VRP solu-
tions by using a liner splitting method [42].

5.3. Third Stage: Cycle Transforming Optimization Algorithm

The large number of experimental results show that the results outputted by the TS
are worse than the optimal result. Therefore, it is necessary to perform further optimization
after dividing a giant TSP tour into a VRP solution. The following two concepts in graph
theory are presented for the sake of introducing the CTO algorithm.

Definition 1. The Hamilton cycle with the smallest weight is the optimal H-cycle in a weighted
graph G = (V, E), and the closed path with the minimum weight covering each vertex exactly once is
the optimal TSP tour.

Definition 2. Let x, y, z ∈ V, z 6= x, x 6= y, and if w(x, y) ≤ w(x, z) + w(z, y) in a weighted
graph G = (V, E), then the optimal H-cycle of G is also the optimal TSP tour.

These two definitions show that the optimal H-cycle of graph G is also the optimal
TSP tour when the distance between nodes satisfies the triangle inequality [43]. However,
solving both the optimal H-cycle and the optimal TSP tour are NP-hard problems, and
there is no quick and exact solution algorithm at present, although this can be solved by the
CTO algorithm. After obtaining the VRP solution with the modified TS algorithm designed
in Section 5.2, the CTO algorithm is performed on each TSP tour to intensify the solution
quality. The core of the CTO algorithm is illustrated in Figure 5.
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The steps for conducting CTO algorithm are as follows:
Step 1 Take any initial TSP tour, C0 = v1, v2, · · · , vi, · · · , vj, · · · , vn, v1.
Step 2 ∀i, j, 1 < i + 1 < j < n if w

(
vi, vj

)
+ w

(
vi+1, vj+1

)
< w(vi, vi+1) + w

(
vj, vj+1

)
is satisfied, then delete the arcs (vi, vi+1) and

(
vj, vj+1

)
from C0, and add the arcs

(
vi, vj

)
and

(
vi+1, vj+1

)
to C0. Finally, a new cycle C = v1, v2, · · · , vi, vj, vj−1, is established, which

will be an improvement on C0.
Step 3 Repeat Step 2 for C until the inequality is not satisfied, and then the obtained C

is the optimal TSP tour.
The pseudocode of the CTO algorithm is shown in Algorithm 2:
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Algorithm 2: Pseudo-code for intensification stage

1: Input C0: initial TSP tour and w: weight matrix
2:C = C0
3: For i = 1 to N − 1
4: For j = i + 1 to N − 1

5: If w
(

vi, vj

)
+ w

(
vi+1, vj+1

)
< w(vi, vi+1) + w

(
vj, vj+1

)
6: Del. arc (vi, vi+1) and from C
7: Add arc

(
vi, vj

)
and

(
vi+1, vj+1

)
to C

8: Rebuild tour C
9: End If
10: End For
11: End For
12: Output C

Regarding the power of diversification and intensification, for the former, we are
inspired by the classic 2-opt algorithm based on arc-exchanging. On this basis, the four
operators based on node exchange combined are designed with our programming ex-
perience. For the latter, we utilize a programming technique that employs a two-layer
loop to check whether each route has room for improvement. Although the TSP provided
in the second stage is optimal, the VRP solution obtained by linear splitting may not be
necessarily optimal. Therefore, it is possible to compensate for some defects generated in
the splitting process using the CTO algorithm.

5.4. Solution Framework for Bi-Objective Models

If more than one objective is considered simultaneously when dealing with a problem,
it belongs to the multi-objective decision problem (MDP). Setting a decision rule is required
before solving the MDP; for example, “minimize the total distance and ensure that the total
emission does not exceed 100 kg”. This is equivalent to solving an optimization problem of
the following form:

Min f1(x)

subject to : f j(x) ≤ f 0
j , j = 2, · · · , n, (13)

x ∈ X, X is f easible

where f 0
2 ∼ f 0

n is a given standard. If the standard is set too high, the corresponding
constraints may become ineffective. If it is set too low, it may result in no feasible solution
to the problem. Therefore, the optimal solutions f ∗j , j = 2, · · · , n obtained by other single
objectives are integrated into the problem (13), and the constraints in problem (13) are
modified by:

f j(x) ≤ f ∗j (1 + λ), j = 2, · · · , n, (14)

where λ is a relaxation coefficient in range [0, 1]. The solution framework for bi-objective
models is designed Based on the proposed three-stage algorithm, as shown in Figure 6.
Finally, the most satisfactory solution can be obtained.

The function of the counter c is to record the number of times the constraint is not
satisfied under a given λ. The algorithm terminates if the counter reaches maxAttempts and
a non-feasible solution is still to be found. Then, the feasible solution of the last output is
the optimal solution under the decision rule.
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6. Performance Test Based on Model 1

To verify the accuracy and generality, the algorithm is performed on benchmark
instances and large-scale instances, which come from a famous benchmark website [44] and
Jingdong global optimization challenge [45]. All the instances can be found in GitHub https:
//github.com/JinYuanzhi/CVRPrni (accessed on 11 November 2022). The parameters
related to the vehicle and modified tabu search algorithm are listed in Table 1.

Table 1. Parameter settings of the algorithm.

Type Parameter Description Values

Vehicle
Vc Variable cost 2 CNY·km−1

Fc Fixed cost 300 CNY per vehicle
Q Maximum load 2.5 metric tons

TS

Lentl The length of tabu list 20

MAXstop
The maximum number of times that the

objective without improvement 50

MAXiter Maximum iterations 300

The hardware platform used in this study is a laptop with CPU i7-6560u and 8G
memory, and the software platform was MATLAB R2019a for routing optimizations and
the Python 3.7 for others.

https://github.com/JinYuanzhi/CVRPrni
https://github.com/JinYuanzhi/CVRPrni
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6.1. Testing on Benchmark Instances

To verify the accuracy of the multi-stage heuristic algorithm proposed in this paper, the
algorithm is performed on the 28 benchmark instances with known best results (KBR). The
KBRs reported in the benchmark instance website are calculated by Equation (2), in which
the Euclidean distance is used for computing parameters dij. The benchmark instances
are grouped by two sets, labeled Set A and Set B, and the name of the instances provides
general information. For example, the instance ‘A-n32-k5’ represents that this instance
belongs to Set A and that the corresponding problem has 32 customers and 5 vehicles
available. For the instances in Set A, customer locations are randomly generated in plane
coordinates, whereas the instances in Set B are clustered instances. The customer demands
in two sets are random, and less than the vehicle capacity 100. The optimal results obtained
by 10 times run are shown in Tables 2 and 3.

Table 2. Performance test for instances in Set A.

Instance KBR Optimal Gap CPU Time (s)

A-n32-k5 784 808 3.06% 1.48
A-n33-k5 661 693 4.84% 1.83
A-n33-k6 742 799 7.68% 1.78
A-n34-k5 778 794 2.06% 1.78
A-n36-k5 799 829 3.75% 1.77
A-n37-k5 669 701 4.78% 1.59
A-n37-k6 949 990 4.32% 1.83
A-n38-k5 730 774 6.03% 1.77
A-n39-k6 831 876 5.42% 1.86
A-n45-k7 1146 1181 3.05% 1.83
A-n48-k7 1073 1119 4.29% 2.58
A-n53-k7 1010 1110 9.90% 1.83
A-n54-k7 1167 1249 7.03% 1.94
A-n55-k9 1073 1137 5.96% 1.86
Average 5.16% 1.84

Table 3. Performance test for instances in Set B.

Instance KBR Optimal Gap CPU Time (s)

B-n31-k5 672 692 2.98% 1.80
B-n34-k5 788 879 11.55% 1.78
B-n35-k5 955 976 2.20% 1.77
B-n38-k6 805 832 3.35% 2.14
B-n39-k5 549 607 10.56% 1.78
B-n43-k6 742 751 1.21% 1.63
B-n45-k5 751 782 4.13% 1.72
B-n45-k6 678 703 3.69% 1.88
B-n50-k7 741 792 6.88% 1.89
B-n52-k7 747 767 2.68% 1.91
B-n56-k7 707 768 8.63% 1.92
B-n57-k9 1598 1661 3.94% 2.22
B-n63-k10 1496 1588 6.15% 1.88
B-n67-k10 1032 1104 6.98% 2.39
Average 5.35% 1.91

The “Optimal” column represents the minimum z1 of the 10 times run. As can be seen
from Tables 2 and 3, the average gap reported on the instances in Set B is close to that in
Set A but the gaps in Set B have greater fluctuations, whereas little differences have been
shown in terms of the average CPU time between the two sets. The algorithm can obtain a
gap of about 5% compared with KBRs. The best result obtained on the benchmark instance
B-N43-k6 is very close to the optimal solution, which is also comparable to that of exact
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algorithms. However, the exact algorithms cannot solve large-scale instances optimally in a
short time. Finally, it is unfair to judge the merits of an algorithm only by its accuracy. The
algorithm designed in this paper is characterized by its simplicity and rapidity and can be
used to solve large-scale instances in a few seconds.

6.2. Testing on Large-Scale Instances

The benchmark instances tested above belong to the small-scale instance. Then, we
select the instances with 100, 200, 500, 1000 and 1500 customers, respectively, (in short, JD
***, and *** represents the number of customers) from Jingdong’s delivery case in Beijing,
China, as testing instances to verify the feasibility of the algorithm. The customers of the
case are distributed in the Sixth Ring Road of Beijing, and the depot is located in Fangshan
district of Beijing. The Haversine formula [46] is employed to calculate the distance dij, and
the testing results are reported in Table 4.

Table 4. Performance test on large-scale instances.

Instance Vehicles Distance (km) Cost (CNY)

JD100 3 457.56 1815.12
JD200 8 823.6 4047.2
JD500 58 3826.63 25,053.26
JD1000 105 7195.42 45,890.84
JD1300 141 8569.18 59,438.36
JD1500 173 10,468.71 72,837.42

The results in Table 4 show that the proposed multi-stage heuristic algorithm is capable
of solving large-scale instances. Table 5 presents the CPU time of the three stages based on
the large-scale instances above.

Table 5. The time consumption of different stages.

Instance CW (s) TS (s) CTO (s) Total (s)

JD100 0.25 2.0781 0.0156 2.3
JD200 0.8438 2.4375 0.0313 3.3
JD500 2.9531 2.0313 0.0156 5

JD1000 21.9688 3.4844 0.0156 25.5
JD1300 57.4375 5.1563 0.0938 62.7
JD1500 85.3906 6.5781 0.0938 92.1

As can be seen from Table 5, the savings method in the first stage occupies most
of the time in testing when the number of customers exceeds 500. Meanwhile, the time
consumption of the modified tabu search algorithm in the second stage is only slightly
increased with the scale, and the time consumption of the CTO algorithm in the third stage
is almost negligible.

7. Case Study

The multi-stage heuristic algorithm proposed in Section 5 is used to plan freight
distribution of a large supermarket in Chongqing, southwest of China. The supermarket
has 40 stores (referred to as customers in what follows, numbered C01–C40) in urban
areas and a large comprehensive distribution center (referred to as DC in what follows)
located in the northwest of Chongqing city. The DC is responsible for the supply of certain
consumer goods. The goods need to be delivered from the DC to each customer every
day. The demand of customers is known in advance; thus, the demand is sent to DC every
night. Then, the DC assigns deliver vehicles to meet the demand on the next day. The
geographical locations of customers and DC are shown in Figure 7.
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7.1. Appling the Algorithm Based on Model 1

A giant TSP tour is obtained by the savings method introduced in Section 5.1. Then,
the modified tabu search algorithm proposed in Section 5.2 is performed on the giant TSP
tour, which can generate an optimized giant TSP tour, and the optimized tour is divided
into several routes according to the capacity constraints. Finally, an initial solution is
achieved. The initial delivery routes are shown in Figure 8 and the corresponding travel
distances and costs are reported in Table 6. The tour plan on the left of Figure 8 is outputted
by the modified tabu search algorithm and the revised tour plan on the right of Figure 8 is
obtained by the CTO algorithm.
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Table 6. Comparison of travel distances and costs based on Figure 8.

Tour Plan Revised Tour Plan

Distance (km) Cost (CNY) Distance (km) Cost (CNY)

route_1 77.64 455.28 75.75 451.5
route_2 74.56 449.11 53.6 407.2
route_3 60.06 420.12 53.88 407.77
route_4 48.12 396.23 40.68 381.36

260.38 1720.75 223.91 1647.83

As shown on the right side of Figure 8, apart from the node sequence of route_3, which
is not optimal, the other three routes are close to optimal. The data reported in Table 6
indicate that the CTO algorithm can reduce the total distance by 14% (36.47 km in total)
and save costs by 4.24% (72.92 CNY).

After obtaining the revised tour plan, a simulation method is designed to explore the
impact of different departure times on total estimated time of arrival (ETA) and emission,
and even determine the best departure time. The method simulates vehicles operating their
tasks by using multithreading. The calculation method of time-dependent arc durations is
used to provide the time-dependent parameters based on Baidu Map APIs. The departure
time starts at 6:30 a.m. and ends at 18:30 p.m. on a workday, with an interval of 1 h. The
obtained results are listed in Table 7.

Table 7. Simulation of the distribution process at different departure times.

Departure Time ETA (min.) Distance (km) Emission (kg)

6:30 484.60 229.48 81.27
7:30 715.60 244.99 110.92
8:30 790.30 232.05 117.91
9:30 660.10 230.75 103.01
10:30 601.70 237.50 96.64
11:30 547.50 232.83 89.40
12:30 510.50 231.32 84.70
13:30 566.30 235.14 92.10
14:30 619.90 237.20 98.91
15:30 606.20 229.21 96.50
16:30 661.50 237.35 103.89
17:30 922.50 232.71 133.01
18:30 873.00 235.20 127.77

Average 658.44 234.29 102.77

As can be seen from Table 7, only subtle changes have been shown in terms of the total
travel distance; however, selecting different departure times has a significant impact on
the total ETA and emission. Because the daily replenishment of each store is not urgent,
off-peak distribution may be the best way to reduce travel time and emissions. Although
departing at 6.30 a.m. can completely avoid rush hour, many stores are not ready to receive
their goods. Thus, a reasonable departure time is at 12:30.

The vehicle used in the case study has a self-weight of 2.8 metric tons and a maximum
load of 2.5 metric tons, belonging to the diesel heavy-duty vehicle defined by the COPERT
model. Therefore, the speed-dependent regression function for calculating carbon emissions
is reported in Table 8.

Table 8. Speed dependency of fuel consumption factors.

Speed Range (km·h−1) Fuel Consumption Factor (g·km−1) r2

0–47 f(v) = 1425.2v−0.7593 0.99
47–100 f(v) = 0.0082v2 − 0.043v + 60.12 0.798
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The variable v is the speed associated with the corresponding arc length divided by
ETA obtained by the method presented in Section 3.2. The optimal speed is observed in
Figure 9 according to the two speed-dependent regression functions.

Sustainability 2023, 15, 3208 18 of 25 
 

10:30 601.70  237.50  96.64  
11:30 547.50  232.83  89.40  
12:30 510.50  231.32  84.70  
13:30 566.30  235.14  92.10  
14:30 619.90  237.20  98.91  
15:30 606.20  229.21  96.50  
16:30 661.50  237.35  103.89  
17:30 922.50  232.71  133.01  
18:30 873.00  235.20  127.77  

Average 658.44  234.29  102.77  

As can be seen from Table 7, only subtle changes have been shown in terms of the 
total travel distance; however, selecting different departure times has a significant impact 
on the total ETA and emission. Because the daily replenishment of each store is not urgent, 
off-peak distribution may be the best way to reduce travel time and emissions. Although 
departing at 6.30 a.m. can completely avoid rush hour, many stores are not ready to re-
ceive their goods. Thus, a reasonable departure time is at 12:30. 

The vehicle used in the case study has a self-weight of 2.8 metric tons and a maximum 
load of 2.5 metric tons, belonging to the diesel heavy-duty vehicle defined by the COPERT 
model. Therefore, the speed-dependent regression function for calculating carbon emis-
sions is reported in Table 8. 

Table 8. Speed dependency of fuel consumption factors. 

Speed Range (km·h−1) Fuel Consumption Factor (g·km−1) r2 
0–47 fሺ𝑣ሻ ൌ 1425.2𝑣ି.ହଽଷ 0.99 

47–100 fሺ𝑣ሻ ൌ 0.0082𝑣ଶ െ 0.043𝑣  60.12 0.798 

The variable v is the speed associated with the corresponding arc length divided by 
ETA obtained by the method presented in Section 3.2. The optimal speed is observed in 
Figure 9 according to the two speed-dependent regression functions. 

 
Figure 9. The relationship between speeds and fuel consumption factors. 

As is shown in Figure 9, the piecewise function reaches the minimum value if v = 47. 
In other words, 47 km·h−1 is the most cost-effective and eco-friendly speed. In fact, a low 

Figure 9. The relationship between speeds and fuel consumption factors.

As is shown in Figure 9, the piecewise function reaches the minimum value if v = 47.
In other words, 47 km·h−1 is the most cost-effective and eco-friendly speed. In fact, a low
fuel consumption rate is presented if the speed is greater than 15 km·h−1. The last column
“r2” in Table 8 represents the determination coefficient of regression results. The closer
the coefficient is to 1, the better the regression results are. The worst coefficient 0.798 is
reported in the last row, which may be due to the insufficient number of samples with a
speed greater than 47 km·h−1.

The simulation method can save the cost for logistics enterprises compared with the
real test of distribution process. Therefore, it can detect the best departure time for reducing
the time consumption and emission.

7.2. Dynamic Route Updating Strategy

After obtaining the best departure time, a simple and fast dynamic route updating
strategy is designed developed to tackle the changeable road-traffic conditions during the
distribution process. The strategy starts multiple threads at run time, and the number
of threads is the same as the number of routs. Each thread guides a remote vehicle and
records the detailed path. If the vehicle reaches a customer node along the assigned
route, the corresponding threading requests the latest distance matrix and time-dependent
arc durations from Baidu Map by using the coordinates of the customer and unserved
customers. Then, the OR-Tools solver is employed for solving a TSP. The next customer
to be visit is determined according to the output of the solver. Finally, the real-time ETA
and detailed driving paths between the two node pairs can be requested from online maps.
This information is sent to the remote vehicle and recorded in a log file simultaneously.
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The dynamic route updating strategy has been implemented by multithreading tech-
nology in Python [47]. Combined with the route fitting technology, the four routes are
integrated into a map file shown in Figure 10 based on Google Map in an electronic view.
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Using onboard global positioning system devices and communication networks, logis-
tics companies can grasp the real-time location of delivery vehicles on electronic maps. The
designed dynamic route updating procedure can be used to perceive real-time road traffic
and determine the next driving path. Then, the detailed path information is transmitted to
remote vehicles over the communication network.

7.3. Comparisons of Distance and Cost under Different Distance Calculation Methods

The Euclidean distance or Manhattan distance are usually adopted to calculate the
distance matrix d in classic CVRP model. In fact, the alternative method of calculating
the distance between each pair of points is the Haversine formula, called the Haversine
distance. These distance measures can be feasible in the plain area. However, it may not
work well in mountainous cities such as Chongqing, in the southwest of China, because
there is a large deviation between the actual driving distance and calculated distance.
To verify the impact of the different distance calculation methods, this paper conducts
experiments based on the case of mountainous Chongqing City, and the result of 10 times
run is presented in Table 9.

Table 9 shows that the ratio between the average actual driving distance and the
Haversine distance is 1.72, whereas its cost ratio is 1.13. That is, the actual driving distance
between each pair of nodes is much larger than the Haversine distance in the mountain city.
Moreover, although the average distance increased by 72%, the total cost only increased by
13%. Similarly, the experiments are also performed on Jingdong instances in Beijing, China,
which is a flat area. The average results are reported in Table 10.
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Table 9. Comparison in the two methods of distance calculation.

Run No.
Real Distance Haversine Distance

Distance (km) Cost (CNY) Distance (km) Cost (CNY)

1 238.73 1677.46 141.12 1482.24
2 248.49 1696.98 135.74 1471.48
3 230.16 1660.32 138.69 1477.38
4 227.69 1655.38 138.91 1477.82
5 242.71 1685.42 137.69 1475.38
6 239.23 1678.46 142.57 1485.14
7 237.36 1674.72 141.33 1482.66
8 235.81 1671.62 136.88 1473.76
9 248.65 1697.3 138.69 1477.38
10 244.22 1688.44 144.2 1488.4

Average 238.76 1677.52 139.07 1478.14
Radio 1.72 1.13

Table 10. Comparison of travel distances on large-scale instances.

Instance Haversine Distance
(km) Real Distance (km) R/H

JD100 457.56 738.37 1.61
JD200 823.60 1336.33 1.62
JD500 3826.63 5912.22 1.55
JD1000 7195.42 11,404.81 1.59
JD1300 8569.18 13,279.15 1.55
JD1500 10,468.71 15,997.52 1.53

Average 1.57

As can be seen from Table 10, the mean value of the ratio between the real driving
distance and the Haversine distance (R/H) is 1.57, which is less than Chongqing’s 1.72.
These ratios can provide a reference for other applications that need to estimate the actual
driving distance.

The process for solving this case using the objective z2 is similar to the above method
and is not presented separately in this paper. Solving the case by considering both objectives
is shown in the next section.

7.4. The Case Study Considering Both the Objective z1 and z2

For the data consistency and the reproducibility of experimental results, the time-
dependent data used in Section 7.1 is also utilized here. Then, the algorithm is run 10 times
with minimizing z2 and the results are reported in Table 11.

Table 11. The results based on minimizing z2.

Run NO. Distance (km) Emission (kg) Cost (CNY) ETA (min.)

1 257.68 94.87 1715.35 552.19
2 231.75 92.77 1663.49 558.83
3 237.66 91.51 1675.32 541.04
4 235.19 89.74 1670.37 530.39
5 244.23 94.14 1688.46 556.82
6 240.69 93.86 1681.38 562.03
7 243.30 94.49 1686.60 563.60
8 236.13 90.03 1672.27 533.30
9 252.40 96.97 1704.80 571.44
10 256.62 95.84 1713.24 563.49

Average 243.56 93.42 1687.13 553.31
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As can be seen from Table 11, the best solution is obtained in the fourth run, with
the shortest distance of 235.19 km and the least emissions of 89.74 kg. Therefore, we can
set the objective of minimizing z1 by adding the new constraint f2(x) ≤ 89.74(1 + λ) to
the problem.

In this paper, the value of λ decreases from 1 to 0 with interval 0.1. The comparison
between the result and the optimal solution with minimizing z2 is reported in Table 12.

Table 12. The result based on MDP.

Distance (km) Emission (kg) Cost (CNY) ETA (min.)

A satisfied solution 233.77 91.63 1667.53 543.80
The best solution with

minimizing z2
235.19 89.74 1670.37 530.39

If the decision makers need to obtain solutions with higher quality, they just need to
reduce the interval of descent and/or increase the upper bound of the counter if there is no
feasible solution output, which, however, may require considerable computation time.

7.5. Managerial Insights

With the rapid increase in urban population, the number of private cars, buses, taxis
and online ride-hailing vehicles has soared, resulting in frequent traffic jams. In recent
years, the rapid development of e-commerce platforms has led to the increase in demand
for logistics services. In the urban environment, how to deliver goods to customers in a
low-cost and efficient way is the goal that decision makers of logistics pay attention to.
Using the vehicle routing problem model to minimize travel distance, heuristic algorithm,
simulation method of distribution scheme and dynamic route updating strategy can reduce
the distribution cost of enterprises and improve their revenues. On the contrary, how to
reduce the impact of delivery vehicles on the urban environment is the goal of governmental
managers. The carbon emissions of distribution vehicles can be reduced by using the vehicle
routing problem model with minimization carbon emissions, algorithm and the above
two additional methods. The bi-objective model considering the minimization of travel
distance and carbon emissions is very suitable in the context of energy saving and carbon
reduction. No matter the single-objective model or the bi-objective model, the influence
of traffic congestion on the model parameters should be considered in urban distribution
scenarios. The calculation method of time-dependent arc durations can be used by the
decision makers of logistics enterprises to estimate the time-dependent parameters in the
distribution process. Combining the simulation method and dynamic route updating
strategy ensures that the distribution tasks can be successfully completed in the road
network of the target region. In addition, based on the online route update strategy,
decision makers of logistics enterprises can use the free transport capacity resources to
respond to the dynamic requests of customers quickly, and then obtain more income with
lower route costs and carbon emissions. Finally, if the actual driving distance between
node pairs is hard to collect, the decision makers of logistics enterprises can calculate an
arc distance using the Haversine formula, and then the actual driving distance is estimated
by multiplying the arc distance times the road detour coefficient (R/H) of the target area.

8. Conclusions and Future Work

This paper designs a multi-stage heuristic algorithm for the proposed CVRP models.
The algorithm simplifies the savings method, adds four neighborhood operators into
the tabu search algorithm to increase its diversity and enhances the solution quality by
using the CTO algorithm. The accuracy and feasibility of the algorithm are verified by
dealing with the benchmark instances and real large-scale instances. In addition, the daily
distribution case of the supermarket shows that the designed algorithm can gradually
improve the solution quality and finally obtain a good distribution scheme. The routes
servicing all customers are vividly displayed in the real road network by means of the
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post-processing procedures. As for the bi-objective model, the modified framework is
developed by using the multi-objective decision making method with relaxation coefficient.
Decision-makers can flexibly set the relaxation coefficient according to their real needs to
obtain the corresponding solutions.

Although the models and solution approach have many features, there are still some
limitations in this study. The designed multi-stage heuristic algorithm abandons a lot of
local search procedures in the third stage to achieve faster solution speed; therefore, it could
be a good choice to apply some intra-route or inter-route node-exchange/relocation opera-
tors without greatly increasing computation time. Additionally, it could be significantly
meaningful to further investigate the relationships between departure time, travel duration,
travel distance and emissions. Moreover, because the splitting method for the giant TSP
tour is linear, more effective methods could be developed.
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Nomenclature

Abbreviations and acronyms
CTO cycle transforming optimization
GDP gross domestic product
CVRP capacitated vehicle routing problem
VRP vehicle routing problem
TDVRP time-dependent vehicle routing problems
BC branch-and-cut
BP branch-and-price
BCP branch-cut-and-price
PSO particle swarm optimization
CVRPTW capacitated vehicle routing problem with time windows
CO2 carbon dioxide
GRASP greedy randomized adaptive search procedure
NSGA non-dominated sorting genetic algorithm
ALNS adaptive large neighborhood search
FIFO first in first out
API application program interface
TPI traffic performance index
COPERT computer program to calculate emissions from road transport
TSP traveling salesman problem
CW Clarke and Wright’s savings heuristic algorithm
MDP multi-objective decision problem
TS tabu search

https://github.com/JinYuanzhi/CVRPrni
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KBR known best results
CNY Chinese yuan
ETA estimated time of arrival
Sets and parameters:
{0} the set of depots
C = {1, . . . , n} the set of customers
V = {0} ∪ C the set of nodes
S any subset of set C
A = arc(i, j), i, j ∈ V, i 6= j the set of arcs
Q the capacity of vehicles
Vc the variable cost
Fc the fixed cost
L the maximum travel distance of vehicles
K = {1, . . . , m} the set of vehicles
qi the demand of customer
dij the travel distance on arc(i,j)
tij the time-dependent travel duration on arc(i,j)
EF the emission factor of fuel
Decision variables
xijk equals 1 if the arc(i,j) is traversed by vehicle k; 0 otherwise
yik equals 1 if customer i is served by the vehicle k; 0 otherwise
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