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Abstract: The industrial sector, the backbone of China’s economic development, is a key field that
requires environmental management. The purpose of this study is to propose an improved data
envelopment analysis (DEA) model to analyze the performance of provincial industrial systems (ISs)
from 2011 to 2020 in China. To comprehensively characterize the operational framework of ISs, this
study proposes an improved meta-frontier network DEA model. Unlike the existing models, the
one proposed in this study not only considers the technical heterogeneity of ISs, but also reflects the
interaction between IS subsystems. The empirical analysis yields valuable research findings. First, the
overall environmental performance of Chinese ISs is generally low, with an average performance of
0.50, showing a U-shaped trend during the study period. Furthermore, significant regional differences
are observed in the environmental performance of Chinese ISs. Second, the average performance of
the production subsystem is 0.75, while the average performance of the pollution control subsystem
(PTS) is 0.44. The low performance of the PTS pulls down the overall performance of Chinese ISs.
Third, the technological level of Chinese ISs is low, with about 50% improvement potential. Finally,
targeted suggestions to promote the green development of ISs are proposed on the basis of the
empirical results.

Keywords: industrial system; technological heterogeneity; interaction; DEA model

1. Introduction

Since the implementation of the reform and opening up policy, China’s economy has
achieved leapfrog development, making it the second-largest economy in the world [1].
In 2020, China’s GDP reached CNY 10.16 billion, with a total energy consumption of
4.98 billion tons of standard coal. The consumption of fossil energy, however, generates
large amounts of pollutants. The China 2021 Statistical Yearbook reported that the country
emitted 3.18 million tons of sulfur dioxide, 11.82 million tons of nitrogen oxides, and
6.13 million tons of particulate matter in 2020. The crude economic development mode
is unsustainable [2]. Given that the industrial sector is the main contributor to China’s
economy and to the country’s energy consumption and pollution emissions [3], improving
industrial environmental performance is critical to promoting sustainable economic devel-
opment in the country. Therefore, conducting a scientific and objective evaluation of the
performance of China’s industrial systems (ISs) is important.

Scholars have widely adopted data envelopment analysis (DEA) models to evalu-
ate the environmental performance of ISs [4]. However, traditional DEA models only
consider initial inputs and final outputs, while the internal structures of decision-making
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units (DMUs) are ignored [5,6]. Thus, scholars have proposed network DEA models to
address this problem. For example, Zhang et al. [7] and Li et al. [8] divided ISs into the
production subsystem (PS) and pollution treatment subsystem (PTS) to analyze their overall
performance and individual subsystem performances. However, existing studies have
ignored the interaction between the two subsystems. In addition, production technology
heterogeneity exists between ISs due to differences in geographical location and level of
economic development. Therefore, the evaluation results that ignore heterogeneity and
interaction relations will be inconsistent with reality [9,10].

The purpose of the current study is to propose a DEA model to evaluate and analyze
the performance of the IS with two subsystems. The research object of this study includes
27 provincial ISs in China. Given the data availability, this study collects the panel data of
these ISs in China from 2011 to 2020. Specifically, this study explores the following issues:
(1) how to build a performance model for an IS with two subsystems, (2) the characteristics
of the performance of China’s provincial ISs and their subsystems, and (3) the process by
which inefficient ISs can improve performance.

To address the aforementioned issues, this study first constructs a new two-stage
network DEA model by considering the technological heterogeneity between ISs and the
interaction between subsystems. Then, the proposed model is applied to evaluate the
performance of China’s provincial ISs from 2011 to 2020. Next, the technological gap,
management potential (MP), and technical potential (TP) of the ISs are analyzed. Finally,
targeted improvement measures to improve the performance of the ISs are proposed.

The theoretical contributions of this study are as follows. First, pollutants (e.g., solid
waste) in the production stage of real ISs can be converted into recyclable resources after
treatment in the pollution treatment stage. The recycled resources are then reused for
production. To address this reality, this study decomposes the IS into the production
and pollution treatment subsystems and considers the interaction between them. Second,
previous studies assessing regional industrial performance in China have often ignored
heterogeneity. To address this problem, the meta-frontier analysis framework is introduced
into the DEA model and an innovative two-stage network DEA model is proposed. The
model can effectively consider the existing production technology heterogeneity among ISs
in the process of performance evaluation.

The practical contributions of this paper are as follows. First, in previous studies,
scholars have generally concluded that China’s IS performance has been improving year
by year and the performance of eastern China is higher than that of central and western
China [7,11,12]. However, this study finds that, overall, China’s IS performance shows a
U-shaped change in the study period and that the central region of China has the highest
industrial system performance. Second, this study finds that PS performances in the eastern,
central, and western regions have convergent characteristics, while PTS performance
has U-shaped characteristics similar to IS performance. Therefore, the results further
validate the existence of regional differences in IS performance in China. Finally, this study
proposes recommendations to promote IS performance improvement from both technical
and managerial perspectives.

The rest of the paper is organized as follows. Section 2 reviews the main literature
relevant to this work. Section 3 proposes an environmental performance model that
considers technological heterogeneity and interaction. Section 4 provides an empirical
analysis of China’s inter-provincial ISs. Finally, Section 5 summarizes the main conclusions.

2. Literature Review
2.1. Environmental Efficiency Assessment

DEA, as a nonparametric model that does not require the assumption of a production
function in advance, has been widely used in efficiency assessment [13]. Liu et al. [14]
reviewed the application of DEA between 1978 and 2010 and found that DEA methods
have been gaining popularity among scholars. Emrouznejad and Yang [15] reviewed the
application of DEA in different fields between 1978 and 2016 and found that DEA has
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been widely used in the energy and environment fields. For example, Shah et al. [16]
evaluated the energy efficiency and productivity of South Asian countries using the slack-
based model (SBM) and the Malmquist index method. Their results show that energy
efficiency in South Asian countries still has potential for improvement. Vlontzos et al. [17]
evaluated the environmental efficiency of European Union (EU) member states using a
non-radial DEA model and found that the low level of technology is the main factor of
environmental inefficiency in some countries. Chen and Jia [12] measured the environ-
mental efficiency of China’s regional industries through the undesired output SBM. The
results reveal significant regional differences in the environmental efficiency of Chinese
industries. Wu et al. [18] used an improved DEA model to measure China’s regional
environmental efficiency and conducted a dynamic evaluation of environmental total
factor productivity through the Malmquist index. They found that China’s overall car-
bon emission efficiency is still in an inefficient state, with the eastern region being the
most efficient and the western region being the least efficient. Piao et al. [19] proposed
three DEA models by considering the disposability of undesired outputs. They also
combined the Malmquist–Luenberger (ML) index to evaluate China’s environmental ef-
ficiency. Their results suggest that the technological progress is the primary driver of
environmental efficiency.

Some scholars have considered technical heterogeneity when evaluating regional
environmental efficiency. For instance, Li and Lin [20] introduced a meta-frontier analysis
framework into DEA to measure China’s energy and carbon emission efficiency. Chen and
Zhou [21] applied a non-radial DEA model and meta-frontier ML index to evaluate the eco-
efficiency of urban agglomerations in China. The authors concluded that the increase in the
technology gap has led to the broadened eco-efficiency gap between urban agglomerations.
Ma et al. [22] analyzed the environmental efficiency of Chinese cities using a meta-frontier
DEA model. Their empirical results reveal that Chinese coastal cities outperform central
and western cities, and the efficiency of large and mega cities is higher than that of medium
and small cities. Wang et al. [23] analyzed the energy efficiency of the Chinese steel industry
using a meta-frontier analysis framework and revealed the existence of spatial technical
heterogeneity in the Chinese steel industry. Li et al. [24] conducted a dynamic evaluation of
environmental efficiency in China through a meta-frontier dynamic DEA model and found
that Chinese high-income cities perform well. Meanwhile, Ding et al. [25] investigated
the environmental efficiency of Chinese urban agglomerations based on a nonparametric
meta-frontier approach and reported that the eastern and southern coastal regions of China
are more efficient compared with other regions.

2.2. Application of Two-Stage DEA Model in ISs

The industrial sector is a major source of pollution emissions; thus, industrial environ-
mental performance has attracted extensive academic attention. Scholars have widely used
two-stage DEA models to measure the environmental performance of ISs. For example,
Wu et al. [13] constructed a two-stage model with shared inputs to evaluate the energy effi-
ciency and environmental pollution control efficiency of ISs in China. The results show that
the energy efficiency of the IS outperforms the environmental pollution control efficiency.
Li et al. [11] used a combination of a network SBM model and DEA window analysis to
dynamically evaluate the environmental performance of the regional ISs in China. The
authors divided regional ISs into production and pollutant treatment processes. The results
show that the overall low performance of the regional ISs is caused by the inefficiency of
their pollutant treatment sub-processes. Chen et al. [26] constructed a two-stage DEA model
to evaluate the environmental efficiency of China’s industrial water systems. Using the
proposed model, which considers noncooperative and cooperative relationships in two sub-
systems, they found that noncooperative relationships hinder the sustainable development
of industrial water systems. Chu et al. [27] formed an ecosystem of the regional production
and pollution treatment systems in China and measured the eco-efficiency of the system
using a network DEA model. The results show that the eco-efficiency of most Chinese
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regions still has a large potential for improvement. Shao et al. [28] proposed a network DEA
model that is applicable to the environmental performance of ISs by decomposing them
into production, wastewater treatment, and exhaust gas treatment phases. Their results
show that the environmental performance of the Chinese industrial sector has gradually
improved over the years. Wang and Feng [29] proposed a super-efficient network DEA
approach to analyze the efficiency of the production stage and pollution control stage of
Chinese ISs and found that Chinese ISs are inefficient as a whole. Qu et al. [30] applied an
improved network DEA to assess the environmental sustainability performance of Chinese
regions and reported that the eastern region of China is leading in sustainable development.
Meanwhile, Liu et al. [31] constructed a two-stage DEA model with ratio output to evaluate
the environmental efficiency of the Chinese industrial sector. Their results showed the
gradual improvement of the environmental performance of the Chinese industrial sector
throughout the years.

2.3. Literature Summary

The abovementioned works reveal that the study of the regional environment and
the performance of ISs has received extensive attention from scholars. The scholars have
analyzed regional IS performance from static and dynamic perspectives, and some have
also considered the technological heterogeneity of ISs. The present study has two main
differences from previous studies. First, this work refines the traditional internal structure
of ISs by considering the interactions that exist in their internal subsystems based on
practical considerations. Second, this study extends the traditional two-stage model to
model the situation with production technology heterogeneity and subsystem interactions.
Based on previous studies and the purpose of the current one, the following hypotheses
are proposed:

Hypothesis 1: Regional differences exist between China’s provincial IS performance and subsy-
stem performance.

Hypothesis 2: The performance of PTS is low and has a great impact on the overall performance of
ISs in China.

Hypothesis 3: Significant technological gaps exist among regional ISs.

3. Methodology
3.1. Group Frontier Model Considering Technical Heterogeneity and Interaction

This study considers N regional ISs, defined as DMUn (n = 1, · · · , N). As shown in
Figure 1, each IS contains two subsystems: PS and PTS. Figure 1 also shows an interaction
between the two subsystems. In the PS, the inputs and desired outputs are denoted by
x f

in and y f
rn, respectively, while the undesired outputs are denoted by wsn. In the PTS,

the undesired output wsn of the PS is treated to obtain some recyclable resources wsn and
then returned to the PS. The other inputs in the PTS are xs

pn, and the undesired output
is ys

qn.
All DMUs belong to K groups. The number of DMUs of the kth group is Nk, and then

we have ∑K
k=1 Nk = N. Without a loss of generality, DMUs within the same group have the

same or similar production technologies. For the DMUo in group k, its group efficiency can
be obtained by the following Model (1):
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∑
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Q

Q
∑

q=1
δk

q)]

1+ 1
R

R
∑

r=1
βk

r

s.t.
Nk

∑
n=1

λk
nx f

in ≤ (1− αk
i )x f

io, i = 1, 2, . . . , I,

Nk

∑
n=1

λk
ny f

rn ≥ (1 + βk
r) y f

ro, r = 1, 2, . . . , R,

Nk

∑
n=1

ωk
nxs

pn ≤ (1− σk
p)xs

po, p = 1, 2, . . . , P,

Nk

∑
n=1

ωk
nys

qn = (1− δk
q) ys

qo, q = 1, 2, . . . , Q,

Nk

∑
n=1

λk
nwsn = wso, s = 1, 2, . . . , S,

Nk

∑
n=1

ωk
nwsn = wso, s = 1, 2, . . . , S,

Nk

∑
n=1

λk
nwsn = wso, s = 1, 2, . . . , S,

Nk

∑
n=1

ωk
nwsn = wso, s = 1, 2, . . . , S,

λk
n, ωk

n ≥ 0, n = 1, . . . , Nk.

(1)

In the PS, αk
i is the reduction ratio of inputs, and βk

r is the increase ratio of expected
outputs. In the PTS, σk

p is the reduction ratio of inputs, and δk
q is the reduction ratio of

undesired outputs. In Model (1), λk
n is the weight of the PS, and ωk

n is the weight of the
PTS. The PT and PTS subsystems are linked through two intermediate indicators wsn and
wsn, where wsn is the output and input of the PT subsystem as well as the input of the
PTS subsystem, and similarly, wsn is the output and input of the PTS subsystem as well
as the input of the PT subsystem. Referring to Ding et al. [25], this study defines this link
relationship as the interaction relationship between the two subsystems. The fifth to eighth
constraints of Model (1) are used to reflect the interaction relationship between the two
subsystems. Model (1) is a nonlinear programming model that can be converted into a
linear model using the following steps.

Step 1: Let 1

1+ 1
R

R
∑

r=1
βk

r

= t, and then, Model (1) becomes Model (2).
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min eo =
1
3 [(1−

1
I

I
∑

i=1
αk

g) + (1− 1
P

P
∑

p=1
σk

p) + (1− 1
Q

Q
∑

q=1
δk

q)]

s.t.1 + 1
R

R
∑

r=1
βk

r =
1
t ,

Nk

∑
n=1

λk
nx f

in ≤ (1− αk
i )x f

io, i = 1, 2, . . . , I,

Nk

∑
n=1

λk
ny f

rn ≥ (1 + βk
r) y f

ro, r = 1, 2, . . . , R,

Nk

∑
n=1

ωk
nxs

pn ≤ (1− σk
p)xs

po, p = 1, 2, . . . , P,

Nk

∑
n=1

ωk
nys

qn = (1− δk
q) ys

qo, q = 1, 2, . . . , Q,

Nk

∑
n=1

λk
nwsn = wso, s = 1, 2, . . . , S,

Nk

∑
n=1

ωk
nwsn = wso, s = 1, 2, . . . , S,

Nk

∑
n=1

λk
nwsn = wso, s = 1, 2, . . . , S,

Nk

∑
n=1

ωk
nwsn = wso, s = 1, 2, . . . , S,

λk
n, ωk

n ≥ 0, n = 1, . . . , Nk.

(2)

Step 2: Let tαk
g = αk

g, tσk
p = σk

p, tδk
q = δ

k
q, tβk

r = β
k
r , tλk

n = λ
k
n, and tωk

n = ωk
n; then,

Model (2) can be converted into Model (3).

min eo = t− 1
3I

I
∑

i=1
αk

g − 1
3P

P
∑

p=1
σk

p − 1
3Q

Q
∑

q=1
δ

k
q

s.t. t + 1
R

R
∑

r=1
β

k
r = 1,

Nk

∑
n=1

λ
k
nx f

in ≤ (t− αk
i )x f

io, i = 1, 2, . . . , I,

Nk

∑
n=1

λ
k
ny f

rn ≥ (t + β
k
r ) y f

ro, r = 1, 2, . . . , R,

Nk

∑
n=1

ωk
nxs

pn ≤ (t− σk
p)xs

po, p = 1, 2, . . . , P,

Nk

∑
n=1

ωk
nys

qn = (t− δ
k
q) ys

qo, q = 1, 2, . . . , Q,

Nk

∑
n=1

λ
k
nwsn = twso, s = 1, 2, . . . , S,

Nk

∑
n=1

ωk
nwsn = twso, s = 1, 2, . . . , S,

Nk

∑
n=1

λ
k
nwsn = twso, s = 1, 2, . . . , S,

Nk

∑
n=1

ωk
nwsn = twso, s = 1, 2, . . . , S,

λ
k
n, ωk

n ≥ 0, n = 1, . . . , Nk.

(3)
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Step 3: Model (3) is solved to obtain the optimal solution (αk∗
g , σk∗

p , δ
k∗
q , β

k∗
r , λ

k∗
n , ωk∗

n , t).

Then, the optimal solution of Model (2) is αk∗
g =

αk∗
g
t , σk∗

p =
σk∗

p
t , δk∗

q =
δ

k∗
q
t , βk∗

r =
β

k∗
r
t ,

λk∗
n = λ

k∗
n
t , and ωk∗

n = ωk
n

t .
According to the solution of the abovementioned models, we can calculate the effi-

ciency value ek
o of the DMUo in the kth group, and its efficiency improvement potential

under the group frontier is expressed as:

epo = 1− ek
o (4)

If 1 > epo > 0, the DMUo is group-inefficient; if epo = 0 or ek
o = 1, then the DMUo

is group-efficient.

3.2. Meta-Frontier Model Considering Technological Heterogeneity and Interaction

As mentioned previously, technological heterogeneity exists among regional ISs due
to differences in resource endowments, economic development, and geographic conditions.
Model (1) only considers all ISs with the same or similar technology levels. Based on meta-
frontier theory, this section proposes a meta-frontier model that considers technological
heterogeneity and interaction. According to the ideas of Sun et al. [32], Model (5) is
proposed as follows:

min Eo =

1
3 [(1−

1
I

I
∑

i=1
αm

g )+(1− 1
P

P
∑

p=1
σm

p )+(1− 1
Q

Q
∑

q=1
δm

q )]

1+ 1
R

R
∑

r=1
βm

r

s.t.
K
∑

k=1

Nk

∑
n=1

λk
nx f

in ≤ (1− αm
i )x f

io, i = 1, 2, . . . , I,

K
∑

k=1

Nk

∑
n=1

λk
ny f

rn ≥ (1 + βm
r ) y f

ro, r = 1, 2, . . . , R,

K
∑

k=1

Nk

∑
n=1

ωk
nxs

pn ≤ (1− σm
p )xs

po, p = 1, 2, . . . , P,

K
∑

k=1

Nk

∑
n=1

ωk
nys

qn = (1− δm
q ) ys

qo, q = 1, 2, . . . , Q,

K
∑

k=1

Nk

∑
n=1

λk
nwsn = wso, s = 1, 2, . . . , S,

K
∑

k=1

Nk

∑
n=1

ωk
nwsn = wso, s = 1, 2, . . . , S,

K
∑

k=1

Nk

∑
n=1

λk
nwsn = wso, s = 1, 2, . . . , S,

K
∑

k=1

Nk

∑
n=1

ωk
nwsn = wso, s = 1, 2, . . . , S,

λk
n, ωk

n ≥ 0, n = 1, . . . , Nk.

(5)

Compared with the frontier of Model (1), that of Model (5) is formed by the efficient
DMUs among all groups’ DMUs. In other words, the technology level represented by the
meta-frontier is higher than that of the group frontier. Furthermore, Model (5) is nonlinear,
and it can be transformed into the linear Model (6) through the abovementioned step.
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minEo = t− 1
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∑
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∑
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∑
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∑
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∑
n=1

ωk
nwsn = twso, s = 1, 2, . . . , S,

λ
k
n, ωk

n ≥ 0, n = 1, . . . , Nk.

(6)

Model (6) can obtain the efficiency value Eo of the DMUo under the meta-frontier, and
its efficiency improvement potential under the meta-frontier is given by

EPo = 1− Eo (7)

where EPo = 0 indicates that the DMUo is efficient in the meta-frontier; otherwise, the
DMUo is inefficient.

Based on the optimal solutions of Model (6), the following definitions are given.

Definition 1: The meta-frontier efficiency of the PS is given by

E1
o =

1− 1
I

I
∑

i=1
αm

g

1 + 1
R

R
∑

r=1
βm

r

(8)

Definition 2: The meta-frontier efficiency of the PTS is given by

E2
o =

1
2
[(1− 1

P

P

∑
p=1

σm
p ) + (1− 1

Q

Q

∑
q=1

δm
q )] (9)

If E1
o = 1 (or E2

o = 1), then the DMUo is efficient in the PS (or in the PTS); otherwise,
DMUo is inefficient.

The technology gap ratio index (TGRI) under the two frontiers is defined as follows:

TGRIo =
Eo
eo

(10)
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This study further decomposes the potential improvement capabilities of DMUo under
meta-frontier technologies into MP and TP, which are defined as follows:

MPo = epo = 1− eo (11)

TPo = EPo − epo = (1− Eo)− (1− eo) = eo − Eo (12)

4. Empirical Analysis
4.1. Samples and Variables

Given the data availability, this study collects the panel data of 27 provinces in
China from 2011 to 2020. Three inputs are considered in the PS: (1) main business cost
(CNY 100 million), (2) industrial energy consumption (10,000 t of standard coal), and
(3) industrial labor (10,000 people). The desirable output in the PS is the total industrial
output value (CNY 100 million). In the PTS, the input is industrial governance investment
(CNY 100 million), and the output is the amount of industrial solid waste disposal (10,000 t).
The intermediate outputs/inputs linking the two subsystems are the industrial solid waste
emissions (10,000 t) and the comprehensive utilization of industrial solid waste (10,000 t).
The data regarding the indicators came from the China Statistical Yearbook and China
Industrial Statistical Yearbook. Their statistical descriptions are shown in Table 1.

Table 1. Statistical description.

References Indicators Mean Maximum Minimum Standard
Deviation

Inputs [11,28,33–35]

Main business cost 30,605.18 139,748.56 1226.80 31,071.37
Industrial energy consumption 10,141.65 31,805.20 826.98 6935.62

Industrial labor 184.47 1055.37 9.83 185.93
Total industrial output value 8864.09 38,526.29 415.12 8018.60

Industrial governance investment 21.79 141.23 0.05 21.55

Intermediate
outputs/inputs

[27,36,37]

Industrial solid waste emissions 11,499.16 52,037.00 333.00 10,038.43
Comprehensive utilization of

industrial solid waste 6811.29 25,230.00 193.00 5356.35

Outputs [11,28] Industrial solid waste disposal 2742.06 27,402.00 6.00 4178.22

4.2. System Performance Analysis

Figure 2 shows the meta-frontier performance trends of ISs from 2011 to 2020, and
the following findings can be drawn. First, China’s overall regional IS performance is low
and shows a U-shaped trend over time. Before 2015, China’s IS performance declined
over the years. After 2015, the IS performance increases with years. This finding differs
from the findings of Zhang et al. [7] who found that the performance of ISs increased
during the study period. The potential reasons for the U-shaped characteristic are as
follows. Before 2015, China focused on economic development and industrialization
while neglecting environmental protection. As a result, the IS performance of Chinese
regions declined. After 2015, the Chinese government strengthened the control on energy
conservation and emission reduction, which led to a turnaround in IS performance from
a downward to an upward trend [38]. This situation also indicates that the Chinese
government’s environmental policies and measures have had a general enhancing effect on
IS performance.

Second, although industrial development in central China has lagged behind that in
the eastern region, the IS performance in the former is higher than that in the latter. This
situation may be related to the transfer of Chinese industry-related industries to the central
region of China. The central region of China has not only taken over the industry-related
industries transferred from the eastern region but also absorbed the advanced experience
and technology from the eastern region to avoid wasting resources. This situation makes
the IS performance in the central region better than that in the eastern region. This finding,
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however, differs from the general findings of scholars, such as Li et al. [11] and Chen and
Jia [12], who found that the IS performance in eastern China is significantly higher than
that in central and western regions.
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Figure 2. Meta-frontier performance of ISs.

Third, among the three regions, western China has the lowest IS performance. This
finding indicates that economic development and ecological protection in this region
are not coordinated. Thus, the western region should focus on industrial restructuring,
optimizing the economic development model, and facilitating industrial performance
improvement [39]. Figure 2 shows the convergent characteristics of IS performance in the
eastern, central, and western regions of China. This result is due to the fact that China’s
industry-related industries are shifting from the developed eastern provinces to the central
and western regions. This situation further contributes to the increase in industrial capacity
in the central and western regions and promotes the convergence of IS performance across
regions in China. This finding is also supported by Zhang et al. [40]. Overall, there are
significant regional differences in the performance of ISs in China’s eastern, central, and
western regions, thus confirming Hypothesis 1.

Table 2 shows the average IS performance in each province from 2011 to 2020, and the
following findings can be drawn. First, the three provinces with the highest IS performance
are Anhui, Jiangxi, and Tianjin. Among them, Anhui ranks first with 0.79. Anhui is located
on the edge of the Yangtze River Delta. Thus, Anhui has a geographical location advantage
in taking over the industry-related industries transferred from developed provinces [41].
Second, the IS performance of all sample provinces is below 0.80, and 85.19% of the sample
provinces have IS performance below 0.60. This finding indicates that, overall, China’s IS
development is ineffective. Third, the provinces with IS performance below 0.40 are Jilin,
Xinjiang, Ningxia, and Gansu. The underdeveloped economies and insufficient investments
made in environmental management in the four provinces have resulted in the low IS
performances in these provinces [13]. The above findings are consistent with the findings of
Wang and Feng [29], suggesting that the ISs in Chinese provinces still have a large potential
for improvement.

4.3. Sub-Stage Performance Analysis

Figure 3 shows the meta-frontier performance trends of PS and PTS from 2011 to
2020. The following conclusions can be drawn from these findings. First, the overall PS
performance in the eastern, central, and western regions of China has improved over the
years, while the performance gap among the three regions decreases over the years. In
particular, the PS performance in the eastern region is the highest. The eastern region of
China has a better-developed economy and higher level of industrial production technology
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compared with other regions [29]. Therefore, the PS in eastern China performs the best.
Second, the PTS performance in each region is very low, and the overall mean value does
not exceed 0.60. However, the trend of the change in the PTS performance in each region
during the study period is consistent with the trend of the IS performance. Thus, this result
indirectly indicates that the PTS inefficiency is the main factor that pulls down the overall
IS performance. This finding supports the validity of Hypothesis 2.

Table 2. Average value of IS performance in each province from 2011 to 2020.

Eastern Central Western

Provinces eo Eo TGRI Provinces eo Eo TGRI Provinces eo Eo TGRI

Tianjin 0.72 0.71 0.97 Anhui 0.83 0.79 0.95 Chongqing 0.87 0.63 0.72
Shanghai 0.64 0.60 0.93 Jiangxi 0.76 0.72 0.95 Sichuan 0.65 0.58 0.89
Jiangsu 0.66 0.59 0.90 Hunan 0.54 0.52 0.98 Yunnan 0.69 0.53 0.75

Guangdong 0.64 0.54 0.85 Shanxi 0.68 0.52 0.77 Shaanxi 0.61 0.48 0.79
Liaoning 0.77 0.51 0.65 Hubei 0.52 0.51 0.99 Guizhou 0.63 0.44 0.70

Shandong 0.72 0.49 0.69 Heilongjiang 0.61 0.49 0.81 Xinjiang 0.53 0.38 0.71
Fujian 0.60 0.47 0.79 Henan 0.46 0.44 0.95 Ningxia 0.44 0.36 0.81
Hebei 0.72 0.44 0.60 Jilin 0.37 0.30 0.88 Gansu 0.36 0.30 0.82
Beijing 0.49 0.43 0.87

Guangxi 0.68 0.40 0.57
Hainan 0.61 0.34 0.57
Mean 0.66 0.50 0.76 Mean 0.59 0.54 0.91 Mean 0.60 0.46 0.78

Overall
mean 0.62 0.50 0.81

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 18 
 

Table 2. Average value of IS performance in each province from 2011 to 2020. 

Eastern Central Western 
Provinces eo Eo TGRI Provinces eo Eo TGRI Provinces eo Eo TGRI 

Tianjin 0.72 0.71 0.97 Anhui 0.83 0.79 0.95 Chongqing 0.87 0.63 0.72 
Shanghai 0.64 0.60 0.93 Jiangxi 0.76 0.72 0.95 Sichuan 0.65 0.58 0.89 
Jiangsu 0.66 0.59 0.90 Hunan 0.54 0.52 0.98 Yunnan 0.69 0.53 0.75 

Guangdong 0.64 0.54 0.85 Shanxi 0.68 0.52 0.77 Shaanxi 0.61 0.48 0.79 
Liaoning 0.77 0.51 0.65 Hubei 0.52 0.51 0.99 Guizhou 0.63 0.44 0.70 

Shandong 0.72 0.49 0.69 Heilongjiang 0.61 0.49 0.81 Xinjiang 0.53 0.38 0.71 
Fujian 0.60 0.47 0.79 Henan 0.46 0.44 0.95 Ningxia 0.44 0.36 0.81 
Hebei 0.72 0.44 0.60 Jilin 0.37 0.30 0.88 Gansu 0.36 0.30 0.82 
Beijing 0.49 0.43 0.87         

Guangxi 0.68 0.40 0.57         
Hainan 0.61 0.34 0.57         
Mean 0.66 0.50 0.76 Mean 0.59 0.54 0.91 Mean 0.60 0.46 0.78 

Overall mean 0.62 0.50 0.81         

4.3. Sub-Stage Performance Analysis 
Figure 3 shows the meta-frontier performance trends of PS and PTS from 2011 to 

2020. The following conclusions can be drawn from these findings. First, the overall PS 
performance in the eastern, central, and western regions of China has improved over the 
years, while the performance gap among the three regions decreases over the years. In 
particular, the PS performance in the eastern region is the highest. The eastern region of 
China has a better-developed economy and higher level of industrial production technol-
ogy compared with other regions [29]. Therefore, the PS in eastern China performs the 
best. Second, the PTS performance in each region is very low, and the overall mean value 
does not exceed 0.60. However, the trend of the change in the PTS performance in each 
region during the study period is consistent with the trend of the IS performance. Thus, 
this result indirectly indicates that the PTS inefficiency is the main factor that pulls down 
the overall IS performance. This finding supports the validity of Hypothesis 2. 

  
(a) (b) 

Figure 3. Meta-frontier performance in the production subsystem (a) and the pollution treatment 
subsystem (b). 

Table 3 presents the average performance and ranking of PS and PTS in each prov-
ince, and the following findings are obtained. First, the top five provinces in terms of PS 
performance are Shanghai, Shaanxi, Guangdong, Anhui, and Jiangsu, which have 0.95, 
0.95, 0.90, 0.89, and 0.89, respectively. Shanghai, Guangdong, and Jiangsu are developed 
eastern provinces with mature industries and high levels of economic development, 
which contribute to their high PS performance. Meanwhile, Anhui and Shaanxi have 

0.00

0.20

0.40

0.60

0.80

1.00

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Pr
od

uc
tio

n 
su

bs
ys

te
m

Year

Eastern Central Western Overall
0.00

0.20

0.40

0.60

0.80

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Po
llu

tio
n 

tr
ea

tm
en

t s
ub

sy
st

em

Year

Eastern Central Western Overall

Figure 3. Meta-frontier performance in the production subsystem (a) and the pollution treatment
subsystem (b).

Table 3 presents the average performance and ranking of PS and PTS in each province,
and the following findings are obtained. First, the top five provinces in terms of PS
performance are Shanghai, Shaanxi, Guangdong, Anhui, and Jiangsu, which have 0.95,
0.95, 0.90, 0.89, and 0.89, respectively. Shanghai, Guangdong, and Jiangsu are developed
eastern provinces with mature industries and high levels of economic development, which
contribute to their high PS performance. Meanwhile, Anhui and Shaanxi have taken
over a large number of industry-related industries transferred from the developed eastern
provinces; thus, they also have high industrial PS performance [42].

Second, the top five provinces in terms of PTS performance are Anhui, Jiangxi, Tianjin,
Liaoning, and Sichuan, which have average performance rates of 0.80, 0.72, 0.66, 0.65, and
0.56, respectively. These data indicate that the PTS performance of Chinese provinces is
generally low. Anhui’s high PS and PTS performances can be attributed to the province’s
focus on the positive interaction between industrial development and environmental man-
agement. For example, Anhui has established comprehensive pollution management and
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trading systems and has regularly implemented environmental protection laws and regula-
tions to increase the participation of all people in ecological environmental protection [43].

Table 3. Sub-stage performance of each province and its ranking.

Regions Provinces Production
Stage

Regional
Ranking

Overall
Ranking

Pollution
Treatment Stage

Regional
Ranking

Overall
Ranking

Eastern

Beijing 0.86 4 8 0.25 11 26
Tianjin 0.86 5 10 0.66 1 3
Hebei 0.66 8 19 0.43 5 11

Shanghai 0.95 1 1 0.42 6 13
Jiangsu 0.89 3 5 0.48 4 9

Shandong 0.70 7 17 0.51 3 7
Fujian 0.83 6 12 0.31 9 23

Guangdong 0.90 2 3 0.37 8 19
Guangxi 0.60 10 23 0.41 7 14
Hainan 0.56 11 25 0.30 10 24

Liaoning 0.64 9 21 0.65 2 4
Mean 0.77 - - 0.44 - -

Central

Shanxi 0.84 3 11 0.40 7 16
Jilin 0.44 8 27 0.44 4 10

Heilongjiang 0.62 7 22 0.50 3 8
Anhui 0.89 1 4 0.80 1 1
Jiangxi 0.87 2 6 0.72 2 2
Henan 0.69 6 18 0.37 8 18
Hubei 0.79 5 14 0.41 6 15
Hunan 0.80 4 13 0.42 5 12
Mean 0.74 - - 0.51 - -

Western

Chongqing 0.86 3 9 0.53 2 6
Sichuan 0.77 4 15 0.56 1 5
Guizhou 0.74 5 16 0.34 4 20
Yunnan 0.86 2 7 0.38 3 17
Shaanxi 0.95 1 2 0.24 8 27
Gansu 0.51 8 26 0.32 6 22

Ningxia 0.65 6 20 0.28 7 25
Xinjiang 0.59 7 24 0.33 5 21

Mean 0.74 - - 0.37 - -
Overall mean 0.75 - - 0.44 - -

Third, the ranking results of the two subsystems reveal the imbalanced development
of PS and PTS in most provinces. Thus, each province needs to improve either PS or PTS
performance or both according to reality to enhance their overall IS performance.

4.4. TGRI Analysis

Figure 4 shows the trend of TGRI of Chinese ISs from 2011 to 2020, from which
the following conclusions are obtained. First, the central region of China has the largest
mean TGRI value, followed by the western region. The eastern region has the smallest
mean TGRI value, which is 0.76. This finding confirms Hypothesis 3 and indicates a
technological gap among ISs. Second, the average TGRI value of all regions in China is
0.81, and the TGRI value of each region has a relatively stable trend of fluctuation over
time. Third, Yao et al. [44] found that the eastern region has the best technology level due
to the advantage of economic level and development conditions. However, the current
study obtained a different conclusion, that is, the technological level of ISs in the central
regional provinces is close to the overall optimal technological level compared with those
of the eastern and western regions.
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4.5. Analysis of Performance Improvement Potential

In this section, the performance improvement potential of the ISs in each province is
calculated by decomposing it into MP and TP. When MP or TP accounts for more than 30%,
it is necessary to make corresponding countermeasures [45]. The following conclusions can
be drawn from Table 4. First, all provinces must improve their management. In particular,
current government regulations and production management of industrial enterprises
require further improvements. Second, eastern China must enhance its management and
technological levels. Input–output data show that Hebei, Shandong, Guangxi, Hainan, and
Liaoning all have high energy consumption and industrial solid waste emissions. This
situation reflects severe deficiencies in resource utilization technology in these provinces.
Therefore, these provinces need to introduce high-tech talent and advanced technologies to
improve their IS performance. Third, in the central region, Shanxi needs to further enhance
its technology as well. Therefore, the lack of technology in Shanxi, as a province endowed
with coal resources, leads to the underutilization of resources in industrial production.
Fourth, in the western region, Chongqing, Guizhou, and Yunnan also need to further
improve their industrial technology. Overall, the western region has the greatest potential
for enhancement, followed by the eastern region and the central region, which has the
least potential.
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Table 4. Decomposition of improvement potential and improvement strategy.

Regions Provinces
Improvement

Potential

MP TP Improvement Strategy

Mean Proportion
(%) Mean Proportion

(%) Management Technology

Eastern

Beijing 0.57 0.51 89.02 0.06 10.98
√

Tianjin 0.29 0.28 94.22 0.02 5.78
√

Hebei 0.56 0.28 49.31 0.29 50.69
√ √

Shanghai 0.40 0.36 89.95 0.04 10.05
√

Jiangsu 0.41 0.34 83.78 0.07 16.22
√

Shandong 0.51 0.28 55.28 0.23 44.72
√ √

Fujian 0.53 0.40 76.71 0.12 23.29
√

Guangdong 0.46 0.36 78.36 0.10 21.64
√

Guangxi 0.60 0.32 52.75 0.29 47.25
√ √

Hainan 0.66 0.39 59.71 0.27 40.29
√ √

Liaoning 0.49 0.23 47.57 0.26 52.43
√ √

Mean 0.50 0.34 68.47 0.16 31.53
√ √
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Table 4. Cont.

Regions Provinces
Improvement

Potential

MP TP Improvement Strategy

Mean Proportion
(%) Mean Proportion

(%) Management Technology

Central

Shanxi 0.48 0.32 65.91 0.16 34.09
√ √

Jilin 0.70 0.63 90.83 0.06 9.17
√

Heilongjiang 0.51 0.39 76.84 0.12 23.16
√

Anhui 0.21 0.17 82.14 0.04 17.86
√

Jiangxi 0.28 0.24 85.28 0.04 14.72
√

Hainan 0.56 0.54 95.95 0.02 4.05
√

Hubei 0.49 0.48 99.18 0.00 0.82
√

Hunan 0.48 0.46 97.63 0.01 2.37
√

Mean 0.46 0.41 87.49 0.06 12.51
√

Western

Chongqing 0.37 0.13 34.44 0.24 65.56
√ √

Sichuan 0.42 0.35 84.56 0.06 15.44
√

Guizhou 0.56 0.37 65.24 0.20 34.76
√ √

Yunnan 0.47 0.31 65.10 0.17 34.90
√ √

Shaanxi 0.52 0.39 74.60 0.13 25.40
√

Gansu 0.70 0.64 90.96 0.06 9.04
√

Ningxia 0.64 0.56 87.74 0.08 12.26
√

Xinjiang 0.62 0.47 75.94 0.15 24.06
√

Mean 0.54 0.40 74.61 0.14 25.39
√

Overall mean 0.50 0.38 75.65 0.12 24.35
√

5. Conclusions and Recommendations

This study first divides ISs into two subsystems: PS and PTS. Then, an improved
two-stage network DEA model is proposed, which considers the production technology
heterogeneity among ISs and the interaction between subsystems. Finally, the performance
of the inter-provincial IS in China is evaluated using the proposed model. The empirical
analysis yields some valuable conclusions. First, China’s overall industrial performance is
low and shows a U-shaped trend over time during the study period. The provinces with IS
performance of less than 0.60 account for 85.19% of the total. Second, significant regional
differences in IS performance are found. In particular, this study finds that the central
region has the highest performance, followed by the eastern and the western region, which
has the lowest. The IS performance trend changes over the study period are generally
consistent across regions. Third, the average IS performance of all provinces improves year
after year. However, the average PTS performance of all provinces is below 0.45, which is
the main factor that pulls down the overall IS performance of Chinese provinces. Fourth,
China’s overall TGRI does not fluctuate significantly over time, and its trend is relatively
stable. Fifth, all provinces must improve their management level, and most of them still
need to consider enhancing and strengthening their technological levels.

This study provides the following suggestions based on the aforementioned empiri-
cal results.

First, the overall performance of China’s ISs is low and reveals significant regional
differences. The central government must therefore consider guiding industrial transfor-
mation and upgrading to build low-carbon green ISs. For example, the central government
can incentivize energy reduction and emission reduction in energy-intensive industrial
enterprises by means of green development funding [46].

Second, PTS inefficiencies pull down the overall performance of China’s ISs. Therefore,
the provincial administration of each region should invest more on pollution control of
the ISs, especially in eastern China, in which the economic and environmental benefits of
industrial production should be balanced. In addition, all provincial administrations must
strengthen the exchange and cooperation of management experience and technological
development to promote overall IS performance in China.
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Third, the results show that all sample provinces must improve their management lev-
els. Local environmental protection departments need to further strengthen environmental
monitoring to force enterprises to improve their investments in environmental manage-
ment, which in turn can enhance IS performance. For example, protection departments can
increase the penalties for non-compliant companies [47].

Fourth, industrial enterprises should focus on the improvement of pollution man-
agement capabilities, such as strengthening research on and development of emission
reduction technologies, eliminating old equipment with high energy consumption, and
introducing advanced green production lines [48].

This study can be further extended. For example, based on the carbon peaking and
carbon neutral requirements, the model proposed in this study can be used to analyze
the regional inter-provincial carbon reduction potential in China. In addition, given the
relevance of environmental protection, the degrees of importance of PTS and PS differ.
Thus, the model in this study can be further improved to consider the game relationship
between PTS and PS.
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