Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools
Abstract
:1. Introduction
2. Conceptual Framework
3. Research Method and Data Collection
3.1. Research Method
3.2. Data Collection
4. Findings
4.1. Descriptive Bibliometric Analysis
4.2. Annual Scientific Production
4.3. Keywords
4.4. Countries/Regions
4.5. Authors and Co-Authorship
4.6. The Most Productive Journals
4.7. The Most Influential Publications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brundtland, G.H. Our common future—Call for action. Environ. Conserv. 1987, 14, 291–294. [Google Scholar] [CrossRef]
- United Nations Development Programme. World Energy Assessment: Energy and the Challenge of Sustainability; UNDP: New York, NY, USA, 2000. [Google Scholar]
- Vera, I.; Langlois, L.; Rogner, H.H. Indicators for sustainable energy development. In Energy Indicators for Sustainable Development: Country Studies on Brazil, Cuba, Lithuania Mexico, Russian Federation, Slovakia and Thailand; International Atomic Energy Agency: Vienna, Austria; United Nations: New York, NY, USA, 2007; pp. 5–16. [Google Scholar]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy efficiency and sustainable development goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Qudrat-Ullah, H.; Akrofi, M.M.; Kayal, A. Analyzing actors’ engagement in sustainable energy planning at the local level in Ghana: An empirical study. Energies 2020, 13, 2028. [Google Scholar] [CrossRef]
- Gunnarsdóttir, I.; Davidsdottir, B.; Worrell, E.; Sigurgeirsdóttir, S. Sustainable energy development: History of the concept and emerging themes. Renew. Sustain. Energy Rev. 2021, 141, 110770. [Google Scholar] [CrossRef]
- De Bellis, N. Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics; Scarecrow Press: Lanham, MD, USA, 2009. [Google Scholar]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Lemaire, Glossary of terms in sustainable energy regulation. In Sustainable Energy Regulation Network; University of Warwick: Coventry, UK, 2004; pp. 7–11.
- Sáez-Martínez, F.J.; Lefebvre, G.; Hernández, J.J.; Clark, J.H. Drivers of sustainable cleaner production and sustainable energy options. J. Clean. Prod. 2016, 138, 1–7. [Google Scholar] [CrossRef]
- Rosen, M.A.; Farsi, A. Sustainable Energy Technologies for Seawater Desalination; Academic Press: London, UK, 2022. [Google Scholar]
- Kung, C.C.; McCarl, B.A. Sustainable energy development under climate change. Sustainability 2018, 10, 3269. [Google Scholar] [CrossRef] [Green Version]
- Sgouridis, S.; Csala, D. A framework for defining sustainable energy transitions: Principles, dynamics, and implications. Sustainability 2014, 6, 2601–2622. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Huang, Z.; Chua, K.J. Sustainable energy recovery from thermal processes: A review. Energy Sustain. Soc. 2022, 12, 46. [Google Scholar] [CrossRef]
- Wu, Y.; Ghalkhani, M.; Afshar, E.A.; Karimi, F.; Xia, C.; Van Le, Q.; Vasseghian, Y. Recent progress in Biomass-derived nanoelectrocatalysts for the sustainable energy development. Fuel 2022, 323, 124349. [Google Scholar] [CrossRef]
- Köppl, A.; Schleicher, S.P. What will make energy systems sustainable? Sustainability 2018, 10, 2537. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Scheele, R.; Hauser, W.; Scheel, O.; Minn, F.; Becker, L.; Buchgeister, J.; Hottenroth, H.; Junne, T.; Lehr, U.; Naegler, T.; et al. Sustainability assessments of energy scenarios: Citizens’ preferences for and assessments of sustainability indicators. Energy Sustain. Soc. 2022, 12, 41. [Google Scholar] [CrossRef]
- Mustafa, J.; Almehmadi, F.A.; Alqaed, S.; Sharifpur, M. Building a sustainable energy community: Design and integrate variable renewable energy systems for rural communities. Sustainability 2022, 14, 13792. [Google Scholar] [CrossRef]
- Taylor, P.G.; Abdalla, K.; Quadrelli, R.; Vera, I. Better energy indicators for sustainable development. Nat. Energy 2017, 2, 17117. [Google Scholar] [CrossRef]
- Nieto, N.; Noya, O.; Iturrondobeitia, A.; Sanchez-Fontecoba, P.; Pérez-López, U.; Palomares, V.; Rojo, T. On the road to sustainable energy storage technologies: Synthesis of anodes for na-ion batteries from biowaste. Batteries 2022, 8, 28. [Google Scholar] [CrossRef]
- Unander, F. Energy indicators and sustainable development: The International Energy Agency approach. In Natural Resources Forum; Blackwell Publisher: Oxford, UK, 2005; Volume 29, pp. 377–391. [Google Scholar]
- Shrestha, P. Global Energy Use Projected to Nearly Double by 2050; Energy Live News: London, UK, 2020; Volume 8. [Google Scholar]
- Brodny, J.; Tutak, M. Assessing sustainable energy development in the central and eastern European countries and analyzing its diversity. Sci. Total Environ. 2021, 801, 149745. [Google Scholar] [CrossRef]
- Žičkienė, A.; Morkunas, M.; Volkov, A.; Balezentis, T.; Streimikiene, D.; Siksnelyte-Butkiene, I. Sustainable energy development and climate change mitigation at the local level through the lens of renewable energy: Evidence from Lithuanian case study. Energies 2022, 15, 980. [Google Scholar] [CrossRef]
- Chen, J.; Kong, Y.; Yin, S.; Xia, J. A comparative method for assessment of sustainable energy development across regions: An analysis of 30 Provinces in China. Energies 2022, 15, 5761. [Google Scholar] [CrossRef]
- Razmjoo, A.; Rezaei, M.; Mirjalili, S.; Majidi Nezhad, M.; Piras, G. Development of sustainable energy use with attention to fruitful policy. Sustainability 2021, 13, 13840. [Google Scholar] [CrossRef]
- IRENA. International Renewable Energy Agency Dataset. Available online: https://www.irena.org/publications/2022/Jul/Renewable-Energy-Statistics-2022 (accessed on 9 December 2022).
- Almagtome, A.H.; Al-Yasiri, A.J.; Ali, R.S.; Kadhim, H.L.; Heider, N.B. Circular economy initiatives through energy accounting and sustainable energy performance under integrated reporting framework. Int. J. Math. Eng. Manag. Sci. 2020, 5, 1032. [Google Scholar] [CrossRef]
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1998. [Google Scholar]
- Ki-Moon, B. Sustainable Energy for All: A Vision Statement; United Nations: New York, NY, USA, 2011; Available online: www.sustainableenergyforall.org (accessed on 5 December 2022).
- Akpınar, A.; Kömürcü, M.İ.; Kankal, M.; Özölçer, İ.H.; Kaygusuz, K. Energy situation and renewables in Turkey and environmental effects of energy use. Renew. Sustain. Energy Rev. 2008, 12, 2013–2039. [Google Scholar] [CrossRef]
- Abdullah, F.B.; Iqbal, R.; Ahmad, S.; El-Affendi, M.A.; Abdullah, M. An empirical analysis of sustainable energy security for energy policy recommendations. Sustainability 2022, 14, 6099. [Google Scholar] [CrossRef]
- Ren, J.; Sovacool, B.K. Quantifying, measuring, and strategizing energy security: Determining the most meaningful dimensions and metrics. Energy 2014, 76, 838–849. [Google Scholar] [CrossRef]
- Su, C.W.; Khan, K.; Umar, M.; Zhang, W. Does renewable energy redefine geopolitical risks? Energy Policy 2021, 158, 112566. [Google Scholar] [CrossRef]
- Overland, I.; Bazilian, M.; Uulu, T.I.; Vakulchuk, R.; Westphal, K. The GeGaLo index: Geopolitical gains and losses after energy transition. Energy Strategy Rev. 2019, 26, 100406. [Google Scholar] [CrossRef]
- Overland, I. The geopolitics of renewable energy: Debunking four emerging myths. Energy Res. Soc. Sci. 2019, 49, 36–40. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019, 49, 1020–1045. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Zhang, Z.; Gu, Z.; Zhong, H.; Zha, Q.; Yang, L.; Zhu, C.; Chen, E. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 2020, 8, 816. [Google Scholar] [CrossRef]
- Tarakcioglu, A.A. Global research trends of integrated reporting with network map technique analysis. East. Eur. J. Enterp. Technol. 2022, 5, 117–125. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, Z.; Chen, X. Paper Analysis of the Relevance of Place Attachment to Environment-Related Behavior: A Systematic Literature Review. Sustainability 2022, 14, 16073. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Dai, X.; Qi, M.; Liu, B. China’s Policy Environment’s development and path from the perspective of policy sustainability: A visual analysis based on CNKI and WoS. Sustainability 2022, 14, 16435. [Google Scholar] [CrossRef]
- Kuzior, A.; Sira, M. A bibliometric analysis of blockchain technology research using VOSviewer. Sustainability 2022, 14, 8206. [Google Scholar] [CrossRef]
- Kemeç, A. Analysis of smart city global research trends with network map technique. Manag. Res. Pract. 2022, 14, 46–59. [Google Scholar]
- Nandiyanto, A.B.D.; Al Husaeni, D.F. A bibliometric analysis of materials research in Indonesian journal using VOSviewer. J. Eng. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Guleria, D.; Kaur, G. Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019. Libr. Hi Tech 2021, 39, 1001–1024. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Wang., L. Topic evolution and emerging topic analysis based on open source software. Inf. Sci. 2020, 5, 126–136. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Chen, C. The Citespace Manual; College of Computing and Informatics, Drexel University: Philadelphia, PA, USA, 2014; pp. 1–84. [Google Scholar]
- Web of Science. Web of Science Core Collection. Available online: https://clarivate.com/webofsciencegroup/solutions/web-of-science/ (accessed on 12 December 2022).
- Zhu, J.; Liu, W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Yang, R.; Zhao, Z. Critical Review of English Literature for National Parks Based on Bibliometric Analysis. Chin. Landsc. Archit. 2018, 7, 23–28. [Google Scholar]
- Thelwall, M. Bibliometrics to webometrics. J. Inf. Sci. 2008, 34, 605–621. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace. Electron. Commer. Res. 2020, 22, 787–809. [Google Scholar] [CrossRef]
- Perelman, L.J. Speculations on the transition to sustainable energy. In Energy Transitions; Routledge: Oxfordshire, UK, 1980; pp. 185–216. [Google Scholar]
- Fang, Y.; Yin, J.; Wu, B. Climate change and tourism: A scientometric analysis using CiteSpace. J. Sustain. Tour. 2018, 26, 108–126. [Google Scholar] [CrossRef]
- Benato, A.; De Vanna, F.; Stoppato, A. Levelling the photovoltaic power profile with the integrated energy storage system. Energies 2022, 15, 9521. [Google Scholar] [CrossRef]
- Sornek, K.; Papis-Frączek, K. Development and tests of the solar air heater with thermal energy storage. Energies 2022, 15, 6583. [Google Scholar] [CrossRef]
- Jain, J.; Walia, N.; Singh, S.; Jain, E. Mapping the field of behavioural biases: A literature review using bibliometric analysis. Manag. Rev. Q. 2022, 72, 823–855. [Google Scholar] [CrossRef]
- Esfahani, H.; Tavasoli, K.; Jabbarzadeh, A. Big data and social media: A scientometrics analysis. Int. J. Data Netw. Sci. 2019, 3, 145–164. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Q.; Ali, S.; Zhai, X.; Bi, X.; Liu, R. Rehabilitation using virtual reality technology: A bibliometric analysis, 1996–2015. Scientometrics 2016, 109, 1547–1559. [Google Scholar] [CrossRef]
- Chen, W.; Geng, Y.; Zhong, S.; Zhuang, M.; Pan, H. A bibliometric analysis of ecosystem services evaluation from 1997 to 2016. Environ. Sci. Pollut. Res. 2020, 27, 23503–23513. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, C.S. Does natural resources matter for sustainable energy development in China: The role of technological progress. Resour. Policy 2022, 79, 103077. [Google Scholar] [CrossRef]
- Beaver, D.; Rosen, R. Studies in scientific collaboration: Part I. The professional origins of scientific co-authorship. Scientometrics 1978, 1, 65–84. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, J.; Chen, W.; Jin, R.; Li, B.; Pan, Z. A holistic review of cement composites reinforced with graphene oxide. Constr. Build. Mater. 2018, 171, 291–302. [Google Scholar] [CrossRef]
- Streimikiene, D.; Baležentis, T.; Kriščiukaitienė, I. Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania. Energy Policy 2012, 50, 699–710. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Zhang, Y.; Kumar, A.; Zavadskas, E.; Streimikiene, D. Measuring the impact of renewable energy, public health expenditure, logistics, and environmental performance on sustainable economic growth. Sustain. Dev. 2020, 28, 833–843. [Google Scholar] [CrossRef]
- Streimikiene, D. Indicators for sustainable energy development in Lithuania. Nat. Resour. Forum 2005, 29, 322–333. [Google Scholar] [CrossRef]
- Štreimikienė, D. Impact of environmental taxes on sustainable energy development in Baltic States, Czech Republic and Slovakia. Econ. Manag. 2015, 8, 4–23. [Google Scholar] [CrossRef] [Green Version]
- Dzikowski, P. A bibliometric analysis of born global firms. J. Bus. Res. 2018, 85, 281–294. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Dunn, S. Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 2002, 27, 235–264. [Google Scholar] [CrossRef]
- Momirlan, M.; Veziroglu, T.N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energy 2005, 30, 795–802. [Google Scholar] [CrossRef]
- Edwards, P.P.; Kuznetsov, V.L.; David, W.I.; Brandon, N.P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008, 36, 4356–4362. [Google Scholar] [CrossRef]
- Seyfang, G.; Haxeltine, A. Growing grassroots innovations: Exploring the role of community-based initiatives in governing sustainable energy transitions. Environ. Plan. C Gov. Policy 2012, 30, 381–400. [Google Scholar] [CrossRef] [Green Version]
- Kiss, A.A.; Dimian, A.C.; Rothenberg, G. Solid acid catalysts for biodiesel production- towards sustainable energy. Adv. Synth. Catal. 2006, 348, 75–81. [Google Scholar] [CrossRef]
- Lund, H.; Salgi, G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers. Manag. 2009, 50, 1172–1179. [Google Scholar] [CrossRef]
- Shuit, S.H.; Tan, K.T.; Lee, K.T.; Kamaruddin, A.H. Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy 2009, 34, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Długołȩcki, P.; Gambier, A.; Nijmeijer, K.; Wessling, M. Practical potential of reverse electrodialysis as process for sustainable energy generation. Environ. Sci. Technol. 2009, 43, 6888–6894. [Google Scholar] [CrossRef]
- Seyfang, G.; Hielscher, S.; Hargreaves, T.; Martiskainen, M.; Smith, A. A grassroots sustainable energy niche? Reflections on community energy in the UK. Environ. Innov. Soc. Transit. 2014, 13, 21–44. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Timespan | 1980–2022 |
Sources (Journals) | 636 |
Documents | 1498 |
Document average age | 5.99 |
Years on average since publication | 35.66 |
Per-document average for citations | 21.85 |
References | 64,505 |
Authors | 4466 |
Single-authored documents | 239 |
Multi-authored documents | 1259 |
Collaboration Index 1 | 3.35 |
R * | C * | K * | A * | TLS * | AP * |
---|---|---|---|---|---|
1 | 10 | Renewable energy | 222 | 632 | 2016 |
2 | 3 | Sustainable energy | 344 | 550 | 2017 |
3 | 6 | Sustainability | 151 | 476 | 2018 |
4 | 9 | Sustainable development | 99 | 396 | 2014 |
5 | 5 | Energy | 76 | 340 | 2017 |
6 | 5 | Energy efficiency | 73 | 287 | 2016 |
7 | 7 | Energy transition | 66 | 213 | 2018 |
8 | 4 | Energy policy | 68 | 210 | 2017 |
9 | 2 | Biomass | 60 | 180 | 2015 |
10 | 3 | Climate change | 34 | 159 | 2017 |
CR * | C * | A * | TA * | SCP * | MCP * | F * | MCP_Ratio * |
---|---|---|---|---|---|---|---|
China | 2 | 153 | 3887 | 87 | 66 | 0.102 | 0.431 |
USA | 7 | 147 | 7269 | 112 | 35 | 0.098 | 0.238 |
United Kingdom | 3 | 110 | 3712 | 84 | 26 | 0.073 | 0.236 |
India | 1 | 79 | 877 | 64 | 15 | 0.053 | 0.190 |
Germany | 6 | 72 | 1176 | 58 | 14 | 0.048 | 0.194 |
Italy | 5 | 58 | 1230 | 46 | 12 | 0.039 | 0.207 |
The Netherlands | 1 | 48 | 1682 | 40 | 8 | 0.032 | 0.167 |
Canada | 6 | 42 | 393 | 28 | 14 | 0.028 | 0.333 |
Spain | 2 | 42 | 440 | 31 | 11 | 0.028 | 0.262 |
Turkey | 2 | 41 | 500 | 37 | 4 | 0.027 | 0.098 |
R * | AU * | TA * | CA * | FA * | CR * | H-Index |
---|---|---|---|---|---|---|
1 | Štreimikienė, Dalia | 15 | Lithuanian Institute of Agrarian Economics | 2005 | Lithuania | 41 |
2 | Breyer, Christian | 9 | LUT University | 2017 | Finland | 40 |
3 | Bak, Tadeusz | 8 | Western Sydney University | 2014 | Australia | 13 |
4 | Nowotny, Janusz | 7 | Western Sydney University | 2014 | Australia | 39 |
5 | Atanacio, Armand J. | 6 | Australian Nuclear Science and Technology Organization | 2016 | Australia | 11 |
6 | Kuzemko, Caroline | 6 | University of Warwick | 2016 | England | 14 |
7 | Balezentis, Tomas | 6 | Lithuanian Institute of Agrarian Economics | 2012 | Lithuania | 36 |
8 | Ionescu, Mihail | 6 | Australian Nuclear Science and Technology Organization | 2016 | Australia | 26 |
9 | Wang, Zhong Lin | 5 | Georgia Institute of Technology | 2010 | USA | 264 |
10 | Rahman, Kazi Akikur | 5 | United States Department of Energy | 2018 | USA | 4 |
R * | J * | I * | P * | CR * | TA * (%) | TC * | H-Index | IF (2021) 1 | FA * | JCI 2 |
---|---|---|---|---|---|---|---|---|---|---|
1 | Energy Policy | SCIE | Elsevier | England | 84 (5.6) | 3904 | 212 | 7.576 | 1997 | 1.64 |
2 | Sustainability | SSCI | MDPI | Switzerland | 65 (4.3) | 530 | 109 | 3.889 | 2009 | 0.65 |
3 | Energies | SCIE | MDPI | Switzerland | 58 (3.8) | 497 | 111 | 3.252 | 2008 | 0.45 |
4 | Journal of Cleaner Production | SCIE | Elsevier | England | 56 (3.7) | 1234 | 232 | 11.072 | 1993 | 1.51 |
5 | Renewable Energy | SCIE | Elsevier | England | 39 (2.6) | 1141 | 337 | 8.634 | 1991 | 1.38 |
6 | Energy | SCIE | Elsevier | England | 35 (2.3) | 1705 | 212 | 8.857 | 1976 | 1.46 |
7 | Applied Energy | SCIE | Elsevier | England | 31 (2.06) | 1130 | 235 | 11.446 | 1997 | 1.67 |
8 | Renewable Sustainable Energy Reviews | SCIE | Elsevier | England | 25 (1.66) | 721 | 337 | 16.799 | 1997 | 1.26 |
9 | Energy Research Social Science | SSCI | Elsevier | The Netherlands | 21 (1.4) | 720 | 76 | 8.514 | 2014 | 1.75 |
10 | Sustainable Energy Technologies and Assessments | SSCI | Elsevier | The Netherlands | 19 (1.26) | 212 | 48 | 7.632 | 2013 | 1.07 |
R * | T * | Y * | TC * | CC * | AC * |
---|---|---|---|---|---|
1 | “The path towards sustainable energy” [72]. | 2017 | 2268 | 6.94% | 378 |
2 | “Hydrogen futures: toward a sustainable energy system” [73]. | 2002 | 1000 | 3.05% | 47.62 |
3 | “The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet” [74]. | 2005 | 679 | 2.07% | 37.72 |
4 | “Hydrogen and fuel cells: Towards a sustainable energy future” [75]. | 2008 | 635 | 1.94% | 42.33 |
5 | “Growing grassroots innovations: exploring the role of community-based initiatives in governing sustainable energy transitions” [76]. | 2012 | 497 | 1.52% | 45.18 |
6 | “Solid acid catalysts for biodiesel production—Towards sustainable energy” [77]. | 2006 | 459 | 1.4% | 27.00 |
7 | “The role of compressed air energy storage (CAES) in future sustainable energy systems” [78]. | 2009 | 362 | 1.1% | 25.86 |
8 | “Oil palm biomass as a sustainable energy source: A Malaysian case study” [79]. | 2009 | 316 | 0.96% | 22.57 |
9 | “Practical Potential of Reverse Electrodialysis as Process for Sustainable Energy Generation” [80]. | 2009 | 249 | 0.76% | 17.79 |
10 | “A grassroots sustainable energy niche? Reflections on community energy in the UK” [81]. | 2014 | 241 | 0.73% | 26.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemeç, A.; Altınay, A.T. Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools. Sustainability 2023, 15, 3618. https://doi.org/10.3390/su15043618
Kemeç A, Altınay AT. Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools. Sustainability. 2023; 15(4):3618. https://doi.org/10.3390/su15043618
Chicago/Turabian StyleKemeç, Abidin, and Ayşenur Tarakcıoglu Altınay. 2023. "Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools" Sustainability 15, no. 4: 3618. https://doi.org/10.3390/su15043618
APA StyleKemeç, A., & Altınay, A. T. (2023). Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools. Sustainability, 15(4), 3618. https://doi.org/10.3390/su15043618