Why Did Urban Exodus Occur during the COVID-19 Pandemic from the Perspective of Residential Preference of Each Type of Household? Case of Japanese Metropolitan Areas
Abstract
:1. Introduction
1.1. Background
1.2. Purpose
1.3. Literature Review
1.4. Article Structure
2. Materials and Methods
2.1. Web Questionnaire Survey
2.2. Statistical Analysis
3. Results
3.1. Respondent Attributes
3.2. Triggers for Migration
3.3. Residential Preferences for Migration
3.4. Place Attachment for Migration
3.5. Housing Types
3.6. Working Style
3.7. Government Support Programs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Asahi Shimbun Newspaper. Urban Exodus in Cards as People Find Freedom in Teleworking. Available online: https://www.asahi.com/ajw/articles/13485555 (accessed on 8 November 2022).
- Whitaker, S.D. Did the COVID-19 Pandemic Cause? Urban Exodus? Cfed Dist. Data Briefs 2021, 20210205. [Google Scholar] [CrossRef]
- Jia, J.S.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.M.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Earnest Research. COVID’s Urban Exodus. Available online: https://www.earnestresearch.com/covids-urban-exodus/ (accessed on 23 September 2021).
- Beria, P.; Lunkar, V. Presence and Mobility of the Population during the First Wave of Covid-19 Outbreak and Lockdown in Italy. Sustain. Cities Soc. 2021, 65, 102616. [Google Scholar] [CrossRef] [PubMed]
- González-Leonardo, M.; López-Gay, A.; Newsham, N.; Recaño, J.; Rowe, F. Understanding Patterns of Internal Migration during the COVID-19 Pandemic in Spain. Popul. Space Place 2022, 28, e2578. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Takizawa, A. Impact of the Urban Exodus Triggered by the COVID-19 Pandemic on the Shrinking Cities of the Osaka Metropolitan Area. Sustainability 2022, 14, 1601. [Google Scholar] [CrossRef]
- Fukuda, Y. Urban Exodus in Tokyo during the COVID-19 Pandemic. Appl. Econ. Lett. 2022, 1–5. [Google Scholar] [CrossRef]
- Nathan, M.; Overman, H. Will coronavirus cause a big city exodus? Environ. Plan. B-Urban Anal. City Sci. 2020, 47, 1537–1542. [Google Scholar] [CrossRef]
- Kato, H.; Takizawa, A.; Matsushita, D. Impact of COVID-19 Pandemic on Home Range in a Suburban City in the Osaka Metropolitan Area. Sustainability 2021, 13, 8974. [Google Scholar] [CrossRef]
- Kato, H.; Takizawa, A. Time series cross-correlation between home range and number of infected people during the COVID-19 pandemic in a suburban city. PLoS ONE 2022, 17, e0267335. [Google Scholar] [CrossRef]
- The Asahi Shimbun Newspaper. 1 in 4 Teleworkers Mulling Ditching Japan’s Big Cities for Rural Areas. Available online: https://www.asahi.com/ajw/articles/13479412 (accessed on 4 January 2023).
- The Asahi Shimbun Newspaper. Tokyo in July Sees More People Moving Out Than in Due to Virus. Available online: https://www.asahi.com/ajw/articles/13711387 (accessed on 4 January 2023).
- OECD Stat. Metropolitan Areas (Database). Available online: https://stats.oecd.org/Index.aspx?DataSetCode=CITIES (accessed on 16 September 2021).
- Japanese Cabinet Office. Survey on the Change of Life Consciousness and Behavior under the Influence of the COVID-19 Pandemic. Available online: https://www5.cao.go.jp/keizai2/wellbeing/covid/pdf/result3_covid.pdf (accessed on 21 October 2021). (In Japanese)
- E-Stat. Japanese Census Data in 2020 Basic Summary of Population in Metropolitan Areas. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200521&tstat=000001136464&cycle=0&tclass1=000001136466&stat_infid=000032266894&tclass2val=0 (accessed on 4 January 2023). (In Japanese)
- E-Stat. Japanese Census Data in 2020 Basic Summary of Employment Status (Labor Force Participation). Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200521&tstat=000001136464&cycle=0&tclass1=000001136467&stat_infid=000032201188&cycle_facet=cycle&tclass2val=0&metadata=1&data=1 (accessed on 4 January 2023). (In Japanese)
- E-Stat. Japanese Census Data in 2020 Basic Summary of Population (Housing Types). Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200521&tstat=000001136464&cycle=0&tclass1=000001136466&stat_infid=000032142540&tclass2val=0 (accessed on 4 January 2023). (In Japanese)
- Ministry of Health. Labor and Welfare. Visualizing the Data: Information on COVID-19 Infections. Available online: https://covid19.mhlw.go.jp/en/ (accessed on 6 August 2022).
- Japanese Cabinet Secretariat. COVID-19 Information and Resources. Available online: https://corona.go.jp/en/ (accessed on 6 August 2022).
- Breuillé, M.-L.; Le Gallo, J.; Verlhiac, A. Residential Migration and the COVID-19 Crisis: Towards an Urban Exodus in France? Econ. Stat. Econ. Stat. 2022, 536, 57–73. [Google Scholar] [CrossRef]
- Allibert, A.; Tinland, A.; Landier, J.; Loubière, S.; Gaudart, J.; Mosnier, M.; Farnarier, C.; Auquier, P.; Mosnier, E. Residential Mobility of a Cohort of Homeless People in Times of Crisis: COVID-19 Pandemic in a European Metropolis. Int. J. Environ. Res. Public Health 2022, 19, 3129. [Google Scholar] [CrossRef]
- Ferdous, J.; Ullah, A.A. COVID-19 and the migrant population: The resilience of south Asians. Int. J. Asia Pacific Stud. 2022, 18, 157–178. [Google Scholar] [CrossRef]
- Lei, L.; Liu, X. The COVID-19 pandemic and residential mobility intentions in the United States: Evidence from Google Trends data. Popul. Space Place 2022, 28, e2581. [Google Scholar] [CrossRef] [PubMed]
- Gustavus, S.O.; Brown, L.A. Place Attributes in a Migration Decision Context. Environ. Plan. Econ. Sp. 1977, 9, 529–548. [Google Scholar] [CrossRef]
- Fredrickson, C.; Heaton, T.B.; Fuguitt, G.V.; Zuiches, J.J. Residential Preferences in a Model of Migration Intentions. Popul. Environ. 1980, 3, 280–297. [Google Scholar] [CrossRef]
- Sekiguchi, T.; Hayashi, N.; Sugino, H.; Terada, Y. The Effects of Differences in Individual Characteristics and Regional Living Environments on the Motivation to Immigrate to Hometowns: A Decision Tree Analysis. Appl. Sci. 2019, 9, 2748. [Google Scholar] [CrossRef]
- Kondo, N.; Nakano, K.; Tanaka, K. The Impact of Social Attributes and Regional Characteristics on Future Residential Choice. J. City Plan. Inst. Japan 2019, 54, 766–771. (In Japanese) [Google Scholar] [CrossRef]
- Dökmeci, V.; Berköz, L. Residential-Location Preferences According to Demographic Characteristics in Istanbul. Landsc. Urban Plan. 2000, 48, 45–55. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nakayama, T.; Tosano, M. Researching Factor of the Younger Generation’s Dwelling-Place Selection. J. Archit. Plan. 2017, 82, 423–432. (In Japanese) [Google Scholar] [CrossRef]
- Ono, H.; Omura, K. Basic Study on Urban Development from the View Points of Housing Choice of Two-Income Families with Children. J. City Plan. Inst. Japan 1999, 34, 289–294. (In Japanese) [Google Scholar] [CrossRef]
- Kim, T.K.; Horner, M.W.; Marans, R.W. Life cycle and environmental factors in selecting residential and job locations. Hous. Stud. 2005, 20, 457–473. [Google Scholar] [CrossRef]
- Mitsubishi UFJ Research and Consulting Co., Ltd. Policy Research Report. Available online: https://www.murc.jp/wpcontent/uploads/2021/08/seiken_210804_02.pdf?utm_source=twitter&utm_medium=sns&utm_campaign=cc&utm_term=seiken_210804_02 (accessed on 21 October 2021). (In Japanese).
- Kang, B.; Won, J.; Kim, E.J. COVID-19 Impact on Residential Preferences in the Early-Stage Outbreak in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 11207. [Google Scholar] [CrossRef]
- Tsuboi, S.; Mimura, Y.; Yamazaki, M.; Suzuki, Y.; Nishihori, Y. A Study on Change in Dynamics of Population and Change in Intention to Choose a Residence Place by the COVID-19. J. City Plan. Inst. Japan 2021, 56, 1405–1412. (In Japanese) [Google Scholar] [CrossRef]
- Rakuten Insight. Why Rakuten Insight. Available online: https://insight.rakuten.com/why-rakuten-insight/ (accessed on 13 December 2021).
- Natomi, K.; Kato, H.; Matsushita, D. Work-Related Stress of Work from Home with Housemates Based on Residential Types. Int. J. Environ. Res. Public Health 2022, 19, 3060. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Nakamura, S.; Shinkai, K.; Yoshida, T. Scenario Planning of Old New-Town. J. Hous. Res. Found. JUSOKEN 2022, 48, 25–36. [Google Scholar] [CrossRef]
- Yanagawa, A.; Kato, H.; Matsushita, D. Change of Usage of Third Places and Subjective Feelings of Health during the COVID-19 Pandemic. J. Archit. Plan. 2022, 87, 1485–1492. [Google Scholar] [CrossRef]
- Williams, D.R.; Vaske, J.J. The Measurement of Place Attachment: Validity and Generalizability of a Psychometric Approach. For. Sci. 2003, 49, 830–840. [Google Scholar]
- Junot, A.; Paquet, Y.; Fenouillet, F. Place Attachment Influence on Human Well-Being and General pro-Environmental Behaviors. J. Theor. Soc. Psychol. 2018, 2, 49–57. [Google Scholar] [CrossRef]
- Yuan, Q.; Song, H.; Chen, N.; Shang, W. Roles of Tourism Involvement and Place Attachment in Determining Residents’ Attitudes toward Industrial Heritage Tourism in a Resource-Exhausted City in China. Sustainability 2019, 11, 5151. [Google Scholar] [CrossRef]
- Brown, G.; Raymond, C. The relationship between place attachment and landscape values: Toward mapping place attachment. Appl. Geogr. 2007, 27, 89–111. [Google Scholar] [CrossRef]
- Anton, C.E.; Lawrence, C. Home is where the heart is: The effect of place of residence on place attachment and community participation. J. Environ. Psychol. 2014, 40, 451–461. [Google Scholar] [CrossRef]
- Moore, R.L.; Graefe, A.R. Attachments to Recreation Settings: The Case of Rail-trail Users. Leis. Sci. 1994, 16, 17–31. [Google Scholar] [CrossRef]
- World Economic Forum. These Countries are Paying People to Move to the Countryside. Available online: https://www.weforum.org/agenda/2022/04/countries-paying-you-to-move-to-countryside/ (accessed on 5 January 2023).
- Irish Examiner. Workers Will be Paid to Move to Rural Towns in Bold New Plan to Decentralise Ireland. Available online: https://www.irishexaminer.com/news/arid-40253243.html (accessed on 5 January 2023).
- Stankowska, A.; Stankowska-Mazur, I. The Third Wave of COVID-19 versus the Residential Preferences in Poland: An Assessment of Economic Factors and Psychological Determinants. Sustainability 2022, 14, 1339. [Google Scholar] [CrossRef]
- Ahrend, R.; Bétin, M.; Caldas, M.P.; Cournède, B.; Ramirez, M.D.; Pionnier, P.-A.; Sanchez-Serra, D.; Veneri, P.; Ziemann, V. Changes in the Geography Housing Demand after the Onset of COVID-19: First Results from Large Metropolitan Areas in 13 OECD Countries; OECD Economics Department Working Papers; OECD Publishing: Paris, France, 2022; No. 1713. [Google Scholar] [CrossRef]
- Okada, S.; Matsumoto, K.; Sawaki, M. Role of Bases to Promote Multi-Regional Residence in Rural Areas. Reports City Plan. Inst. Japan 2021, 20, 258–264. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Akashi City. Children. Education: Child Care Support. Available online: https://www.city.akashi.lg.jp/kodomo-kyoiku/kosodate/index.html (accessed on 21 November 2022). (In Japanese).
- Fukufuku City. Fukuchiyama Emigration. Available online: https://www.welcomeiju.city.fukuchiyama.lg.jp/ (accessed on 21 November 2022). (In Japanese).
- Wakayama City. Emigration and Settlement Support Site. Available online: http://www.city.wakayama.wakayama.jp/ijuteiju/1033814/1034502/1035254.html (accessed on 21 November 2022). (In Japanese).
- The Asahi Shimbun Newspaper. Japan’s NTT to Begin Phasing in Remote Work as the ‘New Normal’. Available online: https://www.asahi.com/ajw/articles/14649286 (accessed on 15 November 2022).
Method: | Web questionnaire survey |
The number of Samples: | 593 |
Screening of Samples: | Respondents who migrated from ordinance-designed cities to other municipalities in the Osaka and Tokyo metropolitan areas between April 2020 and March 2022. |
Date: | 6–8 September 2022 |
Questions: | (1). Migration: triggers (MA), residential preferences (MA), priorities of residential preferences (SA), and government support programs (MA). (2). Place attachment: Williams’ place attachment index (SA). (3). Working: frequency of WFH (SA) and company support programs (MA). (4). Housing: housing type (SA). (5). Attributes: gender (SA), age (SA), household type (SA), and occupation (SA). |
(Total) | SH | MCH | HcneK | HceK | HceEa | Hcg | Other | p | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gender | Male | N | 315 | 95 | ++ | 79 | 38 | -- | 14 | 67 | 13 | 9 | -- | ** | ||
(%) | (53) | (16) | (13) | (6) | (2) | (11) | (2) | (2) | ||||||||
Female | N | 278 | 55 | -- | 78 | 55 | ++ | 16 | 45 | 8 | 21 | ++ | ||||
(%) | (47) | (9) | (13) | (9) | (3) | (8) | (1) | (4) | ||||||||
Occupation | Company employees (with second jobs) | N | 68 | 20 | 16 | 5 | - | 6 | 19 | + | 2 | 0 | - | ** | ||
(%) | (11) | (3) | (3) | (1) | (1) | (3) | (0) | (0) | ||||||||
Company employees (no second job) | N | 262 | 75 | 63 | 37 | 15 | 43 | 11 | 18 | |||||||
(%) | (44) | (13) | (11) | (6) | (3) | (7) | (2) | (3) | ||||||||
Manager, self-employed, freelance | N | 47 | 16 | 16 | 4 | 0 | 8 | 1 | 2 | |||||||
(%) | (8) | (3) | (3) | (1) | (0) | (1) | (0) | (0) | ||||||||
Contract employees/Temporary employees | N | 25 | 11 | + | 5 | 1 | 1 | 4 | 2 | 1 | ||||||
(%) | (4) | (2) | (1) | (0) | (0) | (1) | (0) | (0) | ||||||||
Part-time job employees | N | 46 | 5 | - | 18 | + | 5 | 1 | 13 | 2 | 2 | |||||
(%) | (8) | (1) | (3) | (1) | (0) | (2) | (0) | (0) | ||||||||
Public servants | N | 23 | 5 | 7 | 4 | 0 | 6 | 1 | 0 | |||||||
(%) | (4) | (1) | (1) | (1) | (0) | (1) | (0) | (0) | ||||||||
Medical professionals | N | 19 | 5 | 3 | 8 | ++ | 1 | 1 | 0 | 1 | ||||||
(%) | (3) | (1) | (1) | (1) | (0) | (0) | (0) | (0) | ||||||||
Housewives/Househusbands | N | 61 | 2 | -- | 15 | 28 | ++ | 6 | 9 | 0 | 1 | |||||
(%) | (10) | (0) | (3) | (5) | (1) | (2) | (0) | (0) | ||||||||
Students | N | 8 | 2 | 1 | 0 | 0 | 4 | + | 1 | 0 | ||||||
(%) | (1) | (0) | (0) | (0) | (0) | (1) | (0) | (0) | ||||||||
Retiree/early retiree | N | 22 | 4 | 12 | 0 | - | 0 | 4 | 0 | 2 | ||||||
(%) | (4) | (1) | (2) | (0) | (0) | (1) | (0) | (0) | ||||||||
Others | N | 12 | 5 | 1 | 1 | 0 | 1 | 1 | 3 | ++ | ||||||
(%) | (2) | (1) | (0) | (0) | (0) | (0) | (0) | (1) | ||||||||
Address | Osaka Metropolitan Area | N | 224 | 45 | - | 69 | + | 38 | 10 | 46 | 4 | 12 | ||||
(%) | (38) | (8) | (12) | (6) | (2) | (8) | (1) | (2) | ||||||||
Tokyo Metropolitan Area | N | 369 | 105 | + | 88 | - | 55 | 20 | 66 | 17 | 18 | |||||
(%) | (62) | (18) | (15) | (9) | (3) | (11) | (3) | (3) |
(Total) | SH | MCH | HcneK | HceK | HceEa | Hcg | Other | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spread of the COVID-19 infection | N | 121 | 23 | 32 | 18 | 7 | 35 | ++ | 2 | 4 | |||||||
(%) | (20) | (4) | (5) | (3) | (1) | (6) | (0) | (1) | |||||||||
Changes in sense of values | N | 92 | 30 | 28 | - | 8 | 2 | 19 | 1 | 4 | |||||||
(%) | (16) | (5) | (5) | (1) | (0) | (3) | (0) | (1) | |||||||||
Changes in workstyle | N | 129 | 41 | 28 | 16 | 5 | 30 | 5 | 4 | ||||||||
(%) | (22) | (7) | (5) | (3) | (1) | (5) | (1) | (1) | |||||||||
Changes in lifestyle | N | 166 | 37 | 46 | 23 | 10 | 36 | 5 | 9 | ||||||||
(%) | (28) | (6) | (8) | (4) | (2) | (6) | (1) | (2) | |||||||||
Referral from acquaintances or friends | N | 33 | 12 | 5 | 4 | 2 | 9 | 0 | 1 | ||||||||
(%) | (6) | (2) | (1) | (1) | (0) | (2) | (0) | (0) | |||||||||
Tiredness of daily life | N | 48 | 16 | 13 | 2 | - | 2 | 12 | 1 | 2 | |||||||
(%) | (8) | (3) | (2) | (0) | (0) | (2) | (0) | (0) | |||||||||
Change in employment/career | N | 104 | 45 | ++ | 18 | - | 7 | -- | 1 | - | 21 | 7 | 5 | ** | |||
(%) | (18) | (8) | (3) | (1) | (0) | (4) | (1) | (1) | |||||||||
Working in agriculture | N | 12 | 4 | 1 | 2 | 0 | 4 | 1 | 0 | ||||||||
(%) | (2) | (1) | (0) | (0) | (0) | (1) | (0) | (0) | |||||||||
Job relocation | N | 63 | 20 | 14 | 10 | 5 | 11 | 0 | 3 | ||||||||
(%) | (11) | (3) | (2) | (2) | (1) | (2) | (0) | (1) | |||||||||
Marriage | N | 92 | 7 | 46 | ++ | 26 | ++ | 4 | 4 | -- | 3 | 2 | ** | ||||
(%) | (16) | (1) | (8) | (4) | (1) | (1) | (1) | (0) | |||||||||
Childbirth | N | 52 | 0 | -- | 3 | -- | 32 | ++ | 13 | ++ | 4 | - | 0 | 0 | ** | ||
(%) | (9) | (0) | (1) | (5) | (2) | (1) | (0) | (0) | |||||||||
Children’s schooling | N | 16 | 3 | 0 | - | 2 | 1 | 10 | ++ | 0 | 0 | ** | |||||
(%) | (3) | (1) | (0) | (0) | (0) | (2) | (0) | (0) | |||||||||
Divorce | N | 11 | 4 | 1 | 2 | 1 | 3 | 0 | 0 | ||||||||
(%) | (2) | (1) | (0) | (0) | (0) | (1) | (0) | (0) | |||||||||
Retirement | N | 30 | 5 | 15 | ++ | 1 | 0 | 7 | 0 | 2 | * | ||||||
(%) | (5) | 1) | 3) | (0) | (0) | (1) | (0) | (0) | |||||||||
Parental caregiving | N | 19 | 4 | 3 | 0 | 0 | 10 | ++ | 1 | 1 | * | ||||||
(%) | (3) | 1) | 1) | (0) | (0) | (2) | (0) | (0) | |||||||||
Returning from abroad | N | 5 | 1 | 1 | 0 | 0 | 1 | 2 | ++ | 0 | |||||||
(%) | (1) | 0) | 0) | (0) | (0) | (0) | (0) | (0) | |||||||||
Others | N | 52 | 12 | 13 | 2 | - | 3 | 10 | 4 | 8 | ++ | ** | |||||
(%) | (9) | 2) | 2) | (0) | (1) | (2) | (1) | (1) |
(Total) | SH | MCH | HcneK | HceK | HceEa | Hcg | Other | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before the pandemic | Community | N | 141 | 40 | 40 | 18 | 5 | 28 | 7 | 3 | ||||
(%) | (24) | (7) | (7) | (3) | (1) | (5) | (1) | (1) | ||||||
Environment | N | 121 | 28 | 25 | 21 | 5 | 26 | 6 | 10 | |||||
(%) | (20) | (5) | (4) | (4) | (1) | (4) | (1) | (2) | ||||||
Working | N | 203 | 53 | 53 | 35 | 15 | 30 | 4 | 13 | |||||
(%) | (34) | (9) | (9) | (6) | (3) | (5) | (1) | (2) | ||||||
Housing | N | 128 | 29 | 39 | 19 | 5 | 28 | 4 | 4 | |||||
(%) | (22) | (5) | (7) | (3) | (1) | (5) | (1) | (1) | ||||||
During the pandemic | Community | N | 152 | 33 | 34 | 27 | 8 | 41 | ++ | 4 | 5 | |||
(%) | (26) | (6) | (6) | (5) | (1) | (7) | (1) | (1) | ||||||
Environment | N | 146 | 31 | 47 | 28 | 7 | 24 | 3 | 6 | |||||
(%) | (25) | (5) | (8) | (5) | (1) | (4) | (1) | (1) | ||||||
Working | N | 95 | 42 | ++ | 22 | 5 | -- | 3 | 14 | 4 | 5 | ** | ||
(%) | (16) | (7) | (4) | (1) | (1) | (2) | (1) | (1) | ||||||
Housing | N | 200 | 44 | 54 | 33 | 12 | 33 | 10 | 14 | |||||
(%) | (34) | (7) | (9) | (6) | (2) | (6) | (2) | (2) |
(Total) | SH | MCH | HcneK | HceK | HceEa | Hcg | Other | p | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Community: | Favorability of communities | N | 192 | 47 | 65 | ++ | 22 | - | 8 | 37 | 5 | 8 | ||||||
(%) | (32) | (8) | (11) | (4) | (1) | (6) | (1) | (1) | ||||||||||
Tie to communities | N | 66 | 11 | 20 | 9 | 1 | 22 | ++ | 3 | 0 | + | ** | ||||||
(%) | (11) | (2) | (3) | (2) | (0) | (4) | (1) | (0) | ||||||||||
Neighborhood of acquaintances | N | 97 | 28 | 28 | 15 | 3 | 20 | 1 | 2 | |||||||||
(%) | (16) | (5) | (5) | (3) | (1) | (3) | (0) | (0) | ||||||||||
Neighborhood of relatives | N | 88 | 15 | 8 | -- | 25 | ++ | 6 | 21 | 8 | ++ | 5 | ** | |||||
(%) | (15) | (3) | (1) | (4) | (1) | (4) | (1) | (1) | ||||||||||
Return to place occupied before | N | 107 | 22 | 22 | 18 | 6 | 24 | 5 | 10 | + | ||||||||
(%) | (18) | (4) | (4) | (3) | (1) | (4) | (1) | (2) | ||||||||||
The balance between urban and rural | N | 151 | 41 | 48 | 25 | 4 | 24 | 2 | 7 | |||||||||
(%) | (25) | (7) | (8) | (4) | (1) | (4) | (0) | (1) | ||||||||||
Delicious agricultural foods | N | 33 | 9 | 9 | 3 | 2 | 8 | 1 | 1 | |||||||||
(%) | (6) | (2) | (2) | (1) | (0) | (1) | (0) | (0) | ||||||||||
Richness of natural environment | N | 216 | 54 | 64 | 29 | 9 | 39 | 8 | 13 | |||||||||
(%) | (36) | (9) | (11) | (5) | (2) | (7) | (1) | (2) | ||||||||||
Environment: | Quality of childcare environment | N | 123 | 6 | -- | 24 | - | 36 | ++ | 17 | ++ | 36 | ++ | 2 | 2 | - | ** | |
(%) | (21) | (1) | (4) | (6) | (3) | (6) | (0) | (0) | ||||||||||
Access to places to enjoy holidays | N | 116 | 26 | 32 | 21 | 10 | + | 20 | 4 | 3 | ||||||||
(%) | (20) | (4) | (5) | (4) | (2) | (3) | (1) | (1) | ||||||||||
Access to medical and welfare facilities | N | 53 | 9 | 14 | 11 | 4 | 13 | 0 | 2 | |||||||||
(%) | (9) | (2) | (2) | (2) | (1) | (2) | (0) | (0) | ||||||||||
Access to parents’ homes | N | 123 | 25 | 21 | -- | 30 | ++ | 8 | 26 | 8 | + | 5 | ** | |||||
(%) | (21) | (4) | (4) | (5) | (1) | (4) | (1) | (1) | ||||||||||
Access to transit infrastructure | N | 188 | 54 | 50 | 31 | 8 | 31 | 6 | 8 | |||||||||
(%) | (32) | (9) | (8) | (5) | (1) | (5) | (1) | (1) | ||||||||||
Access to commercial facilities | N | 41 | 12 | 16 | 3 | 0 | 8 | 1 | 1 | |||||||||
(%) | (7) | (2) | (3) | (1) | (0) | (1) | (0) | (0) | ||||||||||
Traditional and elegant landscapes | N | 77 | 15 | 19 | 19 | + | 4 | 11 | 1 | 8 | + | |||||||
(%) | (13) | (3) | (3) | (3) | (1) | (2) | (0) | (1) | ||||||||||
Fewer disasters | N | 61 | 9 | - | 19 | 11 | 3 | 16 | 2 | 1 | ||||||||
(%) | (10) | (2) | (3) | (2) | (1) | (3) | (0) | (0) | ||||||||||
Less noise | N | 94 | 19 | 28 | 12 | 3 | 22 | 3 | 7 | |||||||||
(%) | (16) | (3) | (5) | (2) | (1) | (4) | (1) | (1) | ||||||||||
Good public safety | N | 125 | 26 | 38 | 18 | 9 | 21 | 7 | 6 | |||||||||
(%) | (21) | (4) | (6) | (3) | (2) | (4) | (1) | (1) | ||||||||||
Working: | Access to workplaces | N | 175 | 61 | ++ | 44 | 22 | 4 | - | 34 | 4 | 6 | * | |||||
(%) | (30) | (10) | (7) | (4) | (1) | (6) | (1) | (1) | ||||||||||
Availability of WFH | N | 152 | 33 | 41 | 20 | 4 | 34 | 9 | 11 | |||||||||
(%) | (26) | (6) | (7) | (3) | (1) | (6) | (2) | (2) | ||||||||||
Business opportunities | N | 32 | 6 | 8 | 6 | 0 | 10 | 2 | 0 | |||||||||
(%) | (5) | (1) | (1) | (1) | (0) | (2) | (0) | (0) | ||||||||||
Certainty of potential customers | N | 13 | 2 | 4 | 2 | 1 | 2 | 2 | + | 0 | ||||||||
(%) | (2) | (0) | (1) | (0) | (0) | (0) | (0) | (0) | ||||||||||
Housing: | Many rooms | N | 186 | 29 | -- | 55 | 34 | 11 | 38 | 8 | 11 | * | ||||||
(%) | (31) | (5) | (9) | (6) | (2) | (6) | (1) | (2) | ||||||||||
Large garden/balcony | N | 115 | 15 | -- | 28 | 17 | 8 | 33 | ++ | 5 | 9 | * | ||||||
(%) | (19) | (3) | (5) | (3) | (1) | (6) | (1) | (2) | ||||||||||
Renovation possible | N | 55 | 12 | 13 | 11 | 0 | 15 | 2 | 2 | |||||||||
(%) | (9) | (2) | (2) | (2) | (0) | (3) | (0) | (0) | ||||||||||
Resistance to earthquakes | N | 76 | 9 | -- | 19 | 17 | 4 | 20 | 3 | 4 | * | |||||||
(%) | (13) | (2) | (3) | (3) | (1) | (3) | (1) | (1) | ||||||||||
Resistance to fires | N | 43 | 6 | 16 | 11 | 2 | 5 | 2 | 1 | |||||||||
(%) | (7) | (1) | (3) | (2) | (0) | (1) | (0) | (0) | ||||||||||
Others | N | 47 | 12 | 10 | 6 | 1 | 10 | 2 | 6 | + | ||||||||
(%) | (8) | (2) | (2) | (1) | (0) | (2) | (0) | (1) |
SH | MCH | HcneK | HceK | HceEa | Hcg | Other | Cronbach α | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Place Identity | Before the pandemic | (Ave.) | 0.09 | * | 0.04 | −0.23 | −0.13 | ** | 0.02 | −0.02 | 0.12 | 0.92 | |
During the pandemic | (Ave.) | −0.14 | −0.02 | −0.17 | 0.55 | 0.2 | 0.05 | 0 | 0.91 | ||||
Place Dependence | Before the pandemic | (Ave.) | 0.08 | ** | 0.08 | −0.17 | −0.07 | ** | −0.04 | ** | 0.04 | −0.13 | 0.83 |
During the pandemic | (Ave.) | −0.13 | 0.02 | −0.15 | 0.53 | 0.21 | −0.05 | −0.23 | 0.85 |
(Total) | SH | MCH | HcneK | HceK | HceEa | Hcg | Other | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before the pandemic: | New detached house for sale | N | 92 | 18 | 25 | 12 | 3 | 24 | 7 | + | 3 | * | |||||
(%) | (16) | (3) | (4) | (2) | (1) | (4) | (1) | (1) | |||||||||
Used detached house for sale | N | 20 | 8 | 6 | 2 | 2 | 2 | 0 | 0 | ||||||||
(%) | (3) | (1) | (1) | (0) | (0) | (0) | (0) | (0) | |||||||||
Used detached house for rent | N | 20 | 3 | 2 | 5 | 3 | + | 5 | 1 | 1 | |||||||
(%) | (3) | (1) | (0) | (1) | (1) | (1) | (0) | (0) | |||||||||
New apartment for sale | N | 54 | 10 | 18 | 6 | 3 | 13 | 2 | 2 | ||||||||
(%) | (9) | (2) | (3) | (1) | (1) | (2) | (0) | (0) | |||||||||
Used apartment for sale | N | 21 | 6 | 5 | 2 | 1 | 7 | 0 | 0 | ||||||||
(%) | (4) | (1) | (1) | (0) | (0) | (1) | (0) | (0) | |||||||||
Apartment for rent | N | 322 | 84 | 80 | 59 | 17 | 48 | -- | 10 | 24 | ++ | ||||||
(%) | (54) | (14) | (13) | (10) | (3) | (8) | (2) | (4) | |||||||||
Public housing | N | 16 | 1 | 6 | 0 | 0 | 8 | ++ | 1 | 0 | |||||||
(%) | (3) | (0) | (1) | (0) | (0) | (1) | (0) | (0) | |||||||||
Employee’s house | N | 41 | 17 | + | 14 | 5 | 1 | 4 | 0 | 0 | |||||||
(%) | (7) | (3) | (2) | (1) | (0) | (1) | (0) | (0) | |||||||||
Others | N | 7 | 3 | 1 | 2 | 0 | 1 | 0 | 0 | ||||||||
(%) | (1) | (1) | (0) | (0) | (0) | (0) | (0) | (0) | |||||||||
During the pandemic: | New detached house for sale | N | 153 | 11 | -- | 35 | 33 | + | 14 | ++ | 40 | ++ | 10 | + | 10 | ** | |
(%) | (26) | (2) | (6) | (6) | (2) | (7) | (2) | (2) | |||||||||
Used detached house for sale | N | 61 | 14 | 22 | 3 | - | 1 | 14 | 4 | 3 | |||||||
(%) | (10) | (2) | (4) | (1) | (0) | (2) | (1) | (1) | |||||||||
Used detached house for rent | N | 39 | 8 | 10 | 8 | 4 | 5 | 1 | 3 | ||||||||
(%) | (7) | (1) | (2) | (1) | (1) | (1) | (0) | (1) | |||||||||
New apartment for sale | N | 51 | 6 | - | 14 | 14 | + | 2 | 13 | 1 | 1 | ||||||
(%) | (9) | (1) | (2) | (2) | (0) | (2) | (0) | (0) | |||||||||
Used apartment for sale | N | 33 | 2 | -- | 11 | 7 | 0 | 11 | + | 1 | 1 | ||||||
(%) | (6) | (0) | (2) | (1) | (0) | (2) | (0) | (0) | |||||||||
Rent apartment | N | 214 | 92 | ++ | 59 | 24 | - | 7 | 21 | -- | 2 | -- | 9 | ||||
(%) | (36) | (16) | (10) | (4) | (1) | (4) | (0) | (2) | |||||||||
Public housing | N | 8 | 1 | 1 | 0 | 1 | 3 | 1 | 1 | ||||||||
(%) | (1) | (0) | (0) | (0) | (0) | (1) | (0) | (0) | |||||||||
Employee’s house | N | 27 | 15 | ++ | 4 | 4 | 0 | 4 | 0 | 0 | |||||||
(%) | (5) | (3) | (1) | (1) | (0) | (1) | (0) | (0) | |||||||||
Others | N | 7 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | ++ | |||||||
(%) | (1) | (0) | (0) | (0) | (0) | (0) | (0) | (0) |
(Total) | SH | MCH | HcneK | HceK | HceEa | Hcg | Other | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before the pandemic: | OW:WFH = 0:100% | N | 65 | 22 | 17 | 9 | 3 | 9 | 4 | 1 | |||||
(%) | (11) | (4) | (3) | (2) | (1) | (2) | (1) | (0) | |||||||
OW:WFH = 20:80% | N | 20 | 6 | 3 | 2 | 1 | 6 | 1 | 1 | ||||||
(%) | (3) | (1) | (1) | (0) | (0) | (1) | (0) | (0) | |||||||
OW:WFH = 50:50% | N | 29 | 6 | 9 | 5 | 1 | 7 | 1 | 0 | ||||||
(%) | (5) | (1) | (2) | (1) | (0) | (1) | (0) | (0) | |||||||
OW:WFH = 80:20% | N | 27 | 10 | 5 | 4 | 3 | 4 | 1 | 0 | ||||||
(%) | (5) | (2) | (1) | (1) | (1) | (1) | (0) | (0) | |||||||
OW:WFH = 100:0% | N | 388 | 96 | 101 | 61 | 19 | 74 | 13 | 24 | ||||||
(%) | (65) | (16) | (17) | (10) | (3) | (12) | (2) | (4) | |||||||
Not working | N | 64 | 10 | 22 | 12 | 3 | 12 | 1 | 4 | ||||||
(%) | (11) | (2) | (4) | (2) | (1) | (2) | (0) | (1) | |||||||
During the pandemic: | OW:WFH = 0:100% | N | 110 | 16 | -- | 30 | 34 | ++ | 6 | 15 | 2 | 7 | ** | ||
(%) | (19) | (3) | (5) | (6) | (1) | (3) | (0) | (1) | |||||||
OW:WFH = 20:80% | N | 99 | 29 | 26 | 18 | 6 | 11 | - | 3 | 6 | |||||
(%) | (17) | (5) | (4) | (3) | (1) | (2) | (1) | (1) | |||||||
OW:WFH = 50:50% | N | 60 | 22 | + | 14 | 5 | 2 | 13 | 1 | 3 | |||||
(%) | (10) | (4) | (2) | (1) | (0) | (2) | (0) | (1) | |||||||
OW:WFH = 80:20% | N | 69 | 16 | 16 | 7 | 2 | 23 | ++ | 2 | 3 | |||||
(%) | (12) | (3) | (3) | (1) | (0) | (4) | (0) | (1) | |||||||
OW:WFH = 100:0% | N | 59 | 15 | 11 | 10 | 5 | 13 | 1 | 4 | ||||||
(%) | (10) | (3) | (2) | (2) | (1) | (2) | (0) | (1) | |||||||
Not working | N | 196 | 52 | 60 | 19 | -- | 9 | 37 | 12 | + | 7 | ||||
(%) | (33) | (9) | (10) | (3) | (2) | (6) | (2) | (1) |
(Total) | SH | MCH | HcneK | HceK | HceEa | Hcg | Other | p | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WFH | N | 236 | 58 | 50 | - | 40 | 11 | 48 | 10 | 19 | ++ | * | ||||
(%) | (40) | (10) | (8) | (7) | (2) | (8) | (2) | (3) | ||||||||
Flextime working programs | N | 184 | 44 | 39 | - | 31 | 8 | 47 | ++ | 6 | 9 | |||||
(%) | (31) | (7) | (7) | (5) | (1) | (8) | (1) | (2) | ||||||||
Job-type employment programs | N | 63 | 18 | 10 | - | 12 | 3 | 19 | + | 0 | 1 | * | ||||
(%) | (11) | (3) | (2) | (2) | (1) | (3) | (0) | (0) | ||||||||
Childcare leave support programs | N | 85 | 8 | -- | 11 | -- | 35 | ++ | 13 | ++ | 14 | 1 | 3 | ** | ||
(%) | (14) | (1) | (2) | (6) | (2) | (2) | (0) | (1) | ||||||||
Second job support programs | N | 55 | 11 | 16 | 8 | 1 | 16 | + | 1 | 2 | ||||||
(%) | (9) | (2) | (3) | (1) | (0) | (3) | (0) | (0) | ||||||||
Not applicable | N | 223 | 65 | 75 | ++ | 24 | -- | 9 | 32 | -- | 8 | 10 | ** | |||
(%) | (38) | (11) | (13) | (4) | (2) | (5) | (1) | (2) |
(Total) | SH | MCH | HcneK | HceK | HceEa | Hcg | Other | p | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Providing information on vacant houses | N | 152 | 49 | + | 40 | 18 | 6 | 29 | 4 | 6 | ||||||
(%) | (26) | (8) | (7) | (3) | (1) | (5) | (1) | (1) | ||||||||
Trial migration experience programs | N | 70 | 15 | 15 | 11 | 3 | 22 | ++ | 2 | 2 | ||||||
(%) | (12) | (3) | (3) | (2) | (1) | (4) | (0) | (0) | ||||||||
Migration support subsidy programs | N | 115 | 29 | 33 | 15 | 6 | 25 | 3 | 4 | |||||||
(%) | (19) | (5) | (6) | (3) | (1) | (4) | (1) | (1) | ||||||||
Employment support programs | N | 57 | 22 | + | 13 | 5 | 3 | 12 | 2 | 0 | ||||||
(%) | (10) | (4) | (2) | (1) | (1) | (2) | (0) | (0) | ||||||||
Childcare support programs | N | 156 | 6 | -- | 21 | -- | 62 | ++ | 20 | ++ | 41 | ++ | 5 | 1 | -- | ** |
(%) | (26) | (1) | (4) | (10) | (3) | (7) | (1) | (0) | ||||||||
Welfare support programs | N | 71 | 14 | 19 | 5 | - | 2 | 22 | ++ | 4 | 5 | * | ||||
(%) | (12) | (2) | (3) | (1) | (0) | (4) | (1) | (1) | ||||||||
Others | N | 156 | 55 | ++ | 57 | ++ | 5 | -- | 2 | - | 15 | -- | 7 | 15 | ++ | ** |
(%) | (26) | (9) | (10) | (1) | (0) | (3) | (1) | (3) |
SH | MCH | HcneK | HceK | HceEa | Hcg | ||
---|---|---|---|---|---|---|---|
Triggers for migration. (in Table 3) |
|
|
|
|
|
| |
Prioritization of residential preferences. (in Table 4) | (During pandemic) Working | (During pandemic) Community | |||||
Detailed residential preferences. (in Table 5) |
|
|
|
|
| ||
Place attachment. | Place Identity | Down | Up | ||||
(in Table 6) | Place Dependence | Down | Up | Up | |||
Housing type. (in Table 7) | (During pandemic)
| (During pandemic)
| (Before pandemic)
| ||||
Ratio of OF to WFH. (in Table 8) | (During pandemic) OW:WFH = 0:100% | (During pandemic) OW:WFH = 80:20% | |||||
Company support systems. (in Table 9) |
|
|
|
| |||
Government support programs. (in Table 10) |
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komaki, M.; Kato, H.; Matsushita, D. Why Did Urban Exodus Occur during the COVID-19 Pandemic from the Perspective of Residential Preference of Each Type of Household? Case of Japanese Metropolitan Areas. Sustainability 2023, 15, 3315. https://doi.org/10.3390/su15043315
Komaki M, Kato H, Matsushita D. Why Did Urban Exodus Occur during the COVID-19 Pandemic from the Perspective of Residential Preference of Each Type of Household? Case of Japanese Metropolitan Areas. Sustainability. 2023; 15(4):3315. https://doi.org/10.3390/su15043315
Chicago/Turabian StyleKomaki, Miyu, Haruka Kato, and Daisuke Matsushita. 2023. "Why Did Urban Exodus Occur during the COVID-19 Pandemic from the Perspective of Residential Preference of Each Type of Household? Case of Japanese Metropolitan Areas" Sustainability 15, no. 4: 3315. https://doi.org/10.3390/su15043315
APA StyleKomaki, M., Kato, H., & Matsushita, D. (2023). Why Did Urban Exodus Occur during the COVID-19 Pandemic from the Perspective of Residential Preference of Each Type of Household? Case of Japanese Metropolitan Areas. Sustainability, 15(4), 3315. https://doi.org/10.3390/su15043315