Real-Time Power Control of Doubly Fed Induction Generator Using Dspace Hardware
Abstract
:1. Introduction
1.1. Background
1.2. Motivation and Contribution
2. Description of the System
2.1. Wind Turbine
2.2. Doubly Fed Induction Generator
2.3. Back-to-Back Converter
3. DFIG Control
3.1. Rotor Side Control
3.2. Grid Side Control
4. Experimental Test Bench
- Construction of the control system using Simulink blocks.
- Simulation of the system to see the results in different scenarios.
- Real-time execution of the model through the DS1104 board.
- Realize and test the program in the Matlab Simulink environment.
- Execute the program and generate the C code.
- Create the environment and the real-time experiment’s graphical interface (Layout).
- Create the link between Simulink and Layout.
5. Results and Discussion
5.1. Simulation Results
5.2. Experimental Validation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclatures
DFIG | Doubly Fed Induction Generator |
WECS | Wind Energy Conversion System |
MPPT | Maximim Power Point Tracking |
SCIG | Squirrel Cage Induction Generator |
DC | Direct Current |
AC | Alternative Current |
FOC | Field Oriented Control |
RSC | Rotor Side Control |
GSC | Grid Side Control |
DSP | Digital Signal Process |
RTI | Real-Time Interface |
THD | Total Harmonic Distortion |
GUI | Graphical User Interface |
Pv | Wind Power |
λ | Tip Speed Ratio |
β | Pitch Angle |
Cp | Power Coefficient |
LGEM | Electrical Engineering and Maintenance Maboratory |
S | Surface Swept By The Blade |
V | Wind Speed |
ωt | Turbine Speed |
Rs, Rr, Rf | Stator, Rotor, Filter Resistance |
Ls, Lr, Lf, LM | Stator Rotor, Filter Mutuel Inductance |
Vsd, Vsq | (d-q) Axes Stator Voltages |
Vrd, Vrq | (d-q) Axes Rotor Voltages |
Vgd, Vgq | (d-q) Axes Grid Voltages |
Isd, Isq | (d-q) Axes Stator Currents |
Ird, Irq | (d-q) Axes Rotor Currents |
Igd, Igq | (d-q) Axes Grid Currents |
Ps, Pr, Pg | Stator, Rotor, Grid Active Power |
Qs, Qr, Qg | Stator, Rotor, Grid Reactive Power |
φsd, φsq | (d-q) Axes Stator Fluxes |
Vdc | Dc Link Voltage |
Pinv, Prec, Pf | Inverter, Rectifier, Filter Powers |
Iinv, Irec | Inverter, Rectifier Currents |
Appendix A
DFIG Parameters | WT Parameters | ||
---|---|---|---|
Pn | 1.5 kW | R | 2 |
p | 2 | ρ | 1.22 kg/m3 |
Rs | 4.85 Ω | λopt | 9.1 |
Rr | 3.805 Ω | Cp | 0.5 |
Ls | 274 mH | G | 3 |
Lr | 258 mH |
References
- Wind, G.; Council, E. Gwec|Global Wind Report 2019. 2019. Available online: https://gwec.net/global-wind-report-2019/ (accessed on 29 December 2022).
- Offshore, E.; To, W.; Markets, E. Expanding Offshore Wind to Emerging Markets. 2019. Available online: https://esmap.org/going_global_offshore_wind (accessed on 29 December 2022).
- Li, J.; Wang, G.; Li, Z. A review on development of offshore wind energy conversion system. Int. J. Energy Res. 2020, 44, 9283–9297. [Google Scholar] [CrossRef]
- Emeksiz, C.; Demirci, B. The determination of offshore wind energy potential of Turkey by using novelty hybrid site selection method. Sustain. Energy Technol. Assess. 2019, 36, 100562. [Google Scholar] [CrossRef]
- Iea, B. Morocco 2019. 2019. Available online: https://www.iea.org/reports/energy-policies-beyond-iea-countries-morocco-2019 (accessed on 29 December 2022).
- Report, W. Global Offshore Wind Report 2020. 2020. pp. 1–102. Available online: https://gwec.net/global-offshore-wind-report-2020/ (accessed on 29 December 2022).
- Karad, S.; Thakur, R. Recent Trends of Control Strategies for Doubly Fed Induction Generator Based Wind Turbine Systems: A Comparative Review. Arch. Comput. Methods Eng. 2021, 28, 15–29. [Google Scholar] [CrossRef]
- Ali, M.M.; Youssef, A.R.; Ali, A.S.; Abdel-Jaber, G.T. Comparative study of different pitch angle control strategies for DFIG based on wind energy conversion system. Int. J. Renew. Energy Res. 2019, 9, 157–163. [Google Scholar]
- Aroussi, H.A.; Ziani, E.M.; Bouderbala, M.; Bossoufi, B. Enhancement of the direct power control applied to DFIG-WECS. Int. J. Electr. Comput. Eng. 2020, 10, 35–46. [Google Scholar] [CrossRef]
- Taoussi, M.; Bossoufi, B.; Bouderbala, M.; Motahhir, S.; Alkhammash, E.H.; Masud, M.; Zinelabidine, N.; Karim, M. Implementation and validation of hybrid control for a DFIG wind turbine using an FPGA controller board. Electronics 2021, 10, 3154. [Google Scholar] [CrossRef]
- Civelek, Z. Optimization of fuzzy logic (Takagi-Sugeno) blade pitch angle controller in wind turbines by genetic algorithm. Eng. Sci. Technol. Int. J. 2019, 23, 1–9. [Google Scholar] [CrossRef]
- Bouderbala, M.; Bossoufi, B.; Lagrioui, A.; Taoussi, M.; Aroussi, H.A.; Ihedrane, Y. Direct and indirect vector control of a doubly fed induction generator based in a wind energy conversion system. Int. J. Electr. Comput. Eng. 2019, 9, 1531–1540. [Google Scholar] [CrossRef]
- Kasem Alaboudy, A.H.; Daoud, A.A.; Desouky, S.S.; Salem, A.A. Converter controls and flicker study of PMSG-based grid connected wind turbines. Ain Shams Eng. J. 2013, 4, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Mousa, H.H.H.; Youssef, A.R.; Mohamed, E.E.M. State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review. Int. J. Electr. Power Energy Syst. 2021, 126, 106598. [Google Scholar] [CrossRef]
- Ugalde-Loo, C.E.; Ekanayake, J.B.; Jenkins, N. State-space modeling of wind turbine generators for power system studies. IEEE Trans. Ind. Appl. 2013, 49, 223–232. [Google Scholar] [CrossRef]
- Nayar, C.V.; Islam, S.M.; Dehbonei, H.; Tan, K.; Sharma, H. Power Electronics for Renewable Energy Sources; Elsevier Inc.: Amsterdam, The Netherlands, 2011; ISBN 9780124095342. [Google Scholar]
- Sathiyanarayanan, J.S.; Senthil Kumar, A. Doubly fed induction generator wind turbines with fuzzy controller: A survey. Sci. World J. 2014, 2014, 252645. [Google Scholar] [CrossRef] [Green Version]
- Bossoufi, B.; Karim, M.; Taoussi, M.; Aroussi, H.A.; Bouderbala, M.; Motahhir, S.; Camara, M.B. DSPACE-based implementation for observer backstepping power control of DFIG wind turbine. IET Electr. Power Appl. 2020, 14, 2395–2403. [Google Scholar] [CrossRef]
- El Ouanjli, N.; Derouich, A.; El Ghzizal, A.; Bouchnaif, J.; El Mourabit, Y.; Taoussi, M.; Bossoufi, B. Real-time implementation in dSPACE of DTC-backstepping for a doubly fed induction motor. Eur. Phys. J. Plus 2019, 134, 566. [Google Scholar] [CrossRef]
- Youness, E.M.; Aziz, D.; Abdelaziz, E.G.; Jamal, B.; Najib, E.O.; Othmane, Z.; Khalid, M.; BOSSOUFI, B. Implementation and validation of backstepping control for PMSG wind turbine using dSPACE controller board. Energy Rep. 2019, 5, 807–821. [Google Scholar] [CrossRef]
- Mensou, S.; Essadki, A.; Minka, I.; Nasser, T.; Idrissi, B.B. Control and Hardware Simulation of a Doubly Fed Induction Aero-Generator Using dSPACE Card. In Proceedings of the 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco, 22–24 July 2019; pp. 1–7. [Google Scholar]
- Mensou, S.; Essadki, A.; Minka, I.; Nasser, T.; Idrissi, B.B.; Tarla, L. Ben Performance of a vector control for dfig driven by wind turbine: Real time simulation using DS1104 controller board. Int. J. Power Electron. Drive Syst. 2019, 10, 1003–1013. [Google Scholar]
- Bouderbala, M.; Bossoufi, B.; Deblecker, O.; Aroussi, H.A.; Taoussi, M.; Lagrioui, A.; Motahhir, S.; Masud, M.; Alraddady, F.A. Experimental Validation of Predictive Current Control for DFIG: FPGA Implementation. Electronics 2021, 10, 2670. [Google Scholar] [CrossRef]
- Bossoufi, B.; Karim, M.; Taoussi, M.; Aroussi, H.A.; Bouderbala, M.; Deblecker, O.; Motahhir, S.; Nayyar, A.; Alzain, M.A. Rooted tree optimization for the backstepping power control of a doubly fed induction generator wind turbine: Dspace implementation. IEEE Access 2021, 9, 26512–26522. [Google Scholar] [CrossRef]
- Soued, S.; Chabani, M.S.; Becherif, M.; Benchouia, M.T.; Ramadan, H.S.; Betka, A.; Golea, A.; Zouzou, S.E. Experimental behaviour analysis for optimally controlled standalone DFIG system. IET Electr. Power Appl. 2019, 13, 1462–1473. [Google Scholar] [CrossRef]
- Charabi, Y.; Abdul-Wahab, S. Wind turbine performance analysis for energy cost minimization. Renew. Wind. Water Sol. 2020, 7, 5. [Google Scholar] [CrossRef]
- Aranizadeh, A.; Zaboli, A.; Asgari Gashteroodkhani, O.; Vahidi, B. Wind turbine and ultra-capacitor harvested energy increasing in microgrid using wind speed forecasting. Eng. Sci. Technol. Int. J. 2019, 22, 1161–1167. [Google Scholar] [CrossRef]
- Hala, A.A.; Ziani, E.M.; Manale, B.; Badre, B. DPC & DNPC Applied To Wind Energy Converter System. In Proceedings of the 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, 29–30 June 2020. [Google Scholar]
- Wei, J.; Li, C.; Wu, Q.; Zhou, B.; Xu, D.; Huang, S. International Journal of Electrical Power and Energy Systems MPC-based DC-link voltage control for enhanced high-voltage ride-through of offshore DFIG wind turbine. Int. J. Electr. Power Energy Syst. 2021, 126, 106591. [Google Scholar] [CrossRef]
- Zhou, D.; Song, Y.; Blaabjerg, F. Control of Wind Turbine System; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128052457. [Google Scholar]
- Manale, B.; Badre, B.; Hala, A.A.; Mohammed, T.; Ahmed, L.; Petru, L. DEADBEAT control applied towind power system. In Proceedings of the 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, 29–30 June 2020. [Google Scholar]
- Bouderbala, M.; Bossoufi, B.; Alami Aroussi, H.; Taoussi, M.; Lagriou, A. DFIG-WECS Non Linear Power Controls Application. In Digital Technologies and Applications: Proceedings of ICDTA 21, Fez, Morocco; Springer International Publishing: Cham, Switzerland, 2021; pp. 1455–1465. [Google Scholar]
- Cortajarena, J.A.; Barambones, O.; Alkorta, P.; Cortajarena, J. Grid frequency and amplitude control using dfig wind turbines in a smart grid. Mathematics 2021, 9, 143. [Google Scholar] [CrossRef]
- Mbukani, M.W.K.; Gule, N. Evaluation of an STSMO-based estimator for power control of rotor-tied DFIG systems. IET Electr. Power Appl. 2019, 13, 1871–1882. [Google Scholar] [CrossRef]
- Nahilia, H.; Boudour, M.; Cardenas, A.; Agbossou, K.; Doumbia, M.L. Doubly fed induction wind generators model and field orientation vector control design and implementation on FPGA. Int. J. Dyn. Control 2019, 7, 1005–1014. [Google Scholar] [CrossRef]
- Rahimi, M. Coordinated control of rotor and grid sides converters in DFIG based wind turbines for providing optimal reactive power support and voltage regulation. Sustain. Energy Technol. Assess. 2017, 20, 47–57. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Xu, D.; Chen, W.; Zhu, N. Control of DFIG Power Converters. Adv. Control Doubly Fed Induction Gener. Wind Power Syst. 2018, 24, 99–138. [Google Scholar]
- Mensou, S.; Essadki, A.; Nasser, T.; Idrissi, B.B.; Ben Tarla, L. Dspace DS1104 implementation of a robust nonlinear controller applied for DFIG driven by wind turbine. Renew. Energy 2020, 147, 1759–1771. [Google Scholar] [CrossRef]
- Areas, A. DS1104 R & D Controller Board. Memory 2011, 296–301. [Google Scholar]
- Available online: www.renewables.ninja (accessed on 29 December 2022).
Step Profile | Real Wind Profile | |||
---|---|---|---|---|
Simulation | Experimental | Simulation | Experimental | |
Ps | 7.7% | 8.3% | 4.2% | 6% |
Qs | 10.5% | 6.1% | 9.9% | 2.9% |
Ird | 9.7% | 8% | 7.5% | 2.6% |
Irq | 8.1% | 8.3% | 4.7% | 5.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouderbala, M.; Aroussi, H.A.; Bossoufi, B.; Karim, M. Real-Time Power Control of Doubly Fed Induction Generator Using Dspace Hardware. Sustainability 2023, 15, 3638. https://doi.org/10.3390/su15043638
Bouderbala M, Aroussi HA, Bossoufi B, Karim M. Real-Time Power Control of Doubly Fed Induction Generator Using Dspace Hardware. Sustainability. 2023; 15(4):3638. https://doi.org/10.3390/su15043638
Chicago/Turabian StyleBouderbala, Manale, Hala Alami Aroussi, Badre Bossoufi, and Mohammed Karim. 2023. "Real-Time Power Control of Doubly Fed Induction Generator Using Dspace Hardware" Sustainability 15, no. 4: 3638. https://doi.org/10.3390/su15043638
APA StyleBouderbala, M., Aroussi, H. A., Bossoufi, B., & Karim, M. (2023). Real-Time Power Control of Doubly Fed Induction Generator Using Dspace Hardware. Sustainability, 15(4), 3638. https://doi.org/10.3390/su15043638