Structural Performance of Foamed Asphalt Base in a Full Depth Reclaimed and Sustainable Pavement
Abstract
:1. Introduction
2. Background
3. Test Site, Materials, and Testing
4. Analysis and Results
4.1. Data Processing
4.2. Moduli Assessment
4.3. Correlations between FA Moduli and DBPs
5. Conclusions
- The FA modulus was estimated to be approximately 1500 and 2500 MPa for Periods A (early life performance) and B (long-term performance), respectively, in accordance with past studies. The increase of FA moduli values in Period B produces evidence in support of the FA curing effect on improving overall pavement performance.
- Regarding the back-analysis processes, it was observed that the EEVER of FA material during Period A exhibited increased variance, which was not expected for a relatively short investigatory length shortly after pavement rehabilitation. In addition, no significant correlations were observed between DBPs and EEVER. As such, the use of EVERCALC upon FA moduli estimation may not be suitable enough.
- On the contrary, it seems that the GA tool was more consistent in terms of FA modulus estimation based on the lower variance observed in the back-calculated moduli of Period A. From the regression analysis, the effect size of the correlation coefficient was acceptable for the case of EGEN and DBPs-estimated FA moduli.
- The potential of using DBPs as reliable indexes for evaluating the structural conditions of the FA-stabilized base materials was demonstrated. In more detail, the deflection index d200 − d450 was found to be an optimal indicator for the assessment of the FA-stabilized base structural condition, as it was significantly correlated with FA modulus for both investigation periods.
- As a result, GA seems to exhibit an advantage over other more conventional tools for the back-analysis of pavement stiffness and the suitability assessment of DBPs for FA modulus estimation at non-conventional and sustainable pavement structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Goulias, D.; Tefa, L.; Bassani, M. Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation. Sustainability 2021, 13, 8611. [Google Scholar] [CrossRef]
- Tebaldi, G.; Dave, E.; Hugener, M.; Falchetto, A.C.; Perraton, D.; Grilli, A.; Lo Presti, D.; Pasetto, M.; Loizos, A.; Jenkins, K.; et al. Cold Recycling of Reclaimed Asphalt Pavements. In Testing and Characterization of Sustainable Innovative Bituminous Materials and Systems; Partl, M., Porot, L., Di Benedetto, H., Canestrari, F., Marsac, P., Tebaldi, G., Eds.; RILEM State-of-the-Art Reports; Springer: Cham, Switzerland, 2018; Volume 24, pp. 239–296. [Google Scholar]
- Baldo, N.; Rondinella, F.; Daneluz, F.; Pasetto, M. Foamed Bitumen Mixtures for Road Construction Made with 100% Waste Materials: A Laboratory Study. Sustainability 2022, 14, 6056. [Google Scholar] [CrossRef]
- Thives, L.P.; Ghisi, E. Asphalt mixtures emission and energy consumption: A review. Renew. Sustain. Energy Rev. 2017, 72, 473–484. [Google Scholar] [CrossRef]
- Bocci, M.A.; Bocci, M.; Grilli, A.; Cardone, F.; Ferrotti, G. Full-depth reclamation for the rehabilitation of local roads: A case study. Int. J. Pavement Eng. 2014, 15, 191–201. [Google Scholar] [CrossRef]
- Mondal, P.G.; Kuna, K.K. Influence of bitumen foam characteristics on moisture susceptibility of foamed bitumen stabilised mixes. Int. J. Pavement Eng. 2022. [Google Scholar] [CrossRef]
- Sangiorgi, C.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. A laboratory and filed evaluation of Cold Recycled Mixture for base layer entirely made with Reclaimed Asphalt Pavement. Constr. Build. Mater. 2017, 138, 232–239. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A. Application Of The Foamed Bitumen And Bitumen Emulsion To The Road Base Mixes In The Deep Cold Recycling Technology. Balt. J. Road Bridge Eng. 2016, 11, 291–301. [Google Scholar] [CrossRef]
- Wayne-Lee, K.W.; Mueller, M.; Singh, A. Cold in-place recycling as a sustainable pavement practice. J. Civ. Eng. Archit. 2016, 8, 680–692. [Google Scholar]
- Chen, Z.; Yi, J.; Zhao, H.; Luan, H.; Xu, M.; Zhang, L.; Feng, D. Strength development and deterioration mechanisms of foamed asphalt cold recycled mixture based on MD simulation. Constr. Build. Mater. 2020, 269, 121324. [Google Scholar] [CrossRef]
- Gonzalo-Orden, H.; Linares-Unamunzaga, A.; Pérez-Acebo, H.; Díaz-Minguela, J. Advances in the Study of the Behavior of Full-Depth Reclamation (FDR) with Cement. Appl. Sci. 2019, 9, 3055. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Huang, W.; Hu, B.; Xiao, Z.; Hassan, H.M.Z.; Wu, K. Study on the Road Performance of Foamed Warm-Mixed Reclaimed Semi-Flexible Asphalt Pavement Material. Materials 2021, 14, 5379. [Google Scholar] [CrossRef] [PubMed]
- Deb, P.; Singh, K.L. Effect of Curing on Failure Characteristics of Cold Mix Asphalt Containing Different Fillers. Iran. J. Sci. Technol. Trans. Civ. Eng. 2023. [Google Scholar] [CrossRef]
- Skotnicki, L.; Kuźniewski, J.; Szydlo, A. Stiffness Identification of Foamed Asphalt Mixtures with Cement, Evaluated in Laboratory and In Situ in Road Pavements. Materials 2020, 13, 1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mugume, R.B. Investigation of Foamed Bitumen Mixes Using Reclaimed Asphalt Pavement Materials for Cold Recycling Technology. Int. J. Pavement Res. Technol. 2022, 15, 98–110. [Google Scholar] [CrossRef]
- Bazrafshan-Moghadam, B.; Farhad-Mollashahi, H. Suggesting a Simple Design Method for Cold Recycled Asphalt Mixes with Asphalt Emulsion. J. Civ. Eng. Manag. 2017, 23, 966–976. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.H.; Bilyeu, J.; Scullion, T.; Nazarian, S.; Chiu, C.T. Failure Investigation of a Foamed-Asphalt Highway Project. J. Infrastruct. Syst. 2006, 12, 33–40. [Google Scholar] [CrossRef]
- Kim, Y.; Im, S.; Lee, H. Impacts of Curing Time And Moisture Content on Engineering Properties of Cold In-Place Recycling Mixtures Using Foamed or Emulsified Asphalt. J. Mater. Civ. Eng. 2011, 23, 542–553. [Google Scholar] [CrossRef]
- Khosravifar, S.; Schwartz, C.W.; Goulias, D.G. Mechanistic structural properties of foamed asphalt stabilised base materials. Int. J. Pavement Eng. 2015, 16, 27–38. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, H.D. Performance Evaluation of Cold In-place Recycling Mixtures Using Emulsified Asphalt Based on Dynamic Modulus, Flow Number, Flow Time, and Raveling Loss. KSCE J. Civ. Eng. 2012, 16, 586–593. [Google Scholar] [CrossRef]
- Fu, P.; Jones, D.; Harvey, J.T.; Bukhari, S.A. Laboratory Test Methods for Foamed Asphalt Mix Resilient Modulus. Road Mater. Pavement Des. 2009, 10, 188–212. [Google Scholar] [CrossRef]
- Khosravifar, S.; Schwartz, C.W.; Goulias, D.G. Foamed Asphalt Stabilized Base: A Case Study. In Airfield and Highway Pavement 2013: Sustainable and Efficient Pavements; ASCE: Reston, VA, USA, 2013; pp. 106–117. [Google Scholar]
- Ramanujam, J.M.; Jones, J.D. Characterization of foamed-bitumen stabilization. Int. J. Pavement Eng. 2007, 8, 111–122. [Google Scholar] [CrossRef]
- Louw, S.; Wu, R.; Hammack, J.; Jones, D. Development of an Improved Test Setup for Measuring the Resilient Modulus of Stabilized Pavement Materials. Transp. Res. Rec. 2019, 2673, 304–313. [Google Scholar] [CrossRef]
- Loizos, A.; Papavasiliou, V. Effect of Temperature Fluctuations on the Bearing Capacity of Cold In-Depth Recycled Pavements. Sustainability 2022, 14, 426. [Google Scholar] [CrossRef]
- Gkyrtis, K.; Plati, C.; Loizos, A. Mechanistic Analysis of Asphalt Pavements in Support of Pavement Preservation Decision-Making. Infrastructures 2022, 7, 61. [Google Scholar] [CrossRef]
- Marecos, V.; Fontul, S.; Antunes, M.L.; Solla, M. Evaluation of a highway pavement using non-destructive tests: FallingWeight Deflectometer and Ground Penetrating Radar. Constr. Build. Mater. 2017, 154, 1164–1172. [Google Scholar] [CrossRef]
- WSDOT. Everseries User’s Guide—Pavement Analysis Computer Software and Case Studies; Washington State Department of Transportation: Washington, DC, USA, 2005. [Google Scholar]
- Pan, E.; Chen, E.; Alkasawneh, W. Layered flexible pavement studies: Challenges in forward and inverse problems. Int. J. Pavement Res. Technol. 2008, 1, 12–16. [Google Scholar]
- Hakim, B.; Brown, S.F. Pavement Analysis Using the FWD: Practical Difficulties and Proposed Simplification. In Proceedings of the 10th International Conference on Asphalt Pavement, Quebec, QC, Canada, 12–17 August 2006; pp. 59–68. [Google Scholar]
- Horak, E. Benchmarking the structural condition of flexible pavements with deflection bowl parameters. J. S. Afr. Inst. Civ. Eng. 2008, 50, 2–9. [Google Scholar]
- Van-Geem, C.; Nigro, P.; Berlemont, B. The Use of Deflection Measurements in Pavement Management of the Primary Road Network of Wallonia, Belgium. In Proceedings of the 9th International Conference on Managing Pavement Assets (ICMPA), Washington, DC, USA, 18–21 May 2015. [Google Scholar]
- Kavussi, A.; Abbasghorbani, M.; Moghadas-Nejad, F.; Bamdad-Ziksari, A. A new method to determine maintenance and repair activities at network level pavement management using falling weight Deflectometer. J. Civ. Eng. Manag. 2017, 23, 338–346. [Google Scholar] [CrossRef]
- Cong, L.; Lytton, R.L.; Xie, Z. Sublayer Strength Evaluation with FWD in Semi-rigid Base Asphalt Pavement Rehabilitation Project. In Proceedings of the GeoShanghai International Conference, Shanghai, China, 3–5 June 2010; pp. 392–397. [Google Scholar]
- Cui, X.; Dong, Q.; Ni, F.; Liang, X. Evaluation of Semi-rigid Base Performance Through Numerical Simulation and Data Mining of Pavement Deflection Basin. In Proceedings of the GeoShanghai 2018 International Conference: Transportation Geotechnics and Pavement Engineering, Singapore, 27–30 May 2018; pp. 364–371. [Google Scholar]
- Elbagalati, O.; Elseifi, M.A.; Gaspard, K.; Zhang, Z. Implementation of the Structural Condition Index into the Louisiana Pavement Management System Based on Rolling Wheel Deflectometer Testing. Transp. Res. Rec. 2017, 2641, 39–47. [Google Scholar] [CrossRef]
- Goktepe, S.; Agar, E.; Lav, A.H. Advances in backcalculating the mechanical properties of flexible pavements. Adv. Eng. Softw. 2006, 37, 421–431. [Google Scholar] [CrossRef]
- Guzina, B.B.; Osburn, R.H. Effective Tool for Enhancing Elastostatic Pavement Diagnosis. Transp. Res. Rec. 2002, 1806, 30–37. [Google Scholar] [CrossRef]
- Akbarzadeh, H.; Bayat, A.; Soleymani, H.R. Analytical Review of the HMA Temperature Correction Factors from Laboratory and Falling Weight Deflectometer Tests. Int. J. Pavement Res. Technol. 2012, 5, 30–39. [Google Scholar]
- Zang, G.; Li, L.; Chen, Z.; Sun, L. A Nondestructive Evaluation Method for Semi-Rigid Base Cracking Condition. In Proceedings of the 96th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 8–12 January 2017. [Google Scholar]
- Georgouli, K.; Pomoni, M.; Cliatt, B.; Loizos, A. A simplified approach for the estimation of HMA dynamic modulus for in service pavements. In Proceedings of the 6th International Conference on Bituminous Mixtures and Pavements (ICONFBMP), Thessaloniki, Greece, 10–12 June 2015; pp. 661–670. [Google Scholar]
- Fwa, T.F.; Tan, C.Y.; Chan, W.T. Backcalculation analysis of pavement layer moduli using genetic algorithms. Transp. Res. Rec. 1997, 1570, 134–142. [Google Scholar] [CrossRef]
- Amaranatha-Reddy, M.; Sudhakar-Reddy, K.; Pandey, B.B. Selection of Genetic Algorithm Parameters for Backcalculation of Pavement Moduli. Int. J. Pavement Eng. 2004, 5, 81–90. [Google Scholar] [CrossRef]
- Plati, C.; Georgouli, K.; Cliatt, B.; Loizos, A. Incorporation of GPR data into genetic algorithms for assessing recycled pavements. Constr. Build. Mater. 2017, 154, 1263–1271. [Google Scholar] [CrossRef]
- ASTM D6931-17; Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D1074-17; Standard Test Method for Compressive Strength of Asphalt Mixtures. ASTM International: West Conshohocken, PA, USA, 2017.
- Loizos, A.; Papavasiliou, V.; Plati, C. Investigating in situ stress-dependent behaviour of foamed asphalt-treated pavement materials. Road Mater. Pavement Des. 2012, 13, 678–690. [Google Scholar] [CrossRef]
- Ji, R.; Siddiki, N.; Nantung, T.; Kim, D. Evaluation of resilient modulus of subgrade and base materials in Indiana and its implementation in MEPDG. Sci. World J. 2014, 2014, 372838. [Google Scholar] [CrossRef] [Green Version]
- Horak, E.; Emery, S. Falling Weight Deflectometer Bowl Parameters as Analysis Tool for Pavement Structural Evaluations. In Proceedings of the 22nd ARRB conference: Research into Practice: Proceedings, Canberra, Australia, 29 October–2 November 2006. [Google Scholar]
No. | Indexes | Mathematical Expression | Comments |
---|---|---|---|
1 | Central (maximum) deflection (d0-μm) | - | Overall pavement condition |
2 | Surface Curvature Index (SCI-μm) | d0 − d300 | Surface layer condition |
3 | Base Damage Index (BDI-μm) | d300 − d600 | Surface and intermediate layers condition |
4 | Base Curvature Index (BCI-μm) | d600 − d900 | Intermediate layers condition |
5 | AREA parameter (AREA-dimensionless) | 6(d0 + 2d300 + 2d600 + d900)/d0 | Overall pavement condition |
6 | Area Under Pavement Profile (AUPP-μm) | 0.5(5d0 − 2d300 − 2d600 − d900) | Upper layers condition |
7 | Deflection at the outer geophone (d1800-μm) | - | Subgrade condition |
Statistics for FA Modulus | Period A | Period B | ||
---|---|---|---|---|
EEVER | EGEN | EEVER | EGEN | |
Min modulus (MPa) | 500 | 848 | 500 | 765 |
Median modulus (MPa) | 1633 | 1427 | 2317 | 2592 |
Max modulus (MPa) | 3711 | 2475 | 8708 | 7267 |
Average modulus (MPa) | 1833 | 1496 | 2844 | 2849 |
CV (%) | 45.3% | 28.0% | 80.2% | 61.4% |
Parameters | Period A | Period B | ||
---|---|---|---|---|
Variable 1 EEVER | Variable 2 EGEN | Variable 1 EEVER | Variable 2 EGEN | |
Mean (MPa) | 1833 | 1496 | 2844 | 2849 |
Variance | 688,248 | 175,516 | 5,205,351 | 3,055,880 |
Observations | 37 | 37 | 37 | 37 |
df | 72 | 72 | ||
t Stat | 2.2070 | −0.0108 | ||
p (T ≤ t) one-tail | 0.0153 | 0.4957 | ||
t Critical one-tail | 1.6663 | 1.6663 | ||
p (T ≤ t) two-tail | 0.0305 | 0.9914 | ||
t Critical two-tail | 1.9934 | 1.9934 |
Period A—GENETIC | Period B—GENETIC | Period B—EVERCALC | ||||
---|---|---|---|---|---|---|
Index: d200 − d450 | Variable 1: EGEN-A | Variable 2: Ed200 − d450 | Variable 1: EGEN-B | Variable 2: Ed200 − d450 | Variable 1: EEVER-B | Variable 2: Ed200 − d450 |
Mean E (MPa) | 1496 | 1481 | 2849 | 2804 | 2844 | 2532 |
Variance | 175,516 | 125,252 | 3,055,880 | 2,627,671 | 5,205,351 | 2,412,400 |
Observations | 37 | 37 | 37 | 37 | 37 | 37 |
df | 72 | 72 | 72 | |||
t Stat | 0.1661 | 0.1159 | 0.6865 | |||
p (T ≤ t) one-tail | 0.4343 | 0.4540 | 0.2473 | |||
t Critical one-tail | 1.6663 | 1.6663 | 1.6663 | |||
p (T ≤ t) two-tail | 0.8685 | 0.9080 | 0.4946 | |||
t Critical two-tail | 1.9935 | 1.9935 | 1.9935 | |||
Index: d200 − d600 | Variable 1: EGEN-A | Variable 2: Ed200 − d600 | Variable 1: EGEN-B | Variable 2: Ed200 − d600 | Variable 1: EEVER-B | Variable 2: Ed200 − d600 |
Mean E (MPa) | 1496 | 1480 | 2849 | 2794 | 2844 | 2516 |
Variance | 175,516 | 124,360 | 3,055,880 | 2,553,681 | 5,205,351 | 2,296,038 |
Observations | 37 | 37 | 37 | 37 | 37 | 37 |
df | 72 | 72 | 72 | |||
t Stat | 0.1761 | 0.1405 | 0.7286 | |||
p (T ≤ t) one-tail | 0.4303 | 0.4443 | 0.2343 | |||
t Critical one-tail | 1.6663 | 1.6663 | 1.6663 | |||
p (T ≤ t) two-tail | 0.8607 | 0.8887 | 0.4686 | |||
t Critical two-tail | 1.9935 | 1.9935 | 1.9935 | |||
Index: d300 − d450 | Variable 1: EGEN-A | Variable 2: Ed300 − d450 | Variable 1: EGEN-B | Variable 2: Ed300 − d450 | Variable 1: EEVER-B | Variable 2: Ed300 − d450 |
Mean E (MPa) | 1496 | 1480 | 2849 | 2804 | 2844 | 2562 |
Variance | 175,516 | 125,323 | 3,055,880 | 2,940,410 | 5,205,351 | 2,963,207 |
Observations | 37 | 37 | 37 | 37 | 37 | 37 |
df | 72 | 72 | 72 | |||
t Stat | 0.1749 | 0.1126 | 0.5991 | |||
p (T ≤ t) one-tail | 0.4308 | 0.4553 | 0.2755 | |||
t Critical one-tail | 1.6663 | 1.6663 | 1.6663 | |||
p (T ≤ t) two-tail | 0.8617 | 0.9107 | 0.5510 | |||
t Critical two-tail | 1.9935 | 1.9935 | 1.9935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkyrtis, K.; Plati, C.; Loizos, A. Structural Performance of Foamed Asphalt Base in a Full Depth Reclaimed and Sustainable Pavement. Sustainability 2023, 15, 3622. https://doi.org/10.3390/su15043622
Gkyrtis K, Plati C, Loizos A. Structural Performance of Foamed Asphalt Base in a Full Depth Reclaimed and Sustainable Pavement. Sustainability. 2023; 15(4):3622. https://doi.org/10.3390/su15043622
Chicago/Turabian StyleGkyrtis, Konstantinos, Christina Plati, and Andreas Loizos. 2023. "Structural Performance of Foamed Asphalt Base in a Full Depth Reclaimed and Sustainable Pavement" Sustainability 15, no. 4: 3622. https://doi.org/10.3390/su15043622
APA StyleGkyrtis, K., Plati, C., & Loizos, A. (2023). Structural Performance of Foamed Asphalt Base in a Full Depth Reclaimed and Sustainable Pavement. Sustainability, 15(4), 3622. https://doi.org/10.3390/su15043622