Comparative Evaluation of the Immersed-Solid Method for Simulating the Flow Field around Hydrofoil
Abstract
:1. Introduction
2. Numerical Methods
2.1. Turbulence Modeling
2.2. Wall Treatments
2.2.1. No-Slip Wall
2.2.2. Automatic-Wall Functions
2.2.3. Immersed-Solid Method
- Wall distance: 0 on the nodes inside the immersed solid; a function of the wall scales on the nodes near the inside of the immersed solid; the physical distance of the nodes near the immersed solid was achieved using the boundary-tracking method for wall functions.
- k and ω in SST turbulence-model cases: 0 on the nodes inside the immersed solid; scalable-wall treatment was used for ω in the logarithmic region by ωlog = u*2/(Cμ1/2κνy*) where u*= Cμ1/2k1/4 and y* = u*Δy/ν. The value of Δy is the distance between the node near the immersed solid and the immersed-solid boundary. The y* value is lowered to 11.06 for dividing the logarithmic region and the linear viscous region.
- Friction velocity ut: Based on the scalable-wall treatment, ut in the logarithmic region is utlog = ΔU/[1/κln(y*) + C] = ΔU/u+, where ΔU is the fluid tangential velocity relative to the immersed boundary.
3. Studied Object
3.1. NACA0015 Profile
3.2. Case Detail
3.3. Computational-Fluid-Dynamics Setups
4. Numerical-Accuracy Check and Validation
4.1. No-Slip Wall Case
4.2. Immersed-Solid Case
5. Comparative-Flow Analysis
5.1. Forces and Torques
5.2. Pressure-Coefficient Cp Field
5.3. Velocity-Coefficient Cv Field
5.4. Turbulence-Kinetic-Energy, k, Field
6. Convergence-Ability Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kan, K.; Zhang, Q.; Zheng, Y.; Xu, H.; Xu, Z.; Zhai, J.; Muhirwa, A. Investigation into Influence of Wall Roughness on the Hydraulic Characteristics of an Axial Flow Pump as Turbine. Sustainability 2022, 14, 8459. [Google Scholar] [CrossRef]
- Tong, Z.; Xin, J.; Ling, C. Many-Objective Hybrid Optimization Method for Impeller Profile Design of Low Specific Speed Centrifugal Pump in District Energy Systems. Sustainability 2021, 13, 10537. [Google Scholar] [CrossRef]
- Wendt, J.F.; Anderson, J.D. Basic Philosophy of CFD. In Computational Fluid Dynamics: An Introduction; Spinger: Berlin/Heidelberg, Germany, 2009; pp. 5–8. [Google Scholar]
- Kajishima, T.; Taira, K. Numerical Simulation of Fluid Flows. In Computational Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–22. [Google Scholar]
- Grotjans, H.; Menter, F.R. Wall Functions for General Application CFD Codes. Comput. Fluid Dyn. 1998, 1, 1112–1117. [Google Scholar]
- Kader, B.A. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. Int. J. Heat Mass Transf. 1981, 24, 1541–1544. [Google Scholar] [CrossRef]
- Patel, V.C.; Rodi, W.; Scheuerer, G. Turbulence Models for Near-Wall and Low Reynolds Number Flows—A Review. AIAA J. 1985, 23, 1308–1319. [Google Scholar] [CrossRef]
- Ha, T.W.; Choe, B.S. Numerical Simulation of Rotordynamic Coefficients for Eccentric Annular-Type-Plain-Pump Seal Using CFD Analysis. J. Mech. Sci. Technol. 2012, 26, 1043–1048. [Google Scholar] [CrossRef]
- Blanco, A.M.; Oro, J.F. Unsteady Numerical Simulation of an Air-Operated Piston Pump for Lubricating Greases Using Dynamic Meshes. Comput. Fluids 2012, 57, 138–150. [Google Scholar] [CrossRef]
- Akoz, M.S.; Kirkgoz, M.S.; Oner, A.A. Experimental and Numerical Modeling of a Sluice Gate Flow. J. Hydraul. Res. 2009, 47, 167–176. [Google Scholar] [CrossRef]
- Qun-feng, Z.; Pan-pan, Y.A.N.; Jian-ping, S.; Wan-fa, H.E. Numerical Simulation of Inlet and Outlet Pressures Influencing Internal Flow of a Vane Pump. Acta Armamentarii 2014, 35, 1223. [Google Scholar]
- Adkins, D.; Yan, Y.Y. CFD Simulation of Fish-like Body Moving in Viscous Liquid. J. Bionic. Eng. 2006, 3, 147–153. [Google Scholar] [CrossRef]
- Jin, C.; Xu, K.; Chen, S. A Three Dimensional Gas-Kinetic Scheme with Moving Mesh for Low-Speed Viscous Flow Computations. Adv. Appl. Math. Mech 2010, 2, 746–762. [Google Scholar] [CrossRef]
- Kajishima, T.; Takeuchi, S. Simulation of Fluid-Structure Interaction Based on an Immersed-Solid Method. J. Mech. Eng. Sci. 2013, 5, 555–561. [Google Scholar] [CrossRef]
- Yoon, Y.; Park, B.-H.; Shim, J.; Han, Y.-O.; Hong, B.-J.; Yun, S.-H. Numerical Simulation of Three-Dimensional External Gear Pump Using Immersed Solid Method. Appl. Therm. Eng. 2017, 118, 539–550. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, Q.; Bois, G.; Li, H.; Liu, X.; Yuan, S.; Heng, Y. Experimental and Numerical Analysis on Flow Characteristics in a Double Helix Screw Pump. Energies 2019, 12, 3420. [Google Scholar] [CrossRef]
- Qiu, R.; Zhang, W.; Jiang, Q.; Shen, K.; Gread, B.; Yuan, S. Research on Full Flow Passage Characteristics of Double Screw Pump Based on Immersion Entity Method. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; Volume 2186, p. 012015. [Google Scholar]
- Cervone, A.; Bramanti, C.; Rapposelli, E.; d’Agostino, L. Thermal Cavitation Experiments on a NACA 0015 Hydrofoil. J. Fluids Eng. 2006, 128, 326–331. [Google Scholar] [CrossRef]
- Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M. Mind the Gap: A New Insight into the Tip Leakage Vortex Using Stereo-PIV. Exp. Fluids 2014, 55, 1849. [Google Scholar] [CrossRef]
- Nowruzi, H.; Ghassemi, H.; Ghiasi, M. Performance Predicting of 2D and 3D Submerged Hydrofoils Using CFD and ANNs. J. Mar. Sci. Technol. 2017, 22, 710–733. [Google Scholar] [CrossRef]
- Hu, C.; Chen, G.; Yang, L.; Wang, G. Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils. Energies 2018, 11, 2768. [Google Scholar] [CrossRef]
- Day, M.A. The No-Slip Condition of Fluid Dynamics. Erkenntnis 1990, 33, 285–296. [Google Scholar] [CrossRef]
- Schmitt, F.G. About Boussinesq’s Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of Its Validity. Comptes Rendus Mécanique 2007, 335, 617–627. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten Years of Industrial Experience with the SST Turbulence Model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion; Elsevier: Amsterdam, The Netherlands, 1983; pp. 96–116. [Google Scholar]
- Wilcox, D.C. Formulation of the K-w Turbulence Model Revisited. AIAA J. 2008, 46, 2823–2838. [Google Scholar] [CrossRef]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.-J.; Bin Melvin Teo, J.; Kong Chan, W. Fluid Velocity Slip and Temperature Jump at a Solid Surface. Appl. Mech. Rev. 2017, 69, 020801. [Google Scholar] [CrossRef]
- Shu, J.-J.; Teo, J.B.M.; Chan, W.K. A New Model for Fluid Velocity Slip on a Solid Surface. Soft Matter 2016, 12, 8388–8397. [Google Scholar] [CrossRef]
- Morris, D.L.; Hannon, L.; Garcia, A.L. Slip Length in a Dilute Gas. Phys. Rev. A 1992, 46, 5279–5281. [Google Scholar] [CrossRef]
- Pope, S.B. The Scales of Turbulent Motion. Turbul. Flows 2000, 1, 195–197. [Google Scholar]
- Pöschl, T. Mechanische Ähnlichkeit. In Lehrbuch der Technischen Mechanik für Ingenieure und Physiker; Springer: Berlin/Heidelberg, Germany, 1930; pp. 307–311. [Google Scholar]
- Yang, X.I.A.; Xia, Z.-H.; Lee, J.; Lv, Y.; Yuan, J. Mean Flow Scaling in a Spanwise Rotating Channel. Phys. Rev. Fluids 2020, 5, 074603. [Google Scholar] [CrossRef]
- Menter, F.; Esch, T. Elements of Industrial Heat Transfer Predictions. In Proceedings of the 16th Brazilian Congress of Mechanical Engineering (COBEM), Uberlândia, Brazil, 26–30 November 2001; Volume 109, p. 650. [Google Scholar]
- Abbott, I.H.; Von Doenhoff, A.E. Theory of Wing Sections; Dover Publications: Mineola, NY, USA, 1959; pp. 112–115. [Google Scholar]
- Arlinghaus, S. Practical Handbook of Curve Fitting; CRC Press: Boca Raton, FL, USA, 1994; ISBN 0-8493-0143-2. [Google Scholar]
Acronyms | Meaning |
---|---|
IW | In-wall node |
IW* | In-wall point |
NW | Near-wall node |
IB | Point on the immersed-solid boundary |
FL | Fluid node |
FL* | Fluid point |
NIBG | Elements between NW and IW nodes |
NIBF | Elements between NW and FL nodes |
No. | Node Number | Description |
---|---|---|
1 | 30,884 | Very Coarse |
2 | 62,496 | Coarse |
3 | 107,652 | Mid-Coarse |
4 | 175,150 | Mid-Fine |
5 | 257,488 | Fine |
6 | 352,594 | Very Fine |
No. | Node Number | Description | ||
---|---|---|---|---|
Fluid | Solid | Total | ||
1 | 234,248 | 51,720 | 291,368 | Coarse |
2 | 753,984 | 378,840 | 1,132,824 | Fine |
3 | 234,248 | 51,720 | 291,368 | Coarse with Boundary Tracking (Coarse-B) |
4 | 753,984 | 378,840 | 1,132,824 | Fine with Boundary Tracking (Fine-B) |
No-Slip-Wall Case | Immersed-Solid Case | |
---|---|---|
Lift Force, FY | 113.01 [N] | 90.82 [N] |
Drag Force, FX | 4.95 [N] | 10.48 [N] |
Lift/Drag Ratio, FY/FX | 22.83 | 8.67 |
Torque, TZ | 3.29 [N·m] | 2.31 [N·m] |
No-Slip-Wall Case | Immersed-Solid Case | |
---|---|---|
Total Mesh-Node Number, Nmn | 257,488 | 1,132,824 |
Total Mesh-Element Number | 241,542 | 1,077,732 |
Timesteps Converged to RMS, 1.0 × 10−5 Scc | 236 | 81 |
Clock Time until Convergence, tcc | 1782.6 [s] | 1440.3 [s] |
Clock Time per Timestep, tcc/Scc | 7.55 [s] | 17.78 [s] |
Clock Time per Mesh Node, tcc/Mmn | 0.0069 [s] | 0.0013 [s] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Zhu, D.; Xiao, R.; Tao, R. Comparative Evaluation of the Immersed-Solid Method for Simulating the Flow Field around Hydrofoil. Sustainability 2023, 15, 3493. https://doi.org/10.3390/su15043493
Hu Z, Zhu D, Xiao R, Tao R. Comparative Evaluation of the Immersed-Solid Method for Simulating the Flow Field around Hydrofoil. Sustainability. 2023; 15(4):3493. https://doi.org/10.3390/su15043493
Chicago/Turabian StyleHu, Zilong, Di Zhu, Ruofu Xiao, and Ran Tao. 2023. "Comparative Evaluation of the Immersed-Solid Method for Simulating the Flow Field around Hydrofoil" Sustainability 15, no. 4: 3493. https://doi.org/10.3390/su15043493
APA StyleHu, Z., Zhu, D., Xiao, R., & Tao, R. (2023). Comparative Evaluation of the Immersed-Solid Method for Simulating the Flow Field around Hydrofoil. Sustainability, 15(4), 3493. https://doi.org/10.3390/su15043493