Assessment of Eight Faba Bean (Vicia faba L.) Cultivars for Drought Stress Tolerance through Molecular, Morphological, and Physiochemical Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Experiment
2.2. Drought Tolerance Parameters
2.3. Proline Content Determination
2.4. Extraction of Genomic DNA
2.5. Start Codon Targeted (SCoT) Amplification
2.6. Sequence-Related Amplified Polymorphism (SRAP) Amplification
2.7. Gel Electrophoresis
2.8. Data Analysis
3. Results
3.1. Morphological and Physiochemical Parameters
3.2. Genetic Polymorphism Analyses
3.3. Genetic Distance and Similarity
3.4. Phylogeny Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, E.F.; Hassanien, A.A.E.; Wong, J.H.; Bah, C.S.F.; Soliman, S.S.; Ng, T.B. Purification and Modes of Antifungal Action by Vicia faba cv. Egypt Trypsin Inhibitor. J. Agric. Food Chem. 2010, 58, 10729–10735. [Google Scholar] [CrossRef]
- Fang, E.F.; Hassanien, A.A.E.; Wong, J.H.; Bah, C.S.F.; Soliman, S.S.; Ng, T.B. Isolation of a new trypsin inhibitor from the Faba bean (Vicia faba cv. Giza 843) with potential medicinal applications. Protein Pept. Lett. 2011, 18, 64–72. [Google Scholar] [CrossRef]
- Qahtan, A.A.; Al-Atar, A.; Abdel-Salam, E.M.; El-Sheikh, M.A.; Gaafar, A.-R.Z.; Faisal, M. Genetic diversity and structure analysis of a worldwide collection of faba bean (Vicia faba) genotypes using ISSR markers. Int. J. Agric. Biol. 2021, 25, 683–691. [Google Scholar] [CrossRef]
- Maalouf, F.; Hu, J.; O’Sullivan, D.M.; Zong, X.; Hamwieh, A.; Kumar, S.; Baum, M. Breeding and genomics status in faba bean (Vicia faba). Plant Breed. 2019, 138, 465–473. [Google Scholar] [CrossRef]
- Alharbi, N.H.; Adhikari, K.N. Factors of yield determination in faba bean (Vicia faba). Crop Pasture Sci. 2020, 71, 305–321. [Google Scholar] [CrossRef]
- Banerjee, J.; Das, A.; Parihar, A.; Sharma, R.; Pramanik, K.; Barpete, S. Genomic Designing Towards Development of Abiotic Stress Tolerant Grass Pea for Food and Nutritional Security. In Genomic Designing for Abiotic Stress Resistant Pulse Crops; Springer: Cham, Switzerland, 2022; pp. 345–381. [Google Scholar]
- Cordea, M.I.; Borsai, O. Salt and Water Stress Responses in Plants. In Plant Stress Physiology-Perspectives in Agriculture; IntechOpen: London, UK, 2021. [Google Scholar]
- Turner, N.C. Further progress in crop water relations. Adv. Agron. 1996, 58, 293–338. [Google Scholar]
- El-Enany, A.E.; Al-Anazi, A.D.; Dief, N.; Al-Taisan, W.A.A. Role of antioxidant enzymes in amelioration of water deficit and waterlogging stresses on Vigna sinensis plants. J. Biol. Earth Sci. 2013, 3, B144–B153. [Google Scholar]
- Sundaravalli, V.; Paliwal, K.; Ruckmani, A. Effect of water stress on photosynthesis, protein content and nitrate reductase activity of Albizzia seedlings. J. Plant Biol.-New Delhi 2005, 32, 13. [Google Scholar]
- Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2008, 2, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Thudi, M.; Roorkiwal, M.; He, W.; Upadhyaya, H.D.; Yang, W.; Bajaj, P.; Cubry, P.; Rathore, A.; Jian, J. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 2019, 51, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Fathy, D.M.; Eldomiaty, A.; El-Fattah, H.I.A.; Mahgoub, E.-S.I.; Hassanin, A.A. Morphological, Biochemical and Molecular Characterization of Rhizobia of Faba Bean Plants Grown in North Nile Delta Egypt. Pak. J. Biol. Sci. 2021, 24, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Mahdy, E.M.B.; Taha, H.S.A.; Eldomiaty, A.S.; Abd-Elfattah, M.A.; Abdel Latef, A.A.H.; Rezk, A.A.; Shehata, W.F.; Almaghasla, M.I.; Shalaby, T.A.; et al. Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers. Plants 2022, 11, 1722. [Google Scholar] [CrossRef] [PubMed]
- Khaleghi, A.; Naderi, R.; Brunetti, C.; Maserti, B.E.; Salami, S.A.; Babalar, M. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 2019, 9, 19250. [Google Scholar] [CrossRef] [Green Version]
- Hailu, G.; Asfere, Y. The Role of Molecular Markers in Crop Improvement and Plant Breeding Programs: A. Agric. J. 2020, 15, 171–175. [Google Scholar]
- Garcia, A.A.; Benchimol, L.L.; Barbosa, A.M.; Geraldi, I.O.; Souza, C.L., Jr.; de Souza, A.P. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet. Mol. 2004, 27, 579–588. [Google Scholar] [CrossRef]
- Al-Hadeithi, Z.; Jasim, S.A. Study of Plant Genetic Variation through Molecular Markers: An Overview. J. Pharm. Res. Int. 2021, 33, 464–473. [Google Scholar] [CrossRef]
- Li, G.; Quiros, C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 2001, 103, 455–461. [Google Scholar] [CrossRef]
- Rana, M.; Singh, S.; Bhat, K. Fingerprinting Indian lentil (Lens culinaris ssp. In culinaris Medik.) cultivars and landraces for diversity analysis using sequence-related amplified polymorphism (SRAP) markers. In Proceedings of the Fourth International Food and Legumes Research Conference, New Delhi, India, 18–22 October 2009; pp. 617–624. [Google Scholar]
- Collard, B.C.; Mackill, D.J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 2009, 27, 86–93. [Google Scholar] [CrossRef]
- Sarkar, D. Physical and Chemical Methods in Soil Analysis; New Age International: New York, NY, USA, 2005. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil. 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Doyle, J. DNA protocols for plants. In Molecular Techniques in Taxonomy; Springer: Berlin/Heidelberg, Germany, 1991; pp. 283–293. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1989; p. 1191. [Google Scholar]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Norusis, M. SPSS For Windows Advanced Statistics Release 6.0; SPSS Inc.: Chicago, IL, USA, 1993; p. 578. [Google Scholar]
- Rokach, L.; Maimon, O. Decision trees. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 165–192. [Google Scholar]
- Weiß, C.H. Statistica, Version 8; Statsoft, Inc.: Tulsa, OK, USA, 2007. [Google Scholar]
- Al-Amri, S. Differential response of faba bean (Vicia faba L.) plants to water deficit and water logging stresses. Appl. Ecol. Environ. Res. 2019, 17, 6287–6298. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Ilias, I.; Giannakoula, A.; Theoharidou, I. Effect of water stress and NaCl triggered changes on yield, physiology, biochemistry of broad bean (Vicia faba) plants and on quality of harvested pods. Biologia 2014, 69, 1010–1017. [Google Scholar] [CrossRef]
- Ammar, M.; Anwar, F.; ElHarty, E.; Migdadi, H.; AbdelKhalik, S.; AlFaifi, S.; Farooq, M.; Alghamdi, S. Physiological and yield responses of faba bean (Vicia faba L.) to drought stress in managed and open field environments. J. Agron. Crop Sci. 2015, 201, 280–287. [Google Scholar] [CrossRef]
- Johari-Pireivatlou, M. Effect of soil water stress on yield and proline content of four wheat lines. Afr. J. Biotechnol. 2010, 9, 36–40. [Google Scholar]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.; Sohrabi, Y. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 2010, 4, 580–585. [Google Scholar]
- Putnik-Delić, M.; Maksimović, I.; Venezia, A.; Nagl, N. Free proline accumulation in young sugar beet plants and in tissue culture explants under water deficiency as tools for assessment of drought tolerance. Rom. Agric. Res. 2012, 30, 141–148. [Google Scholar]
- Kadkhodaie, A.; Razmjoo, J.; Zahedi, M.; Pessarakli, M. Selecting sesame genotypes for drought tolerance based on some physiochemical traits. J. Agron. 2014, 106, 111–118. [Google Scholar] [CrossRef]
- Nazarli, H.; Faraji, F.; Zardashti, M. Effect of drought stress and polymer on osmotic adjustment and photosynthetic pigments of sunflower. Cercet. Agron. Mold. 2011, 1, 35–41. [Google Scholar] [CrossRef]
- Lum, M.; Hanafi, M.; Rafii, Y.; Akmar, A. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. Anim. Plant Sci 2014, 24, 1487–1493. [Google Scholar]
- Zhang, L.; Peng, J.; Chen, T.; Zhao, X.; Zhang, S.; Liu, S.; Dong, H.; Feng, L.; Yu, S. Effect of drought stress on lipid peroxidation and proline content in cotton roots. Anim. Plant Sci 2014, 24, 1729–1736. [Google Scholar]
- Ghiabi, S.; Sharafi, S.; Talebi, R. Morpho-physiological and biochemical alternation responses in different chickpea (Cicer arietinum L.) genotypes under two constructing water regimes. Int. J. Biosci. 2013, 3, 57–65. [Google Scholar]
- Parchin, R.; Najaphy, A.; Mohebodini, M.S.M.; Vaseghi, A.; Sohrabi-Babahadi, F.; Mostafaie, A. Comparing protein pattern and drought tolerant indicators as screening techniques for drought tolerance in common wheat genotypes. Int. J. Plant Anim. Environ. Sci. 2014, 4, 251–258. [Google Scholar]
- Jaleel, C.A.; Gopi, R.; Sankar, B.; Manivannan, P.; Kishorekumar, A.; Sridharan, R.; Panneerselvam, R. Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S. Afr. J. Bot. 2007, 73, 190–195. [Google Scholar] [CrossRef]
- Amini, H.; Arzani, A.; Karami, M. Effect of water deficiency on seed quality and physiological traits of different safflower genotypes. Turk. J. Biol. 2014, 38, 271–282. [Google Scholar] [CrossRef]
- Yadav, S.; Verma, N.; Singh, A.; Singh, N.; Rana, S.; Ranga, S.; Kumar, K. Diversity and development in fababean. Legume Res. Int. J. 2017, 40, 618–623. [Google Scholar]
- Galluzzi, G.; Seyoum, A.; Halewood, M.; López Noriega, I.; Welch, E.W. The role of genetic resources in breeding for climate change: The case of public breeding programmes in eighteen developing countries. Plants 2020, 9, 1129. [Google Scholar] [CrossRef]
- Louwaars, N.P. Plant breeding and diversity: A troubled relationship? Euphytica 2018, 214, 1–9. [Google Scholar] [CrossRef]
- Alghamdi, S.S.; Migdadi, H.M.; Khan, M.A.; Afzal, M. AFLP-Based Analysis of Variation and Population Structure in Mutagenesis Induced Faba Bean. Diversity 2020, 12, 303. [Google Scholar]
- Mahmoud, A.F.; Abd El-Fatah, B.E. Genetic diversity studies and identification of molecular and biochemical markers associated with fusarium wilt resistance in cultivated faba bean (Vicia faba). Plant Pathol. J. 2020, 36, 11. [Google Scholar] [CrossRef]
- Zong, X.; Yang, T.; Liu, R. Faba Bean (Vicia faba L.) Breeding. In Advances in Plant Breeding Strategies: Legumes; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Raza, S.H.A.; Hassanin, A.A.; Dhshan, A.I.; Abdelnour, S.A.; Khan, R.; Mei, C.; Zan, L. In silico genomic and proteomic analyses of three heat shock proteins (HSP70, HSP90-α, and HSP90-β) in even-toed ungulates. Electron. J. Biotechnol. 2021, 53, 61–70. [Google Scholar] [CrossRef]
- Heakel, R.M. Analysis of genetic diversity among a population of canola genotypes as reveled by ISSR-PCR and their associations to seed yield and oil content. Ann. Agric. Sci. Moshtohor. 2019, 57, 425–434. [Google Scholar] [CrossRef]
- Achimón, F.; Johnson, L.A.; Cocucci, A.A.; Sérsic, A.N.; Baranzelli, M.C. Species tree phylogeny, character evolution, and biogeography of the Patagonian genus Anarthrophyllum Benth.(Fabaceae). Org. Divers. Evol. 2018, 18, 71–86. [Google Scholar] [CrossRef]
- Hassanin, A.A.; Osman, A.; Atallah, O.O.; El-Saadony, M.T.; Abdelnour, S.A.; Taha, H.S.; Awad, M.F.; Elkashef, H.; Ahmed, A.E.; Abd El-Rahim, I. Phylogenetic comparative analysis: Chemical and biological features of caseins (alpha-S-1, alpha-S-2, beta-and kappa-) in domestic dairy animals. Front. Vet. Sci. 2022, 9, 952319. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, Y.E.; Soliman, S.S.; Ismail, T.A.; Hassan, M.A.; Abdelkader, M.A.; Abdel Latef, A.A.H.; Al-Khayri, J.M.; ALshamrani, S.M.; Safhi, F.A.; Awad, M.F.; et al. Improvement of German Chamomile (Matricaria recutita L.) for Mechanical Harvesting, High Flower Yield and Essential Oil Content Using Physical and Chemical Mutagenesis. Plants 2022, 11, 2940. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Abdel Latef, A.A.H.; Taha, H.S.A.; Eldomiaty, A.S.; Abd-Elfattah, M.A.; Rezk, A.A.; Shehata, W.F.; Awad, M.; Shalaby, T.A.; Sattar, M.N.; et al. In silico profiling of proline biosynthesis and degradation related genes during fruit development of tomato. SABRAO J. Breed. Genet. 2022, 54, 549–564. [Google Scholar] [CrossRef]
- Hassanin, A.A.; Soliman, S.; Ismail, T.; Amin, M. The role of SLMYB gene in tomato fruit development. Zagazig J. Agric. Res. 2017, 44, 969–988. [Google Scholar]
- Abdelnour, S.A.; Xie, L.; Hassanin, A.A.; Zuo, E.; Lu, Y. The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Inherited Diseases. Front. Cell Dev. Biol. 2021, 9, 699597. [Google Scholar] [CrossRef]
- Raza, S.H.A.; Hassanin, A.A.; Pant, S.D.; Bing, S.; Sitohy, M.Z.; Abdelnour, S.A.; Alotaibi, M.A.; Al-Hazani, T.M.; Abd El-Aziz, A.H.; Cheng, G. Potentials, prospects and applications of genome editing technologies in livestock production. Saudi J. Biol. Sci. 2021, 29, 1928–1935. [Google Scholar] [CrossRef]
Primers | Sequences (5′-3′) | Tm (°C) | Molecular Weight g/mol | Primer Length | GC % Content | |
---|---|---|---|---|---|---|
SRAP | ME1 | TGAGTCCAAACCGGATA | 57.6 | 5203.5 | 17 | 47.06 |
ME2 | TGAGTCCAAACCGGAGC | 62 | 5204.4 | 17 | 58.82 | |
ME3 | TGAGTCCAAACCGGAAT | 58.6 | 5203.5 | 17 | 47.06 | |
ME4 | TGA GTCCAAACCGGACC | 61.7 | 5164.4 | 17 | 58.82 | |
ME5 | TGAGTCCAAACCGGAAG | 59.2 | 5228.5 | 17 | 52.94 | |
EM6 | GACTGCGTACGAATTAAT | 55.4 | 5522.7 | 18 | 38.89 | |
EM7 | GACTGCGTACGAATTTGC | 59.7 | 5514.7 | 18 | 50 | |
EM8 | GACTGCGTACGAATTGAC | 58.8 | 5523.7 | 18 | 50 | |
EM9 | GACTGCGTACGAATTTGA | 58.1 | 5538.7 | 18 | 44.44 | |
EM10 | GACTGCGTACGAATTAAC | 56.3 | 5507.7 | 18 | 44.44 | |
SCoT | SCoT3 | CAACAATGGCTACCACCC | 61.2 | 5397.6 | 18 | 55.56 |
SCoT4 | ACCATGGCTACCACCGGC | 67.6 | 5429.6 | 18 | 66.67 | |
SCoT5 | CAACAATGGCTACCACGC | 62.0 | 5437.6 | 18 | 55.56 | |
SCoT6 | CAACAATGGCTACCACCG | 61.4 | 5437.6 | 18 | 55.56 | |
SCoT7 | ACGACATGGCGACCACGC | 68.2 | 5478.6 | 18 | 66.67 | |
SCoT8 | CCATGGCTACCACCGCAG | 65.8 | 5429.6 | 18 | 66.67 |
Treatments | No. of Leaves/Plant at 30 Days | Shoot Length at 60 Days (cm) | Root Length at 60 Days (cm) | Shoot Dry Weight at 60 Days (g) | Root Dry Weight at 60 Days (g) | Proline Content |
---|---|---|---|---|---|---|
100% field capacity | 5.9517 a | 27.250 a | 21.667 a | 5.0654 a | 4.6892 a | 2.7964 c |
50% field capacity | 5.5167 b | 18.958 b | 13.708 b | 4.5008 b | 3.0313 b | 3.6393 b |
25% field capacity | 4.9667 c | 11.958 c | 10.000 c | 4.3187 c | 2.8608 c | 5.9700 a |
LSD0.05 | 0.4254 | 1.5329 | 1.2756 | 0.1723 | 0.1380 | 0.4073 |
Source of Variance S.O.V | Df | No. of Leaves/Plant at 30 Days | Shoot Length at 60 Days (cm) | Root Length at 60 Days (cm) | Shoot Dry Weight at 60 Days (g) | Root Dry Weight at 60 Days (g) | Proline Content |
---|---|---|---|---|---|---|---|
Replications | 2 | 0.87500 | 1.26 | 3.167 | 0.04366 | 0.0587 | 106.850 |
Treatments | 2 | 1.37897 * | 1406.35 ** | 852.792 ** | 3.63768 ** | 24.4821 ** | 64.859 ** |
Cultivars | 7 | 3.37500 ** | 12.86 * | 32.236 ** | 0.23171 * | 0.1338 * | 2.261 ** |
Treatments × Cultivars | 14 | 0.67659 | 14.84 * | 12.760 ** | 0.08193 | 0.0511 | 2.964 ** |
Error | 46 | 0.61413 | 6.96 | 4.819 | 0.08789 | 0.0564 | 0.491 |
PCR Type | Primers | Number of Bands | Monomorphic Bands | Polymorphic Bands | Unique Bands | Polymorphism (%) |
---|---|---|---|---|---|---|
SCoT | SCoT3 | 8 | 3 | 5 | 0 | 62.5% |
SCoT4 | 8 | 2 | 6 | 1 | 75% | |
SCoT5 | 6 | 3 | 3 | 0 | 50% | |
SCoT6 | 7 | 2 | 5 | 0 | 71.42% | |
SCoT7 | 9 | 3 | 6 | 2 | 66.66% | |
SCoT8 | 10 | 0 | 10 | 2 | 100% | |
Total | 48 | 13 | 35 | 5 | ||
Average | 8 | 2.16 | 5.83 | 0.833 | 70.93% | |
SRAP | ME3/EM9 | 4 | 0 | 4 | 1 | 100% |
ME4/EM8 | 8 | 0 | 8 | 0 | 100% | |
ME5/EM10 | 7 | 0 | 7 | 0 | 100% | |
ME2/EM10 | 5 | 4 | 1 | 0 | 20% | |
Total | 24 | 4 | 20 | 1 | ||
Average | 6 | 1 | 5 | 0.25 | 80% | |
Total number of loci | 72 | 17 | 55 | 6 |
Nubariya 1 | Nubariya 3 | Giza 843 | Giza 716 | Sakha 1 | Sakha 3 | Sakha 4 | Akba 3300 | |
---|---|---|---|---|---|---|---|---|
Nubariya1 | 0.00 | |||||||
Nubariya 3 | 3.16 | 0.00 | ||||||
G843 | 4.24 | 4.47 | 0.00 | |||||
Giza716 | 4.47 | 4.47 | 4.69 | 0.00 | ||||
Sakha 1 | 4.24 | 4.47 | 4.47 | 4.69 | 0.00 | |||
Sakha 3 | 4.00 | 4.47 | 3.74 | 4.69 | 4.24 | 0.00 | ||
Sakha 3 | 4.47 | 4.47 | 3.46 | 4.90 | 4.24 | 3.16 | 0.00 | |
Akba 3300 | 4.24 | 4.24 | 3.74 | 4.47 | 3.46 | 3.46 | 3.16 | 0.00 |
Nubariya 1 | Nubariya 3 | Giza 843 | Giza 716 | Sakha 1 | Sakha 3 | Sakha 4 | Akba 3300 | |
---|---|---|---|---|---|---|---|---|
Nubariya 1 | 1 | |||||||
Nubariya 3 | 0.881 | 1 | ||||||
G843 | 0.804 | 0.787 | 1 | |||||
Giza716 | 0.744 | 0.750 | 0.750 | 1 | ||||
Sakha 1 | 0.780 | 0.762 | 0.783 | 0.718 | 1 | |||
Sakha 3 | 0.814 | 0.773 | 0.854 | 0.732 | 0.791 | 1 | ||
Sakha 4 | 0.773 | 0.778 | 0.878 | 0.714 | 0.795 | 0.891 | 1 | |
Akba 3300 | 0.795 | 0.800 | 0.857 | 0.762 | 0.864 | 0.870 | 0.894 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essa, S.M.; Wafa, H.A.; Mahgoub, E.-S.I.; Hassanin, A.A.; Al-Khayri, J.M.; Jalal, A.S.; El-Moneim, D.A.; ALshamrani, S.M.; Safhi, F.A.; Eldomiaty, A.S. Assessment of Eight Faba Bean (Vicia faba L.) Cultivars for Drought Stress Tolerance through Molecular, Morphological, and Physiochemical Parameters. Sustainability 2023, 15, 3291. https://doi.org/10.3390/su15043291
Essa SM, Wafa HA, Mahgoub E-SI, Hassanin AA, Al-Khayri JM, Jalal AS, El-Moneim DA, ALshamrani SM, Safhi FA, Eldomiaty AS. Assessment of Eight Faba Bean (Vicia faba L.) Cultivars for Drought Stress Tolerance through Molecular, Morphological, and Physiochemical Parameters. Sustainability. 2023; 15(4):3291. https://doi.org/10.3390/su15043291
Chicago/Turabian StyleEssa, Shaimaa M., Hany A. Wafa, EL-Sayed I. Mahgoub, Abdallah A. Hassanin, Jameel M. Al-Khayri, Areej S. Jalal, Diaa Abd El-Moneim, Salha M. ALshamrani, Fatmah A. Safhi, and Ahmed S. Eldomiaty. 2023. "Assessment of Eight Faba Bean (Vicia faba L.) Cultivars for Drought Stress Tolerance through Molecular, Morphological, and Physiochemical Parameters" Sustainability 15, no. 4: 3291. https://doi.org/10.3390/su15043291
APA StyleEssa, S. M., Wafa, H. A., Mahgoub, E. -S. I., Hassanin, A. A., Al-Khayri, J. M., Jalal, A. S., El-Moneim, D. A., ALshamrani, S. M., Safhi, F. A., & Eldomiaty, A. S. (2023). Assessment of Eight Faba Bean (Vicia faba L.) Cultivars for Drought Stress Tolerance through Molecular, Morphological, and Physiochemical Parameters. Sustainability, 15(4), 3291. https://doi.org/10.3390/su15043291