The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions
Abstract
:1. Introduction
- -
- First, we quantify the robustness of a BEB transit network using complex network theory.
- -
- Second, we analyze the sensitivity of the BEB service robustness to several operational parameters.
- -
- Lastly, this is the first attempt to evaluate the robustness of BEB transit system networks using complex network theory, offering some new insights into the design, planning, and optimization of BEB transit networks.
2. Literature Review
3. Methodology
3.1. Problem Description
3.2. Optimization Model: Mathematical Formulation
- The charging process is carried out using both en-route charging during the recovery time as well as overnight at the depot;
- The charger-rated powers for all stations are homogenous [6];
- The battery sizes for all buses are homogeneous, enabling flexibility of operation [44];
- The model maintains the current fleet size and the operational timetable [13];
- The model accommodates the electricity time of use (ToU) tariff [24].
3.3. Complex Network Representation for BEB Transit System
4. Case Study
5. Results
5.1. Optimal BEB System Configuration
5.2. BEB System Robustness
5.3. Sensitivity of BEB Robustness: A Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. BEB System Configuration
Route Name | 1A | 1B | 2A | 3A | 3B | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 15 | 16 | 20 | 50 | 56 | 57 | 58 | GC | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fleet Size | 3 | 2 | 4 | 11 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 2 | 55 |
5:00 AM | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
6:00 AM | 3 | 2 | 3 | 3 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 0 | 0 | 1 | 1 | 1 | 40 |
7:00 AM | 2 | 2 | 3 | 5 | 3 | 1 | 3 | 1 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 32 |
8:00 AM | 2 | 2 | 3 | 4 | 3 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 3 | 3 | 0 | 0 | 0 | 2 | 2 | 37 |
9:00 AM | 2 | 1 | 3 | 5 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 0 | 0 | 0 | 0 | 36 |
10:00 AM | 2 | 2 | 3 | 4 | 3 | 1 | 4 | 1 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 3 | 2 | 0 | 0 | 0 | 2 | 1 | 36 |
11:00 AM | 2 | 2 | 3 | 4 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 2 | 2 | 2 | 1 | 44 |
12:00 PM | 2 | 2 | 3 | 4 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 1 | 44 |
1:00 PM | 2 | 2 | 3 | 4 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 40 |
2:00 PM | 2 | 2 | 3 | 4 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 42 |
3:00 PM | 2 | 2 | 3 | 5 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 45 |
4:00 PM | 1 | 2 | 3 | 6 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 2 | 46 |
5:00 PM | 0 | 2 | 3 | 5 | 3 | 0 | 3 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 26 |
6:00 PM | 2 | 1 | 3 | 3 | 3 | 1 | 2 | 1 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 1 | 28 |
7:00 PM | 3 | 2 | 3 | 4 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 1 | 46 |
8:00 PM | 2 | 2 | 3 | 6 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 1 | 2 | 0 | 45 |
9:00 PM | 2 | 2 | 3 | 4 | 3 | 1 | 4 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 0 | 43 |
10:00 PM | 2 | 2 | 3 | 2 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 3 | 2 | 0 | 1 | 2 | 1 | 0 | 36 |
11:00 PM | 2 | 2 | 3 | 3 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 36 |
12:00 AM | 2 | 2 | 3 | 2 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 34 |
1:00 AM | 0 | 1 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 11 |
2:00 AM | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 6 |
3:00 AM | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6 |
4:00 AM | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
Total | 38 | 38 | 63 | 78 | 60 | 19 | 75 | 33 | 40 | 19 | 20 | 24 | 20 | 19 | 18 | 16 | 57 | 50 | 11 | 18 | 19 | 23 | 14 | 772 |
Charging Station | 1 | 4 | 7 | 12 | 13 | 15 | 19 | Minimum | Maximum | Total |
---|---|---|---|---|---|---|---|---|---|---|
5:00 AM | 293 | 293 | 147 | 147 | 147 | 147 | 587 | 147 | 587 | 3227 |
6:00 AM | 1213 | 1213 | 527 | 527 | 527 | 527 | 1680 | 527 | 1680 | 11,600 |
7:00 AM | 867 | 867 | 390 | 390 | 390 | 390 | 1187 | 390 | 1187 | 8307 |
8:00 AM | 1173 | 1173 | 520 | 520 | 520 | 520 | 1600 | 520 | 1600 | 11,360 |
9:00 AM | 1080 | 1080 | 487 | 487 | 487 | 487 | 1453 | 487 | 1453 | 10,440 |
10:00 AM | 1093 | 1093 | 480 | 480 | 480 | 480 | 1440 | 480 | 1440 | 10,453 |
11:00 AM | 1947 | 1947 | 843 | 843 | 843 | 843 | 2653 | 843 | 2653 | 19,093 |
12:00 PM | 1707 | 1707 | 757 | 757 | 757 | 757 | 2427 | 757 | 2427 | 17,200 |
1:00 PM | 1520 | 1520 | 667 | 667 | 667 | 667 | 2107 | 667 | 2107 | 14,800 |
2:00 PM | 1720 | 1720 | 770 | 770 | 770 | 770 | 2427 | 770 | 2427 | 17,080 |
3:00 PM | 1733 | 1733 | 780 | 780 | 780 | 780 | 2507 | 780 | 2507 | 17,787 |
4:00 PM | 1893 | 1893 | 820 | 820 | 820 | 820 | 2667 | 820 | 2667 | 18,880 |
5:00 PM | 787 | 787 | 370 | 370 | 370 | 370 | 1093 | 370 | 1093 | 7613 |
6:00 PM | 800 | 800 | 360 | 360 | 360 | 360 | 1080 | 360 | 1080 | 7720 |
7:00 PM | 1800 | 1800 | 787 | 787 | 787 | 787 | 2480 | 787 | 2480 | 17,800 |
8:00 PM | 1973 | 1973 | 880 | 880 | 880 | 880 | 2867 | 880 | 2867 | 19,800 |
9:00 PM | 1840 | 1840 | 823 | 823 | 823 | 823 | 2653 | 823 | 2653 | 18,587 |
10:00 PM | 1493 | 1493 | 643 | 643 | 643 | 643 | 2067 | 643 | 2067 | 14,520 |
11:00 PM | 1400 | 1400 | 633 | 633 | 633 | 633 | 1960 | 633 | 1960 | 13,600 |
12:00 AM | 1347 | 1347 | 583 | 583 | 583 | 583 | 1840 | 583 | 1840 | 12,933 |
1:00 AM | 440 | 440 | 217 | 217 | 217 | 217 | 733 | 217 | 733 | 4533 |
2:00 AM | 240 | 240 | 120 | 120 | 120 | 120 | 480 | 120 | 480 | 2640 |
3:00 AM | 187 | 187 | 93 | 93 | 93 | 93 | 373 | 93 | 373 | 2053 |
4:00 AM | 307 | 307 | 153 | 153 | 153 | 153 | 613 | 153 | 613 | 3373 |
Minimum | 187 | 187 | 93 | 93 | 93 | 93 | 373 | 93 | ||
Maximum | 1973 | 1973 | 880 | 880 | 880 | 880 | 2867 | 2867 | ||
Total | 28,853 | 28,853 | 12,850 | 12,850 | 12,850 | 12,850 | 40,973 | 285,400 |
Appendix B. BEB Robustness
Station ID | 1 | 1-1 | 1-2 | 4 | 4-1 | 4-2 | 4-3 | 4-4 | 7 | 12 | 13 | 15 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time of Disruption | |||||||||||||
5:00 AM | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
6:00 AM | 98.64% | 99.46% | 99.18% | 97.68% | 99.05% | 99.32% | 99.59% | 99.73% | 99.25% | 99.86% | 99.73% | 99.73% | 100.00% |
7:00 AM | 99.18% | 99.32% | 99.86% | 97.82% | 98.77% | 99.86% | 99.46% | 99.73% | 99.39% | 100.00% | 99.73% | 99.86% | 100.00% |
8:00 AM | 99.05% | 99.46% | 99.59% | 97.89% | 98.84% | 99.46% | 99.73% | 99.86% | 99.39% | 100.00% | 99.86% | 99.86% | 99.32% |
9:00 AM | 99.05% | 99.46% | 99.59% | 97.75% | 99.11% | 99.32% | 99.59% | 99.73% | 99.46% | 100.00% | 99.73% | 99.73% | 99.80% |
10:00 AM | 98.77% | 99.05% | 99.73% | 97.28% | 99.18% | 99.18% | 99.32% | 99.59% | 99.52% | 100.00% | 99.86% | 99.86% | 99.52% |
11:00 AM | 98.09% | 98.98% | 99.11% | 97.82% | 99.18% | 99.46% | 99.59% | 99.59% | 99.32% | 100.00% | 99.73% | 99.86% | 98.84% |
12:00 PM | 98.09% | 98.77% | 99.32% | 98.02% | 99.39% | 99.46% | 99.46% | 99.73% | 99.52% | 100.00% | 99.73% | 99.86% | 98.64% |
1:00 PM | 98.77% | 99.18% | 99.59% | 97.21% | 98.98% | 99.46% | 99.32% | 99.46% | 99.46% | 100.00% | 99.73% | 99.86% | 99.39% |
2:00 PM | 98.57% | 98.98% | 99.59% | 98.02% | 99.39% | 99.32% | 99.46% | 99.86% | 99.39% | 100.00% | 99.73% | 99.86% | 99.05% |
3:00 PM | 98.43% | 99.18% | 99.25% | 97.41% | 99.25% | 99.11% | 99.46% | 99.59% | 99.11% | 100.00% | 99.73% | 99.73% | 98.98% |
4:00 PM | 97.96% | 98.84% | 99.11% | 97.14% | 99.25% | 99.18% | 99.39% | 99.32% | 99.25% | 100.00% | 99.73% | 99.86% | 98.77% |
5:00 PM | 99.18% | 99.32% | 99.86% | 98.57% | 99.11% | 99.66% | 99.80% | 100.00% | 99.46% | 100.00% | 99.86% | 99.73% | 100.00% |
6:00 PM | 99.32% | 99.32% | 100.00% | 98.23% | 99.32% | 99.59% | 99.46% | 99.86% | 99.59% | 100.00% | 99.86% | 99.86% | 99.86% |
7:00 PM | 97.89% | 98.77% | 99.11% | 97.41% | 99.18% | 99.32% | 99.46% | 99.46% | 99.32% | 99.73% | 99.86% | 99.86% | 98.57% |
8:00 PM | 98.16% | 98.91% | 99.25% | 97.28% | 98.91% | 99.46% | 99.18% | 99.73% | 99.66% | 99.86% | 99.73% | 99.73% | 98.91% |
9:00 PM | 98.16% | 98.77% | 99.39% | 97.68% | 99.05% | 99.73% | 99.46% | 99.46% | 99.52% | 99.93% | 99.73% | 99.86% | 98.91% |
10:00 PM | 98.30% | 98.84% | 99.46% | 97.41% | 99.05% | 99.32% | 99.46% | 99.59% | 99.39% | 100.00% | 99.86% | 99.86% | 99.59% |
11:00 PM | 98.64% | 99.05% | 99.59% | 97.96% | 98.77% | 99.86% | 99.59% | 99.73% | 99.52% | 99.93% | 99.86% | 99.73% | 100.00% |
12:00 AM | 99.18% | 99.52% | 99.66% | 98.84% | 99.52% | 99.80% | 99.66% | 99.86% | 99.86% | 99.66% | 99.93% | 99.93% | 100.00% |
1:00 AM | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
2:00 AM | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
3:00 AM | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
4:00 AM | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
5:00 AM–next day | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
References
- Xiong, J.; Bai, C.; Guan, W.; Chen, Y.; Xu, Y. Mixed Optimization on Vehicle Scheduling and Recharge Scheduling of Plug-In Electric Buses with Consideration of Partial Recharge. J. Transp. Eng. Part A Syst. 2022, 148, 04021111. [Google Scholar] [CrossRef]
- He, Y.; Song, Z.; Liu, Z. Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustain. Cities Soc. 2019, 48, 101530. [Google Scholar] [CrossRef] [Green Version]
- Soukhov, A.; Mohamed, M. Occupancy and GHG emissions: Thresholds for disruptive transportation modes and emerging technologies. Transp. Res. Part D Transp. Environ. 2022, 102, 103127. [Google Scholar] [CrossRef]
- Mahmoud, M.; Garnett, R.; Ferguson, M.; Kanaroglou, P. Electric buses: A review of alternative powertrains. Renew. Sust. Energ. Rev. 2016, 62, 673–684. [Google Scholar] [CrossRef]
- Foda, A.; Mohamed, M.; Bakr, M. Dynamic Surrogate Trip-Level Energy Model for Electric Bus Transit System Optimization. Transp. Res. Rec. J. Transp. Res. Board 2022, 2677, 513–528. [Google Scholar] [CrossRef]
- El-Taweel, N.A.; Farag, H.E.Z.; Mohamed, M. Integrated Utility-Transit Model for Optimal Configuration of Battery Electric Bus Systems. IEEE Syst. J. 2020, 14, 738–748. [Google Scholar] [CrossRef]
- Liu, Z.; Song, Z.; He, Y. Economic Analysis of On-Route Fast Charging for Battery Electric Buses: Case Study in Utah. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 119–130. [Google Scholar] [CrossRef]
- Rogge, M.; van der Hurk, E.; Larsen, A.; Sauer, D.U. Electric bus fleet size and mix problem with optimization of charging infrastructure. Appl. Energy 2018, 211, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Abdelaty, H.; Al-Obaidi, A.; Mohamed, M.; Farag, H.E.Z. Machine learning prediction models for battery-electric bus energy consumption in transit. Transp. Res. Part D-Transp. Environ. 2021, 96, 102868. [Google Scholar] [CrossRef]
- Pamuła, T.; Pamuła, W. Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning. Energies 2020, 13, 2340. [Google Scholar] [CrossRef]
- Vepsäläinen, J.; Kivekäs, K.; Otto, K.; Lajunen, A.; Tammi, K. Development and validation of energy demand uncertainty model for electric city buses. Transp. Res. Part D Transp. Environ. 2018, 63, 347–361. [Google Scholar] [CrossRef]
- Liu, X.; Qu, X.; Ma, X. Optimizing electric bus charging infrastructure considering power matching and seasonality. Transp. Res. Part D Transp. Environ. 2021, 100, 103057. [Google Scholar] [CrossRef]
- An, K. Battery electric bus infrastructure planning under demand uncertainty. Transp. Res. Part C Emerg. Technol. 2020, 111, 572–587. [Google Scholar] [CrossRef]
- Liu, K.; Yamamoto, T.; Morikawa, T. Impact of road gradient on energy consumption of electric vehicles. Transp. Res. Part D: Transp. Environ. 2017, 54, 74–81. [Google Scholar] [CrossRef]
- Perrotta, D.; Macedo, J.L.; Rossetti, R.J.F.; Sousa, J.F.d.; Kokkinogenis, Z.; Ribeiro, B.; Afonso, J.L. Route Planning for Electric Buses: A Case Study in Oporto. Procedia-Soc. Behav. Sci. 2014, 111, 1004–1014. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Liu, X.; Ou, Y.; Kiavash Fayyaz, S. Optimizing the spatio-temporal deployment of battery electric bus system. J. Transp. Geogr. 2018, 68, 160–168. [Google Scholar] [CrossRef]
- Uslu, T.; Kaya, O. Location and capacity decisions for electric bus charging stations considering waiting times. Transp. Res. Part D Transp. Environ. 2021, 90, 102645. [Google Scholar] [CrossRef]
- Rupp, M.; Rieke, C.; Handschuh, N.; Kuperjans, I. Economic and ecological optimization of electric bus charging considering variable electricity prices and CO2eq intensities. Transp. Res. Part D Transp. Environ. 2020, 81, 102293. [Google Scholar] [CrossRef]
- Kunith, A.; Mendelevitch, R.; Goehlich, D. Electrification of a city bus network—An optimization model for cost-effective placing of charging infrastructure and battery sizing of fast-charging electric bus systems. Int. J. Sustain. Transp. 2017, 11, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Gormez, M.A.; Topcu, A.; Sozer, Y. Cost Optimization of an Opportunity Charging Bus Network. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 2782–2789. [Google Scholar]
- Zhou, Y.; Liu, X.C.; Wei, R.; Golub, A. Bi-Objective Optimization for Battery Electric Bus Deployment Considering Cost and Environmental Equity. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2487–2497. [Google Scholar] [CrossRef]
- Bi, Z.; Keoleian, G.A.; Ersal, T. Wireless charger deployment for an electric bus network: A multi-objective life cycle optimization. Appl. Energy 2018, 225, 1090–1101. [Google Scholar] [CrossRef]
- Alwesabi, Y.; Avishan, F.; Yanıkoğlu, İ.; Liu, Z.; Wang, Y. Robust strategic planning of dynamic wireless charging infrastructure for electric buses. Appl. Energy 2022, 307, 118243. [Google Scholar] [CrossRef]
- Liu, K.; Gao, H.; Wang, Y.; Feng, T.; Li, C. Robust charging strategies for electric bus fleets under energy consumption uncertainty. Transp. Res. Part D Transp. Environ. 2022, 104, 103215. [Google Scholar] [CrossRef]
- Liu, Z.; Song, Z.; He, Y. Planning of Fast-Charging Stations for a Battery Electric Bus System under Energy Consumption Uncertainty. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Wang, Z.; Liu, M. Overnight charging scheduling of battery electric buses with uncertain charging time. Oper. Res. 2022, 22, 4865–4903. [Google Scholar] [CrossRef]
- Iliopoulou, C.; Kepaptsoglou, K. Robust electric transit route network design problem (RE-TRNDP) with delay considerations: Model and application. Transp. Res. Part C Emerg. Technol. 2021, 129, 103255. [Google Scholar] [CrossRef]
- Eldeeb, G.; Mohamed, M. Transit electrification state of the art: A machine-learning based text mining approach. Transp. Res. Part D Transp. Environ. 2022, 111, 103446. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, C.; Chopra, S.S. Robustness assessment of public bus transit system with a response-integrated approach for a resilient public transport system in Hong Kong. Transp. B Transp. Dyn. 2022, 1–15. [Google Scholar] [CrossRef]
- Jia, T.; Liu, W.; Liu, X. A cross-city exploratory analysis of the robustness of bus transit networks using open-source data. Phys. A Stat. Mech. Its Appl. 2021, 580, 126133. [Google Scholar] [CrossRef]
- Abdelaty, H.; Mohamed, M.; Ezzeldin, M.; El-Dakhakhni, W. Quantifying and classifying the robustness of bus transit networks. Transp. A Transp. Sci. 2020, 16, 1176–1216. [Google Scholar] [CrossRef]
- Barabási, A.L.; PÃ3sfai, M.Ã. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Li, M.; Tang, P.; Lin, X.; He, F. Multistage planning of electric transit charging facilities under build-operate-transfer model. Transp. Res. Part D Transp. Environ. 2022, 102, 103118. [Google Scholar] [CrossRef]
- Benoliel, P.; Jenn, A.; Tal, G. Examining energy uncertainty in battery bus deployments for transit agencies in California. Transp. Res. Part D Transp. Environ. 2021, 98, 102963. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Q.; Bai, C.; Lai, C.S.; Jia, Y.; Lai, L.L. A novel fast-charging stations locational planning model for electric bus transit system. Energy 2021, 224, 106. [Google Scholar] [CrossRef]
- Lotfi, M.; Pereira, P.; Paterakis, N.; Gabbar, H.A.; Catalão, J.P.S. Optimizing Charging Infrastructures of Electric Bus Routes to Minimize Total Ownership Cost. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar]
- Lin, Y.; Zhang, K.; Shen, Z.-J.M.; Ye, B.; Miao, L. Multistage large-scale charging station planning for electric buses considering transportation network and power grid. Transp. Res. Part C Emerg. Technol. 2019, 107, 423–443. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Xu, J.; Barclay, N. Optimal recharging scheduling for urban electric buses: A case study in Davis. Transp. Res. Part E Logist. Transp. Rev. 2017, 100, 115–132. [Google Scholar] [CrossRef]
- Bie, Y.; Ji, J.; Wang, X.; Qu, X. Optimization of electric bus scheduling considering stochastic volatilities in trip travel time and energy consumption. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 1530–1548. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Wang, Y.; Li, R. Robust optimization for integrated planning of electric-bus charger deployment and charging scheduling. Transp. Res. Part D Transp. Environ. 2022, 110, 103410. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, Y.; Zhang, Y.; Li, W. Optimal Electric Bus Scheduling under Travel Time Uncertainty: A Robust Model and Solution Method. J. Adv. Transp. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Hu, H.; Du, B.; Liu, W.; Perez, P. A joint optimisation model for charger locating and electric bus charging scheduling considering opportunity fast charging and uncertainties. Transp. Res. Part C Emerg. Technol. 2022, 141, 103732. [Google Scholar] [CrossRef]
- Tessler, M.E.; Traut, E.J. Hurricane resiliency methods for the New York City electric bus fleet. Transp. Res. Part D Transp. Environ. 2022, 105, 103255. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, F.; Lu, C. Integrated optimization of charger deployment and fleet scheduling for battery electric buses. Transp. Res. Part D Transp. Environ. 2022, 109, 103382. [Google Scholar] [CrossRef]
- Liu, K.; Gao, H.; Liang, Z.; Zhao, M.; Li, C. Optimal charging strategy for large-scale electric buses considering resource constraints. Transp. Res. Part D Transp. Environ. 2021, 99, 103009. [Google Scholar] [CrossRef]
- Darby-Dowman, K.; Wilson, J.M. Developments in linear and integer programming. J. Oper. Res. Soc. 2017, 53, 1065–1071. [Google Scholar] [CrossRef] [Green Version]
- Genova, K.; Guliashki, V. Linear integer programming methodsand approaches—A survey. Cybern. Inf. Technol. 2011, 11, 3–25. [Google Scholar]
- Kuma, P.H.; Mageshvaran, R. Methods And Solvers Used For Solving Mixed Integer Linear Programming And Mixed Nonlinear Programming Problems: A Review. Int. J. Sci. Technol. Res. 2020, 9, 1872–1882. [Google Scholar]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Remix. Base Network_Hamilton Bus Transit Network. Available online: https://platform.remix.com/?explore=true&latlng=43.13105,-79.68847,8.061&layer=simple (accessed on 5 January 2023).
- Guelph_Schedule. Available online: https://transitfeeds.com/p/guelph-transit/53 (accessed on 23 December 2022).
- Lin, Y.; Zhang, K.; Shen, Z.-J.M.; Miao, L. Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China. Sustainability 2019, 11, 4713. [Google Scholar] [CrossRef] [Green Version]
- Sobol, I.M. Sensitivity Estimates for Nonlinear Mathematical Models. Math. Model. Comput. Exp. 1993, 4, 407–414. [Google Scholar]
- Sobol, I.M. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 1967, 7, 86–112. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Sensitivity Analysis: From Theory to Practice. In Global Sensitivity Analysis. The Primer; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; Volume 1, pp. 237–275. [Google Scholar]
Author | Objective Functions (Minimize) | BEB System Configuration | ||
---|---|---|---|---|
Cost | Utility Impact | GHG Emission | ||
Li [33] | ✓ | Number of chargers | ||
Xiong [1] | ✓ | Number of chargers | ||
Benoliel [34] | ✓ | Number of chargers & Fleet size | ||
Liu [12] | ✓ | Number of chargers & Chargers’ power | ||
Uslu and Kaya [17] | ✓ | Number of chargers | ||
Wu [35] | ✓ | ✓ | Number of chargers & Fleet size | |
El-Taweel [6] | ✓ | ✓ | Battery capacity, number of chargers & power | |
Lotfi [36] | ✓ | Battery capacity & Chargers’ power | ||
He [2] | ✓ | Battery capacity & Chargers’ power | ||
Lin [37] | ✓ | ✓ | ✓ | Number of chargers |
Lin [37] | ✓ | ✓ | Number of chargers | |
Liu [7] | ✓ | Battery capacity & Chargers’ power | ||
Bi [22] | ✓ | ✓ | Battery capacity & Number of chargers | |
Rogge [8] | ✓ | Number of chargers & Fleet size | ||
Kunith [19] | ✓ | Battery capacity | ||
Wang [38] | ✓ | Number of chargers |
Author | Robust and Two-Stage Stochastic Optimization | ||||
---|---|---|---|---|---|
Energy Consumption | Travel Time | Charging Time | Passenger Load (Mass) | Charging Demand | |
Liu [24] | ✓ | ||||
Zheng [26] | ✓ | ||||
Zhou [40] | ✓ | ||||
Bie [39] | ✓ | ✓ | |||
Hu [42] | ✓ | ✓ | |||
Jiang [41] | ✓ | ||||
An [13] | ✓ | ||||
Liu [25] | ✓ |
Abbreviation | Description | Index | Description |
---|---|---|---|
GHG | Greenhouse gas | Index of candidate charging station location | |
e-Buses | Electric buses | Index of BEBs | |
ICE | Internal combustion engine | Index of sub-trips (the distance between each two consecutive candidate locations) | |
FCEB | Fuel cell electric bus | t | Index of timeslots |
BEB | Battery electric bus | Variables | Description |
ESS | Energy storage system | Cost of charging stations constructions ($) | |
SoC | State of charge | Cost of chargers ($) | |
TCO | The total cost of ownership | Cost of bus fleet, including battery ($) | |
ToU | Time-of-use | Cost of maintenance ($) | |
Sets | Description | Cost of electricity ($) | |
Set of candidates charging stations locations | Total annual system cost | ||
Set of BEBs | Arrival battery energy of bus b after sub-trip j at charging station i (kWh) | ||
Set of sub-trips of bus b | Departure battery energy of bus b before sub-trip j from charging station i (kWh) | ||
Set of charger-rated powers | Energy consumption of bus b during sub-trip j after departure from charging station i | ||
Set of battery-rated energies | |||
Decision variables | Description | ||
if the location i otherwise | |||
Charger-rated power (kW) | |||
BEBs battery-rated energy for all buses (kWh) | |||
Binary decision variable, if the bus b charged at timeslot t in charging station i after sub-trip j, otherwise | |||
if the charged state of bus b after sub-trip j in the charging station i for the current timeslot t and the later timeslot t + 1 changes, otherwise | |||
if the charged state of bus b after sub-trip j in the charging station i for the current timeslot t and the previous timeslot t − 1 changes, otherwise | |||
Parameters | Description | Parameters | Description |
Cost of construction of candidate charging station i ($) | The energy consumption rate of bus b during sub-trip j (kWh/km) | ||
Charger cost that is related to its power ($/kW) | The energy consumption rate of bus b during sub-trip j caused by one unit of BEB battery size for 1 km distance (1/km) | ||
charger fixed cost ($/unit) | Maintenance cost percentage from purchase cost (%) | ||
Battery cost ($/kWh) | Electricity rate in timeslot t depending on ToU ($/kWh) | ||
Bus cost without battery ($/bus) | Number of workdays | ||
Timeslot duration (min) | Discount rate (%) | ||
Route factor of bus b in sub-trip j | Lifespan (years) | ||
Maximum limit of the number of chargers in charging station i | Minimum limit (%) | ||
Recovery time set of bus b after sub-trip j at charging station i | Maximum limit (%) | ||
Charger efficiency (%) | Length of sub-trip j of bus b (km) |
Route ID | Av. Headway Time (min) | l(r) (km) | Ntrips,r (#) | |||
---|---|---|---|---|---|---|
1A-College Edinburgh | 5:45 | 24:15 | 14 | 30 | 18.016 | 76 |
2A-West Loop Clockwise | 5:45 | 24:15 | 26 | 30 | 35.354 | 76 |
3A-East Loop Clockwise | 6:00 | 22:30 | 43 | 13 | 24.528 | 148 |
1B- College Edinburgh | 5:45 | 24:15 | 15 | 30 | 18.910 | 76 |
3B-East Loop | 5:45 | 24:15 | 24 | 30 | 35.856 | 64 |
4-York | 5:45 | 24:15 | 26 | 30 | 10.453 | 38 |
5-South Gordon | 5:45 | 24:15 | 55 | 30 | 30.124 | 76 |
6-Harvard Ironwood | 5:45 | 24:15 | 26 | 30 | 14.589 | 76 |
7-Kortright Downe | 5:45 | 24:15 | 26 | 30 | 19.065 | 76 |
8-Stone Road Mall | 5:45 | 24:15 | 26 | 30 | 9.504 | 38 |
9-West End Community Centre | 5:45 | 24:15 | 26 | 30 | 11.189 | 38 |
10-Imperia | 5:45 | 24:15 | 28 | 30 | 10.500 | 38 |
11-Willow West | 5:45 | 24:15 | 28 | 30 | 10.130 | 38 |
12-General Hospital | 5:45 | 24:15 | 26 | 30 | 10.289 | 38 |
14-Grange | 5:45 | 24:15 | 25 | 30 | 9.755 | 38 |
15-College Ave W | 5:45 | 24:15 | 26 | 30 | 13.951 | 76 |
16-Route 16 | 5:45 | 24:15 | 54 | 30 | 32.117 | 76 |
20-Northwest Industrial | 5:45 | 24:15 | 51 | 30 | 29.748 | 76 |
50-Route 50 | 8:00 | 21:40 | 13 | 20 | 5.178 | 42 |
56-Route 56 | 7:45 | 21:45 | 7 | 30 | 11.440 | 58 |
57-Route 57 | 7:45 | 22:25 | 15 | 20 | 8.305 | 90 |
58-Route 58 | 7:45 | 21:50 | 15 | 45 | 8.523 | 82 |
Gordon Corridor | 7:45 | 19:00 | 24 | 36 | 14.913 | 36 |
Charging Station ID | Station Name | Number of Chargers per Station (#) | Bus Routes |
---|---|---|---|
1 | UC South Loop | 2 (1-1, 1-2) | 1A, 1B, 5, 6, 7, 15, 57 |
4 | GCS East | 4 (4-1, 4-2, 4-3, 4-4) | 2A, 3B, 4, 5, 8, 9, 10, 11, 12, 14, 16, 20 |
7 | Gordon St. at Harvard Rd. | 1 | 3A, 6, 7 |
12 | Depot | 1 | 1A, 1B, 2A, 3A, 3B, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 20, 50, 56, 57, 58, GC |
13 | Goodwin Dr. at Ray Cres. | 1 | 2A, 5 |
15 | Woodlawn at Wal-Mart | 1 | 3B |
19 | University | 1 | 50, 56, 57, 58, GC |
Hour | Number of Utilized Charging Stations (#) | Charging Stations IDs | Charging Duration (Minute) | Number of Charging Events (#) | Number of Buses at Each Charging Station (#) | ||||
---|---|---|---|---|---|---|---|---|---|
Sum. | Min. | Max. | Sum. | Min. | Max. | ||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
5:00 AM | 1 | 12 | 44 | 44 | 44 | 7 | 1 | 1 | 7 |
6:00 AM | 6 | 1, 4, 7, 12, 13, 15 | 180 | 8 | 34 | 57 | 1 | 6 | 40 |
7:00 AM | 5 | 1, 4, 7, 13, 15 | 130 | 4 | 26 | 38 | 1 | 5 | 32 |
8:00 AM | 6 | 1, 4, 7, 13, 15, 19 | 176 | 6 | 34 | 51 | 1 | 6 | 37 |
9:00 AM | 6 | 1, 4, 7, 13, 15, 19 | 160 | 2 | 38 | 46 | 1 | 6 | 36 |
10:00 AM | 6 | 1, 4, 7, 13, 15, 19 | 164 | 6 | 32 | 51 | 1 | 6 | 36 |
11:00 AM | 6 | 1, 4, 7, 13, 15, 19 | 292 | 12 | 42 | 68 | 1 | 6 | 44 |
12:00 PM | 6 | 1, 4, 7, 13, 15, 19 | 256 | 6 | 38 | 61 | 1 | 6 | 44 |
1:00 PM | 6 | 1, 4, 7, 13, 15, 19 | 228 | 12 | 40 | 57 | 1 | 7 | 40 |
2:00 PM | 6 | 1, 4, 7, 13, 15, 19 | 258 | 12 | 42 | 59 | 1 | 6 | 42 |
3:00 PM | 6 | 1, 4, 7, 13, 15, 19 | 260 | 12 | 46 | 67 | 1 | 6 | 45 |
4:00 PM | 6 | 1, 4, 7, 13, 15, 19 | 284 | 12 | 42 | 75 | 1 | 6 | 46 |
5:00 PM | 5 | 1, 4, 7, 13, 15 | 118 | 2 | 28 | 32 | 1 | 5 | 26 |
6:00 PM | 5 | 1, 4, 7, 13, 15 | 120 | 2 | 24 | 37 | 1 | 6 | 28 |
7:00 PM | 7 | 1, 4, 7, 12, 13, 15, 19 | 270 | 12 | 40 | 75 | 1 | 7 | 46 |
8:00 PM | 7 | 1, 4, 7, 12, 13, 15, 19 | 296 | 12 | 40 | 71 | 2 | 7 | 45 |
9:00 PM | 7 | 1, 4, 7, 12, 13, 15, 19 | 276 | 12 | 46 | 65 | 1 | 6 | 43 |
10:00 PM | 7 | 1, 4, 7, 12, 13, 15, 19 | 220 | 10 | 44 | 58 | 1 | 6 | 36 |
11:00 PM | 6 | 1, 4, 7, 12, 13, 15 | 210 | 12 | 42 | 47 | 1 | 6 | 36 |
12:00 AM | 6 | 1, 4, 7, 12, 13, 15 | 202 | 8 | 42 | 51 | 1 | 6 | 34 |
1:00 AM | 3 | 1, 4, 12 | 66 | 2 | 44 | 13 | 1 | 3 | 11 |
2:00 AM | 1 | 12 | 36 | 36 | 36 | 6 | 1 | 2 | 6 |
3:00 AM | 1 | 12 | 28 | 28 | 28 | 6 | 1 | 2 | 6 |
4:00 AM | 1 | 12 | 46 | 46 | 46 | 6 | 1 | 1 | 6 |
Route Name | 1A | 1B | 2A | 3A | 3B | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 15 | 16 | 20 | 50 | 56 | 57 | 58 | GC | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fleet Size | 3 | 2 | 4 | 11 | 3 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 2 | 55 |
5:00 AM | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
6:00 AM | 3 | 4 | 3 | 3 | 5 | 2 | 5 | 4 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 3 | 3 | 0 | 0 | 1 | 1 | 1 | 57 |
7:00 AM | 2 | 2 | 3 | 5 | 4 | 1 | 5 | 1 | 3 | 1 | 1 | 0 | 1 | 1 | 2 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 38 |
8:00 AM | 2 | 2 | 4 | 4 | 5 | 2 | 5 | 4 | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 4 | 3 | 0 | 0 | 0 | 2 | 2 | 51 |
9:00 AM | 2 | 1 | 4 | 5 | 6 | 1 | 6 | 2 | 4 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 1 | 0 | 0 | 0 | 0 | 46 |
10:00 AM | 2 | 3 | 4 | 4 | 5 | 2 | 6 | 2 | 4 | 2 | 2 | 0 | 2 | 2 | 1 | 1 | 4 | 2 | 0 | 0 | 0 | 2 | 1 | 51 |
11:00 AM | 2 | 3 | 4 | 4 | 5 | 1 | 6 | 3 | 5 | 1 | 2 | 3 | 2 | 2 | 2 | 3 | 4 | 2 | 3 | 2 | 3 | 5 | 1 | 68 |
12:00 PM | 2 | 4 | 4 | 4 | 4 | 2 | 6 | 2 | 4 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 4 | 3 | 1 | 2 | 4 | 2 | 1 | 61 |
1:00 PM | 2 | 3 | 4 | 4 | 6 | 2 | 7 | 2 | 3 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 4 | 2 | 1 | 1 | 1 | 2 | 1 | 57 |
2:00 PM | 2 | 3 | 4 | 4 | 6 | 2 | 5 | 3 | 4 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 4 | 2 | 1 | 2 | 1 | 3 | 2 | 59 |
3:00 PM | 2 | 2 | 4 | 5 | 6 | 1 | 6 | 5 | 6 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 4 | 2 | 2 | 1 | 2 | 5 | 2 | 67 |
4:00 PM | 1 | 4 | 4 | 6 | 6 | 2 | 6 | 4 | 6 | 2 | 1 | 1 | 2 | 2 | 2 | 5 | 4 | 3 | 2 | 2 | 4 | 2 | 4 | 75 |
5:00 PM | 0 | 2 | 4 | 5 | 5 | 0 | 3 | 0 | 5 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 32 |
6:00 PM | 2 | 1 | 4 | 3 | 6 | 2 | 2 | 1 | 4 | 1 | 2 | 0 | 0 | 1 | 1 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 1 | 37 |
7:00 PM | 3 | 3 | 4 | 4 | 6 | 2 | 7 | 4 | 7 | 2 | 2 | 3 | 2 | 1 | 2 | 2 | 4 | 3 | 1 | 2 | 5 | 4 | 2 | 75 |
8:00 PM | 2 | 4 | 4 | 7 | 6 | 2 | 6 | 3 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 3 | 3 | 2 | 2 | 4 | 0 | 71 |
9:00 PM | 2 | 4 | 4 | 4 | 6 | 1 | 5 | 2 | 4 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 4 | 3 | 1 | 3 | 4 | 5 | 0 | 65 |
10:00 PM | 2 | 4 | 4 | 2 | 6 | 2 | 6 | 4 | 5 | 1 | 2 | 0 | 2 | 2 | 2 | 2 | 4 | 2 | 0 | 1 | 3 | 2 | 0 | 58 |
11:00 PM | 2 | 2 | 3 | 3 | 6 | 2 | 5 | 3 | 3 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | 47 |
12:00 AM | 2 | 3 | 4 | 2 | 5 | 2 | 6 | 4 | 5 | 1 | 2 | 2 | 1 | 1 | 1 | 3 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 51 |
1:00 AM | 0 | 1 | 2 | 0 | 2 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 13 |
2:00 AM | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 6 |
3:00 AM | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6 |
4:00 AM | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
Total | 38 | 56 | 79 | 79 | 107 | 32 | 108 | 55 | 90 | 30 | 32 | 26 | 33 | 27 | 29 | 34 | 75 | 50 | 17 | 19 | 31 | 39 | 18 | 1104 |
Charger ID | 1-1 | 1-2 | 4-1 | 4-2 | 4-3 | 4-4 | 7 | 12 | 13 | 15 | 19 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
5:00 AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 44 | 0 | 0 | 0 | 44 |
6:00 AM | 28 | 20 | 30 | 16 | 10 | 8 | 16 | 34 | 8 | 10 | 0 | 180 |
7:00 AM | 22 | 4 | 24 | 12 | 10 | 10 | 26 | 0 | 12 | 10 | 0 | 130 |
8:00 AM | 24 | 16 | 34 | 18 | 14 | 6 | 30 | 0 | 14 | 12 | 8 | 176 |
9:00 AM | 24 | 8 | 38 | 18 | 8 | 10 | 20 | 0 | 20 | 12 | 2 | 160 |
10:00 AM | 32 | 8 | 22 | 16 | 18 | 16 | 22 | 0 | 16 | 8 | 6 | 164 |
11:00 AM | 42 | 36 | 42 | 28 | 18 | 20 | 40 | 0 | 22 | 12 | 32 | 292 |
12:00 PM | 36 | 22 | 34 | 18 | 18 | 20 | 36 | 0 | 28 | 6 | 38 | 256 |
1:00 PM | 40 | 16 | 32 | 14 | 16 | 22 | 40 | 0 | 22 | 12 | 14 | 228 |
2:00 PM | 42 | 12 | 36 | 28 | 18 | 16 | 42 | 0 | 28 | 12 | 24 | 258 |
3:00 PM | 36 | 16 | 36 | 22 | 18 | 16 | 36 | 0 | 22 | 12 | 46 | 260 |
4:00 PM | 42 | 34 | 30 | 26 | 18 | 18 | 40 | 0 | 28 | 12 | 36 | 284 |
5:00 PM | 12 | 2 | 28 | 16 | 14 | 0 | 28 | 0 | 6 | 12 | 0 | 118 |
6:00 PM | 24 | 0 | 24 | 16 | 10 | 4 | 18 | 0 | 14 | 8 | 2 | 120 |
7:00 PM | 40 | 28 | 40 | 22 | 16 | 22 | 20 | 22 | 22 | 12 | 26 | 270 |
8:00 PM | 40 | 24 | 38 | 16 | 26 | 18 | 38 | 28 | 26 | 12 | 30 | 296 |
9:00 PM | 38 | 20 | 46 | 16 | 18 | 16 | 30 | 24 | 22 | 12 | 34 | 276 |
10:00 PM | 44 | 18 | 24 | 14 | 16 | 18 | 28 | 10 | 26 | 12 | 10 | 220 |
11:00 PM | 28 | 12 | 42 | 16 | 16 | 12 | 20 | 34 | 18 | 12 | 0 | 210 |
12:00 AM | 36 | 18 | 24 | 22 | 14 | 14 | 8 | 42 | 12 | 12 | 0 | 202 |
1:00 AM | 2 | 0 | 10 | 6 | 4 | 0 | 0 | 44 | 0 | 0 | 0 | 66 |
2:00 AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 36 |
3:00 AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 | 28 |
4:00 AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 46 | 0 | 0 | 0 | 46 |
Total | 632 | 314 | 634 | 360 | 300 | 266 | 538 | 392 | 366 | 210 | 308 | 4320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaty, H.; Foda, A.; Mohamed, M. The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions. Sustainability 2023, 15, 3642. https://doi.org/10.3390/su15043642
Abdelaty H, Foda A, Mohamed M. The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions. Sustainability. 2023; 15(4):3642. https://doi.org/10.3390/su15043642
Chicago/Turabian StyleAbdelaty, Hatem, Ahmed Foda, and Moataz Mohamed. 2023. "The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions" Sustainability 15, no. 4: 3642. https://doi.org/10.3390/su15043642
APA StyleAbdelaty, H., Foda, A., & Mohamed, M. (2023). The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions. Sustainability, 15(4), 3642. https://doi.org/10.3390/su15043642