Factors Determining Consumer Acceptance of NFC Mobile Payment: An Extended Mobile Technology Acceptance Model
Abstract
:1. Introduction
2. Literature Review
2.1. MTAM
2.2. Self-Efficacy Theory
2.3. Critical Mass Theory
2.4. Flow Theory
3. Hypotheses Development
3.1. Mobile Usefulness (MU)
3.2. Mobile Ease of Use (MEOU)
3.3. Perceived Critical Mass (PCM)
3.4. Perceived Enjoyment (PEJ)
3.5. Mobile Self-Efficacy (MSE)
3.6. Technology Self-Efficacy (TSE)
3.7. System and Service Quality (SSQ)
4. Research Methodology
5. Analysis of Data and Findings
5.1. Common Method Bias (CMB)
5.2. Measurement Model
5.3. Structural Model Results
6. Discussion and Implications
6.1. Theoretical Contributions
6.2. Practical Contributions
7. Limitations and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Constructs | Measurement Item | Source |
Mobile Usefulness | MU1: Using NFC mobile payment system will increase my performance. | [16] |
MU2: Using NFC mobile payment system will enhance my effectiveness in day-to-day life. | ||
MU3: Using NFC mobile payment makes the payment easy. | ||
MU4: Overall, I will find NFC mobile payment system to be advantageous. | ||
Mobile Ease of Use | MEOU1: Learning to use NFC mobile payment will be easy for me. | [16] |
MEOU2: Using NFC mobile payment does not need a lot of mental effort. | ||
MEOU3: Becoming skillful when using NFC mobile payment will be easy for me. | ||
MEOU4: NFC technology uses my mobile device; hence, NFC mobile payment is easy to use. | ||
System and Service Quality | SSQ1: I do not have any limitations or problems when using NFC mobile payment system. | [28,71,87] |
SSQ2: NFC mobile payment system offers services that fully meet my needs. | ||
SSQ3: NFC mobile payment provides precise services that are aligned with the purpose of the service. | ||
SSQ4: NFC mobile payment provides convenient access. | ||
SSQ5: NFC mobile payment is easy to use. | ||
Mobile Self-Efficacy | MSE1: I feel confident when using NFC mobile payment. | [77] |
MSE2: I can complete a transaction using NFC mobile payment in a short time. | ||
MSE3: I feel confident to use NFC mobile payment even if no one guides me. | ||
Technology Self-Efficacy | TSE1: I feel confident in my ability to figure out what to do when a feature does not work in the NFC mobile payment. | [124] |
TSE2: I feel confident turning to an online discussion group in the NFC mobile payment. | ||
TSE3: I feel confident understanding the terms or words that are needed to use the NFC mobile payment. | ||
TSE4: I feel confident learning advanced features in the NFC mobile payment. | ||
Perceived Critical Mass | PCM1: Most of my colleagues frequently use NFC mobile payment for paying. | [37] |
PCM2: Most of the people I communicate with use NFC mobile payment for paying. | ||
PCM3: Most people in my group use NFC mobile payment. | ||
PCM4: Many people I communicate with regularly use NFC mobile payment. | ||
PCM5: Most of my friends frequently use NFC mobile payment for paying. | ||
Perceived Enjoyment | PE1: I find using NFC mobile payment for paying is fun. | [122] |
PE2: I find using NFC mobile payment for paying pleasant. | ||
PE3: I find using NFC mobile payment for paying exciting. | ||
PE4: I find using NFC mobile payment for paying entertaining. | ||
Behavioral Intention | BI1: I am likely to increase my use of NFC mobile payments in the future. | [16] |
BI2: I am willing to use NFC mobile payment in the future. | ||
BI3: I intend to use NFC mobile payment system when an opportunity arises. | ||
B4: Given the opportunity, I will use NFC mobile payment. |
References
- Balachandran, D.; Tan, G.-W.-H. Regression modelling of predicting NFC mobile payment adoption in Malaysia. Int. J. Model. Oper. Manag. 2015, 5, 100–116. [Google Scholar] [CrossRef]
- Martinez, B.M.; McAndrews, L.E. Do you take...? The effect of mobile payment solutions on use intention: An application of UTAUT2. J. Mark. Anal. 2022, 1–12. [Google Scholar] [CrossRef]
- Aydin, G.; Burnaz, S. Adoption of mobile payment systems: A study on mobile wallets. J. Bus. Econ. Financ. 2016, 5, 73–92. [Google Scholar] [CrossRef]
- Busu, S.; Karim, N.; Haron, H. Factors of adoption intention for near field communication mobile payment. Indones. J. Electr. Eng. Comput. Sci. 2018, 11, 98–104. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Singh, N.; Kalinic, Z.; Carvajal-Trujillo, E. Examining the determinants of continuance intention to use and the moderating effect of the gender and age of users of NFC mobile payments: A multi-analytical approach. Inf. Technol. Manag. 2021, 22, 133–161. [Google Scholar] [CrossRef]
- Mobile, G. The Mobile Economy. 2018. Available online: https://www.gsma.com/newsroom/press-release/number-of-global-mobile-subscribers-to-surpass-five-billion-this-year/ (accessed on 1 February 2023).
- Al-Qudah, A.A.; Al-Okaily, M.; Alqudah, G.; Ghazlat, A. Mobile payment adoption in the time of the COVID-19 pandemic. Electron. Commer. Res. 2022, 1–25. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, F.; Liao, K.; Chang, V. Determine factors of NFC mobile payment continuous adoption in shopping malls: Evidence from Indonesia. Int. J. Bus. Intell. Res. 2021, 12, 1–20. [Google Scholar] [CrossRef]
- Mu, H.-L.; Lee, Y.-C. How Inclusive Digital Financial Services Impact User Behavior: A Case of Proximity Mobile Payment in Korea. Sustainability 2021, 13, 9567. [Google Scholar]
- Triggs, R. What is NFC & How Does It Work? 2014. Available online: https://www.androidauthority.com/what-is-nfc-270730/ (accessed on 16 December 2022).
- Khalilzadeh, J.; Ozturk, A.B.; Bilgihan, A. Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Comput. Hum. Behav. 2017, 70, 460–474. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Lin, J.C.-C. An empirical examination of consumer adoption of Internet of Things services: Network externalities and concern for information privacy perspectives. Comput. Hum. Behav. 2016, 62, 516–527. [Google Scholar] [CrossRef]
- Upadhyay, N.; Upadhyay, S.; Abed, S.S.; Dwivedi, Y.K. Consumer adoption of mobile payment services during COVID-19: Extending meta-UTAUT with perceived severity and self-efficacy. Int. J. Bank Mark. 2022, 40, 960–991. [Google Scholar] [CrossRef]
- Hart, C.W. Spiritual Lessons from the Coronavirus Pandemic; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Flavian, C.; Guinaliu, M.; Lu, Y. Mobile payments adoption–introducing mindfulness to better understand consumer behavior. Int. J. Bank Mark. 2020, 38, 1575–1599. [Google Scholar] [CrossRef]
- Ooi, K.-B.; Tan, G.W.-H. Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Syst. Appl. 2016, 59, 33–46. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self-efficacy mechanism in human agency. Am. Psychol. 1982, 37, 122. [Google Scholar] [CrossRef]
- Oliver, P.; Marwell, G.; Teixeira, R. A theory of the critical mass. I. Interdependence, group heterogeneity, and the production of collective action. Am. J. Sociol. 1985, 91, 522–556. [Google Scholar] [CrossRef] [Green Version]
- Getzels, J.W.; Csikszentmihalyi, M. From problem solving to problem finding. In Perspectives in Creativity; Routledge: London, UK, 2017; pp. 90–116. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Villa, E.; Ruiz, L.; Valencia, A.; Picón, E. Electronic commerce: Factors involved in its adoption from a bibliometric analysis. J. Theor. Appl. Electron. Commer. Res. 2018, 13, 39–70. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.A.; Venkatesh, V.; Bala, H. Household technology use: Integrating household life cycle and the model of adoption of technology in households. Inf. Soc. 2006, 22, 205–218. [Google Scholar] [CrossRef]
- Wong, L.W.; Tan, G.W.-H.; Hew, J.-J.; Ooi, K.-B.; Leong, L.-Y. Mobile social media marketing: A new marketing channel among digital natives in higher education? J. Mark. High. Educ. 2022, 32, 113–137. [Google Scholar] [CrossRef]
- Ooi, K.-B.; Lee, V.-H.; Hew, J.-J.; Lin, B. Mobile social cyberbullying: Why are keyboard warriors raging? J. Comput. Inf. Syst. 2019, 61, 371–382. [Google Scholar] [CrossRef]
- Ng, F.Z.-X.; Yap, H.-Y.; Tan, G.W.-H.; Lo, P.-S.; Ooi, K.-B. Fashion shopping on the go: A Dual-stage predictive-analytics SEM-ANN analysis on usage behaviour, experience response and cross-category usage. J. Retail. Consum. Serv. 2022, 65, 102851. [Google Scholar] [CrossRef]
- Loh, X.-M.; Lee, V.-H.; Tan, G.W.-H.; Hew, J.-J.; Ooi, K.-B. Towards a cashless society: The imminent role of wearable technology. J. Comput. Inf. Syst. 2019, 62, 39–49. [Google Scholar] [CrossRef]
- Park, E.; Kim, K.J. An integrated adoption model of mobile cloud services: Exploration of key determinants and extension of technology acceptance model. Telemat. Inform. 2014, 31, 376–385. [Google Scholar] [CrossRef]
- Yan, L.-Y.; Tan, G.W.-H.; Loh, X.-M.; Hew, J.-J.; Ooi, K.-B. QR code and mobile payment: The disruptive forces in retail. J. Retail. Consum. Serv. 2021, 58, 102300. [Google Scholar] [CrossRef]
- Al-Maroof, R.S.; Alhumaid, K.; Akour, I.; Salloum, S. Factors that affect e-learning platforms after the spread of COVID-19: Post acceptance study. Data 2021, 6, 49. [Google Scholar] [CrossRef]
- Schunk, D.H. Self-efficacy and academic motivation. Educ. Psychol. 1991, 26, 207–231. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Saini, J.R. On the Role of Teachers’ Acceptance, Continuance Intention and Self-Efficacy in the Use of Digital Technologies in Teaching Practices. J. Furth. High. Educ. 2022, 46, 721–736. [Google Scholar] [CrossRef]
- Kwon, Y. Effects of Organizational Climates on the Self-Efficacy of Practitioners in Continuing Higher Education in Korea. Perform. Improv. Q. 2018, 31, 141–163. [Google Scholar] [CrossRef]
- Hooks, D.; Davis, Z.; Agrawal, V.; Li, Z. Exploring factors influencing technology adoption rate at the macro level: A predictive model. Technol. Soc. 2022, 68, 101826. [Google Scholar] [CrossRef]
- Abuelhassan, A.E.; AlGassim, A. How organizational justice in the hospitality industry influences proactive customer service performance through general self-efficacy. Int. J. Contemp. Hosp. Manag. 2022; ahead of print. [Google Scholar] [CrossRef]
- Bolar, K.; Mallya, J.; Roy, P.; Payini, V.; Thirugnanasambantham, K. Determinants of hospitality students’ perceived learning during COVID 19 pandemic: Role of interactions and self-efficacy. J. Hosp. Leis. Sport Tour. Educ. 2022, 30, 100335. [Google Scholar]
- Tan, G.W.-H.; Lee, V.-H.; Hew, J.-J.; Ooi, K.-B.; Wong, L.-W. The interactive mobile social media advertising: An imminent approach to advertise tourism products and services? Telemat. Inform. 2018, 35, 2270–2288. [Google Scholar] [CrossRef]
- Wicker, P.; Feiler, S.; Breuer, C. Board gender diversity, critical masses, and organizational problems of non-profit sport clubs. Eur. Sport Manag. Q. 2022, 22, 251–271. [Google Scholar] [CrossRef]
- Van Slyke, C.; Ilie, V.; Lou, H.; Stafford, T. Perceived critical mass and the adoption of a communication technology. Eur. J. Inf. Syst. 2007, 16, 270–283. [Google Scholar] [CrossRef]
- Purwandari, B.; Suriazdin, S.A.; Hidayanto, A.N.; Setiawan, S.; Phusavat, K.; Maulida, M. Factors Affecting Switching Intention from Cash on Delivery to E-Payment Services in C2C E-Commerce Transactions: COVID-19, Transaction, and Technology Perspectives. Emerg. Sci. J. 2022, 6, 136–150. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Hsu, T.-H.; Lu, Y.-J. Impact of flow on mobile shopping intention. J. Retail. Consum. Serv. 2018, 41, 281–287. [Google Scholar] [CrossRef]
- Almarzouqi, A.; Aburayya, A.; Salloum, S.A. Determinants of intention to use medical smartwatch-based dual-stage SEM-ANN analysis. Inform. Med. Unlocked 2022, 28, 100859. [Google Scholar] [CrossRef]
- Ateş, H.; Garzón, J. Drivers of teachers’ intentions to use mobile applications to teach science. Educ. Inf. Technol. 2022, 27, 2521–2542. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, C.-K.; Back, K.-J.; Schmitt, A. Brand experiential value for creating integrated resort customers’ co-creation behavior. Int. J. Hosp. Manag. 2019, 81, 104–112. [Google Scholar] [CrossRef]
- Ha, I.; Yoon, Y.; Choi, M. Determinants of adoption of mobile games under mobile broadband wireless access environment. Inf. Manag. 2007, 44, 276–286. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; Rossmann, A.; tom Dieck, M.C. An adoption framework for mobile augmented reality games: The case of Pokémon Go. Comput. Hum. Behav. 2017, 76, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Yoo, M.; Yang, W. Online engagement among restaurant customers: The importance of enhancing flow for social media users. J. Hosp. Tour. Res. 2020, 44, 252–277. [Google Scholar] [CrossRef]
- Nusair, K.; Parsa, H. Introducing flow theory to explain the interactive online shopping experience in a travel context. Int. J. Hosp. Tour. Adm. 2011, 12, 1–20. [Google Scholar] [CrossRef]
- Joe, S.; Kim, J.; Zemke, D.M.V. Effects of social influence and perceived enjoyment on Kiosk acceptance: A moderating role of gender. Int. J. Hosp. Tour. Adm. 2022, 23, 289–316. [Google Scholar] [CrossRef]
- Koufaris, M. Applying the technology acceptance model and flow theory to online consumer behavior. Inf. Syst. Res. 2002, 13, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Almajali, D.; Al-Okaily, M.; Al-Daoud, K.; Weshah, S.; Shaikh, A.A. Go Cashless! Mobile Payment Apps Acceptance in Developing Countries: The Jordanian Context Perspective. Sustainability 2022, 14, 13524. [Google Scholar] [CrossRef]
- Tew, H.-T.; Tan, G.W.-H.; Loh, X.-M.; Lee, V.-H.; Lim, W.-L.; Ooi, K.-B. Tapping the next purchase: Embracing the wave of mobile payment. J. Comput. Inf. Syst. 2021, 62, 527–535. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Liu, W. Understanding the adoption of mobile social payment: From the cognitive behavioural perspective. Int. J. Mob. Commun. 2022, 20, 483–506. [Google Scholar] [CrossRef]
- Chakraborty, D.; Siddiqui, A.; Siddiqui, M.; Rana, N.P.; Dash, G. Mobile payment apps filling value gaps: Integrating consumption values with initial trust and customer involvement. J. Retail. Consum. Serv. 2022, 66, 102946. [Google Scholar] [CrossRef]
- Koenig-Lewis, N.; Marquet, M.; Palmer, A.; Zhao, A.L. Enjoyment and social influence: Predicting mobile payment adoption. Serv. Ind. J. 2015, 35, 537–554. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Kalinic, Z.; de Luna, I.R.; Marinkovic, V. A holistic analysis of near field communication mobile payments: An empirical analysis. Int. J. Mob. Commun. 2022, 20, 703–726. [Google Scholar] [CrossRef]
- Lau, A.J.; Tan, G.W.-H.; Loh, X.-M.; Leong, L.-Y.; Lee, V.-H.; Ooi, K.-B. On the way: Hailing a taxi with a smartphone? A hybrid SEM-neural network approach. Mach. Learn. Appl. 2021, 4, 100034. [Google Scholar] [CrossRef]
- Manrai, R.; Gupta, K.P. A study on factors influencing mobile payment adoption using theory of diffusion of innovation. Int. J. Bus. Inf. Syst. 2022, 39, 219–240. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wangh, S.; Zhou, Y. Mobile payment with alipay: An application of extended technology acceptance model. IEEE Access 2019, 7, 50380–50387. [Google Scholar] [CrossRef]
- Migliore, G.; Wagner, R.; Cechella, F.S.; Liébana-Cabanillas, F. Antecedents to the adoption of mobile payment in China and Italy: An integration of UTAUT2 and innovation resistance theory. Inf. Syst. Front. 2022, 24, 2099–2122. [Google Scholar] [CrossRef]
- Türker, C.; Altay, B.C.; Okumuş, A. Understanding user acceptance of QR code mobile payment systems in Turkey: An extended TAM. Technol. Forecast. Soc. Change 2022, 184, 121968. [Google Scholar] [CrossRef]
- Tan, G.W.-H.; Ooi, K.-B.; Chong, S.-C.; Hew, T.-S. NFC mobile credit card: The next frontier of mobile payment? Telemat. Inform. 2014, 31, 292–307. [Google Scholar] [CrossRef]
- Lew, S.; Tan, G.W.-H.; Loh, X.-M.; Hew, J.-J.; Ooi, K.-B. The disruptive mobile wallet in the hospitality industry: An extended mobile technology acceptance model. Technol. Soc. 2020, 63, 101430. [Google Scholar] [CrossRef]
- Mahler, A.; Rogers, E.M. The diffusion of interactive communication innovations and the critical mass: The adoption of telecommunications services by German banks. Telecommun. Policy 1999, 23, 719–740. [Google Scholar] [CrossRef]
- Koohikamali, M.; Gerhart, N.; Mousavizadeh, M. Location disclosure on LB-SNAs: The role of incentives on sharing behavior. Decis. Support Syst. 2015, 71, 78–87. [Google Scholar] [CrossRef]
- Leibenstein, H. Bandwagon, snob, and Veblen effects in the theory of consumers’ demand. Q. J. Econ. 1950, 64, 183–207. [Google Scholar] [CrossRef] [Green Version]
- Marcus, M. Toward a “critical mass” theory of interactive media. In Organizations and Communication Technology; Sage Publications: London, UK, 1990; pp. 194–218. [Google Scholar]
- Chang, I.-C.; Liu, C.-C.; Chen, K. The effects of hedonic/utilitarian expectations and social influence on continuance intention to play online games. Internet Res. 2014, 24, 21–45. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.-Y.; Lu, H.-P. Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Comput. Hum. Behav. 2011, 27, 1152–1161. [Google Scholar] [CrossRef]
- Yang, Q.; Al Mamun, A.; Hayat, N.; Salleh, M.F.M.; Jingzu, G.; Zainol, N.R. Modelling the mass adoption potential of wearable medical devices. PLoS ONE 2022, 17, e0269256. [Google Scholar] [CrossRef]
- Kwon, S.J.; Park, E.; Kim, K.J. What drives successful social networking services? A comparative analysis of user acceptance of Facebook and Twitter. Soc. Sci. J. 2014, 51, 534–544. [Google Scholar] [CrossRef]
- Zhou, T.; Li, H.; Liu, Y. Understanding mobile IM continuance usage from the perspectives of network externality and switching costs. Int. J. Mob. Commun. 2015, 13, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Baabdullah, A.M. Consumer adoption of Mobile Social Network Games (M-SNGs) in Saudi Arabia: The role of social influence, hedonic motivation and trust. Technol. Soc. 2018, 53, 91–102. [Google Scholar] [CrossRef]
- Yen, Y.-S. Channel integration affects usage intention in food delivery platform services: The mediating effect of perceived value. Asia Pac. J. Mark. Logist. 2022, 35, 54–73. [Google Scholar] [CrossRef]
- Chan, X.Y.; Rahman, M.K.; Mamun, A.A.; ASalameh, A.; Wan Hussain, W.M.H.; Alam, S.S. Predicting the Intention and Adoption of Mobile Shopping During the COVID-19 Lockdown in Malaysia. SAGE Open 2022, 12, 21582440221095012. [Google Scholar] [CrossRef]
- Mahat, J.; Ayub, A.F.M.; Luan, S. An assessment of students’ mobile self-efficacy, readiness and personal innovativeness towards mobile learning in higher education in Malaysia. Procedia-Soc. Behav. Sci. 2012, 64, 284–290. [Google Scholar]
- Hsu, H.T.; Lin, C.C. Extending the technology acceptance model of college learners’ mobile-assisted language learning by incorporating psychological constructs. Br. J. Educ. Technol. 2022, 53, 286–306. [Google Scholar]
- Molina-Castillo, F.-J.; Rodriguez-Guirao, A.; Lopez-Nicolas, C.; Bouwman, H. Analysis of mobile pre-payment (pay in advance) and post-payment (pay later) services. Int. J. Mob. Commun. 2016, 14, 499–517. [Google Scholar] [CrossRef]
- Keith, M.J.; Babb, J.S.; Lowry, P.B.; Furner, C.P.; Abdullat, A. The role of mobile-computing self-efficacy in consumer information disclosure. Inf. Syst. J. 2015, 25, 637–667. [Google Scholar] [CrossRef]
- Ozturk, A.B.; Bilgihan, A.; Nusair, K.; Okumus, F. What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use and perceived convenience. Int. J. Inf. Manag. 2016, 36, 1350–1359. [Google Scholar]
- Makki, A.M.; Ozturk, A.B.; Singh, D. Role of risk, self-efficacy, and innovativeness on behavioral intentions for mobile payment systems in the restaurant industry. J. Foodserv. Bus. Res. 2016, 19, 454–473. [Google Scholar] [CrossRef]
- Arvidsson, N. Consumer attitudes on mobile payment services–results from a proof of concept test. Int. J. Bank Mark. 2014, 32, 150–170. [Google Scholar] [CrossRef]
- Yang, K. The effects of technology self-efficacy and innovativeness on consumer mobile data service adoption between American and Korean consumers. J. Int. Consum. Mark. 2010, 22, 117–127. [Google Scholar] [CrossRef]
- Tan, G.W.-H.; Ooi, K.-B. Gender and age: Do they really moderate mobile tourism shopping behavior? Telemat. Inform. 2018, 35, 1617–1642. [Google Scholar] [CrossRef]
- DeLone, W.H.; McLean, E.R. The DeLone and McLean model of information systems success: A ten-year update. J. Manag. Inf. Syst. 2003, 19, 9–30. [Google Scholar]
- Lee, K.C.; Chung, N. Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean’s model perspective. Interact. Comput. 2009, 21, 385–392. [Google Scholar] [CrossRef]
- Hew, J.-J.; Leong, L.-Y.; Tan, G.W.-H.; Lee, V.-H.; Ooi, K.-B. Mobile social tourism shopping: A dual-stage analysis of a multi-mediation model. Tour. Manag. 2018, 66, 121–139. [Google Scholar] [CrossRef]
- De Luna, I.R.; Liébana-Cabanillas, F.; Sánchez-Fernández, J.; Muñoz-Leiva, F. Mobile payment is not all the same: The adoption of mobile payment systems depending on the technology applied. Technol. Forecast. Soc. Chang. 2019, 146, 931–944. [Google Scholar]
- Ram, J.; Corkindale, D.; Wu, M.-L. Enterprise resource planning adoption: Structural equation modeling analysis of antecdants. J. Comput. Inf. Syst. 2013, 54, 53–65. [Google Scholar] [CrossRef] [Green Version]
- AL-Nuaimi, M.N.; Al Sawafi, O.S.; Malik, S.I.; Al-Emran, M.; Selim, Y.F. Evaluating the actual use of learning management systems during the COVID-19 pandemic: An integrated theoretical model. Interact. Learn. Environ. 2022, 1–26. [Google Scholar] [CrossRef]
- Vickers, N.J. Animal communication: When I’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef]
- Nan, D.; Lee, H.; Kim, Y.; Kim, J.H. My video game console is so cool! A coolness theory-based model for intention to use video game consoles. Technol. Forecast. Soc. Change 2022, 176, 121451. [Google Scholar] [CrossRef]
- Hair, J.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Pearson new international edition. In Multivariate Data Analysis, 7th ed.; Pearson Education Limited: London, UK, 2014. [Google Scholar]
- Masuda, H.; Han, S.H.; Lee, J. Impacts of influencer attributes on purchase intentions in social media influencer marketing: Mediating roles of characterizations. Technol. Forecast. Soc. Change 2022, 174, 121246. [Google Scholar]
- Mullen, M.R. Diagnosing measurement equivalence in cross-national research. J. Int. Bus. Stud. 1995, 26, 573–596. [Google Scholar] [CrossRef]
- Gudergan, S.P.; Ringle, C.M.; Wende, S.; Will, A. Confirmatory tetrad analysis in PLS path modeling. J. Bus. Res. 2008, 61, 1238–1249. [Google Scholar] [CrossRef]
- Hair Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Khan, I.U.; Hameed, Z.; Yu, Y.; Islam, T.; Sheikh, Z.; Khan, S.U. Predicting the acceptance of MOOCs in a developing country: Application of task-technology fit model, social motivation, and self-determination theory. Telemat. Inform. 2018, 35, 964–978. [Google Scholar] [CrossRef]
- Zhou, H.; Long, L. Statistical remedies for common method biases. Adv. Cogn. Psychol. 2004, 12, s942. [Google Scholar]
- Hair Black, W.C.; Babin, B.J.; Anderson, R.E. Canonical correlation: A supplement to multivariate data analysis. In Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson Prentice Hall Publishing: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Nunnally, J.C.; Bernstein, I. The role of university in the development of entrepreneurial vocations: A Spanish study. In Psychometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Hair Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Eribaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Dijkstra, T.K.; Sarstedt, M.; Ringle, C.M.; Diamantopoulos, A.; Straub, D.W.; Calantone, R.J. Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organ. Res. Methods 2014, 17, 182–209. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3; SmartPLS GmbH: Boenningstedt, Germany, 2015. [Google Scholar]
- Tan, G.W.-H.; Ooi, K.-B.; Sim, J.-J.; Phusavat, K. Determinants of mobile learning adoption: An empirical analysis. J. Comput. Inf. Syst. 2012, 52, 82–91. [Google Scholar]
- Wong, C.-H.; Tan, G.W.-H.; Loke, S.-P.; Ooi, K.-B. Adoption of mobile social networking sites for learning? Online Inf. Rev. 2015, 39, 762–778. [Google Scholar] [CrossRef]
- Pan, V.-Q.; Chew, P.-Q.; Cheah, A.S.-G.; Wong, C.-H.; Tan, G.W.-H. Mobile marketing in the 21st century: A partial least squares structural equation modelling approach. Int. J. Model. Oper. Manag. 2015, 5, 83–99. [Google Scholar] [CrossRef]
- Wong, C.-H.; Tan, G.W.-H.; Loke, S.-P.; Ooi, K.-B. Mobile TV: A new form of entertainment? Ind. Manag. Data Syst. 2014, 114, 1050–1067. [Google Scholar] [CrossRef]
- Dutot, V. Factors influencing near field communication (NFC) adoption: An extended TAM approach. J. High Technol. Manag. Res. 2015, 26, 45–57. [Google Scholar] [CrossRef]
- Leong, L.-Y.; Hew, T.-S.; Tan, G.W.-H.; Ooi, K.-B. Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Syst. Appl. 2013, 40, 5604–5620. [Google Scholar] [CrossRef]
- Wong, C.-H.; Tan, G.W.-H.; Tan, B.-I.; Ooi, K.-B. Mobile advertising: The changing landscape of the advertising industry. Telemat. Inform. 2015, 32, 720–734. [Google Scholar] [CrossRef]
- Wong, C.H.; Lee, H.S.; Chua, B.H.; Chai, B.H.; Tan Han, G.W. Predicting the consumers’ intention to adopt mobile shopping: An emerging market perspective. Int. J. Netw. Mob. Technol. 2012, online. [Google Scholar]
- Shin, D.-H. Towards an understanding of the consumer acceptance of mobile wallet. Comput. Hum. Behav. 2009, 25, 1343–1354. [Google Scholar] [CrossRef]
- Benbasat, I.; Barki, H. Quo vadis TAM? J. Assoc. Inf. Syst. 2007, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Phan, K.; Daim, T.U. Exploring technology acceptance for mobile services. J. Ind. Eng. Manag. 2011, 4, 339–360. [Google Scholar] [CrossRef]
- Nysveen, H.; Pedersen, P.E.; Thorbjørnsen, H. Explaining intention to use mobile chat services: Moderating effects of gender. J. Consum. Mark. 2005, 22, 247–256. [Google Scholar] [CrossRef]
- Chen, L.-D. A model of consumer acceptance of mobile payment. Int. J. Mob. Commun. 2008, 6, 32–52. [Google Scholar] [CrossRef]
- Kim, C.; Mirusmonov, M.; Lee, I. An empirical examination of factors influencing the intention to use mobile payment. Comput. Hum. Behav. 2010, 26, 310–322. [Google Scholar] [CrossRef]
Demographics Characteristics | Group | Frequency | Percentage |
---|---|---|---|
Gender | Male | 117 | 37.7% |
Female | 193 | 62.3% | |
Age | 15–19 | 32 | 10.3% |
20–24 | 65 | 21% | |
25–29 | 110 | 35.5% | |
30–34 | 45 | 14.5% | |
35–39 | 35 | 11.3% | |
40 and above | 23 | 7.4% | |
Education Level | High School | 150 | 48.3% |
Undergraduate | 82 | 26.5% | |
Graduate | 40 | 12.9% | |
Doctorate | 38 | 12.3% | |
Monthly Income | Below or equal to 30,000 Pkr | 50 | 16.1% |
31,000–40,000 | 59 | 19.0% | |
41,000–50,000 | 125 | 40.3% | |
51,000–60,000 | 40 | 13.0% | |
Above 60,000 | 36 | 11.6% |
N | Minimum | Maximum | Mean | Std. Error | Std. Deviation | |
---|---|---|---|---|---|---|
BI | 310 | −3.31 | 3.22 | 0.0002 | 0.05689 | 1.00171 |
MEU | 310 | −3.96 | 2.81 | −0.0002 | 0.05689 | 1.00163 |
MSE | 310 | −3.22 | 3.17 | 0.0001 | 0.05688 | 1.00145 |
MU | 310 | −3.79 | 2.44 | 0.0000 | 0.05689 | 1.00167 |
PCM | 310 | −3.27 | 3.48 | 0.0000 | 0.05689 | 1.00168 |
PE | 310 | −3.41 | 1.99 | 0.0001 | 0.05689 | 1.00168 |
SSQ | 310 | −4.73 | 2.51 | −0.0001 | 0.05688 | 1.00152 |
TSE | 310 | −3.04 | 3.09 | 0.0000 | 0.05688 | 1.00154 |
Valid N (listwise) | 310 |
Construct | Items | Factor Loading | α | CR | AVE | VIF Inner |
---|---|---|---|---|---|---|
Behavioral intention (BI) | BI1 | 0.754 | 0.834 | 0.89 | 0.669 | 1.824 |
BI2 | 0.87 | |||||
BI3 | 0.845 | |||||
BI4 | 0.799 | |||||
Mobile ease of Use (MEOU) | MEOU1 | 0.831 | 0.867 | 0.909 | 0.714 | 1.303 |
MEOU 2 | 0.869 | |||||
MEOU 3 | 0.856 | |||||
MEOU 4 | 0.824 | |||||
Mobile Usefulness (MU) | MU1 | 0.844 | 0.848 | 0.898 | 0.688 | 1.57 |
MU 2 | 0.876 | |||||
MU 3 | 0.837 | |||||
MU 4 | 0.756 | |||||
Perceived Critical Mass (PCM) | PCM1 | 0.735 | 0.789 | 0.855 | 0.543 | 1.346 |
PCM2 | 0.737 | |||||
PCM3 | 0.793 | |||||
PCM4 | 0.681 | |||||
PCM5 | 0.733 | |||||
Perceived Enjoyment (PE) | PE1 | 0.701 | 0.761 | 0.843 | 0.574 | 1.161 |
PE2 | 0.777 | |||||
PE3 | 0.842 | |||||
PE4 | 0.701 | |||||
System and Service Quality (SSQ) | SSQ1 | 0.814 | 0.835 | 0.882 | 0.6 | 1.501 |
SSQ2 | 0.806 | |||||
SSQ3 | 0.746 | |||||
SSQ4 | 0.775 | |||||
SSQ5 | 0.729 | |||||
Mobile Self-Efficacy (MSE) | MSE1 | 0.796 | 0.762 | 0.862 | 0.675 | 1.327 |
MSE2 | 0.845 | |||||
MSE3 | 0.823 | |||||
Technology Self-Efficacy (TSE) | TSE1 | 0.863 | 0.801 | 0.872 | 0.632 | 1.395 |
TSE2 | 0.715 | |||||
TSE3 | 0.896 | |||||
TSE4 | 0.686 |
Construct | AVE | CA | BI | MEOU | MSE | MU | PCM | PE | SSQ | TSE |
---|---|---|---|---|---|---|---|---|---|---|
BI | 0.669 | 0.834 | 0.818 | |||||||
MEOU | 0.714 | 0.867 | 0.315 | 0.845 | ||||||
MSE | 0.675 | 0.762 | 0.451 | 0.192 | 0.822 | |||||
MU | 0.688 | 0.848 | 0.455 | 0.447 | 0.325 | 0.83 | ||||
PCM | 0.543 | 0.789 | 0.313 | 0.172 | 0.168 | 0.288 | 0.737 | |||
PE | 0.574 | 0.761 | 0.259 | 0.014 | 0.013 | 0.106 | 0.251 | 0.757 | ||
SSQ | 0.6 | 0.835 | 0.525 | 0.306 | 0.3 | 0.386 | 0.304 | 0.222 | 0.775 | |
TSE | 0.632 | 0.801 | 0.344 | 0.161 | 0.256 | 0.335 | 0.443 | 0.241 | 0.277 | 0.795 |
Heterotrait–Monotrait Ratio (HTMT) | ||||||||||
BI | ||||||||||
MEU | 0.372 | |||||||||
MSE | 0.566 | 0.222 | ||||||||
MU | 0.538 | 0.523 | 0.383 | |||||||
PCM | 0.386 | 0.207 | 0.217 | 0.347 | ||||||
PE | 0.306 | 0.069 | 0.119 | 0.12 | 0.293 | |||||
SSQ | 0.615 | 0.35 | 0.365 | 0.442 | 0.366 | 0.258 | ||||
TES | 0.418 | 0.192 | 0.323 | 0.407 | 0.565 | 0.299 | 0.324 |
Constructs | BI | MEOU | MSE | MU | PCM | PE | SSQ | TSE |
---|---|---|---|---|---|---|---|---|
BI1 | 0.754 | 0.237 | 0.34 | 0.409 | 0.263 | 0.206 | 0.377 | 0.268 |
BI2 | 0.87 | 0.263 | 0.416 | 0.367 | 0.266 | 0.22 | 0.442 | 0.289 |
BI3 | 0.845 | 0.273 | 0.357 | 0.361 | 0.248 | 0.23 | 0.442 | 0.316 |
BI4 | 0.799 | 0.257 | 0.361 | 0.356 | 0.25 | 0.189 | 0.452 | 0.252 |
MEU1 | 0.278 | 0.831 | 0.156 | 0.417 | 0.106 | 0.028 | 0.223 | 0.126 |
MEU2 | 0.248 | 0.869 | 0.146 | 0.388 | 0.175 | 0.009 | 0.286 | 0.132 |
MEU3 | 0.288 | 0.856 | 0.244 | 0.396 | 0.109 | −0.008 | 0.216 | 0.121 |
MEU4 | 0.256 | 0.824 | 0.106 | 0.318 | 0.184 | 0.019 | 0.303 | 0.162 |
MSE1 | 0.375 | 0.042 | 0.796 | 0.133 | 0.126 | 0.08 | 0.255 | 0.204 |
MSE3 | 0.403 | 0.154 | 0.845 | 0.321 | 0.144 | 0.031 | 0.275 | 0.202 |
MSE4 | 0.337 | 0.248 | 0.823 | 0.312 | 0.142 | −0.06 | 0.212 | 0.225 |
MU1 | 0.372 | 0.408 | 0.282 | 0.844 | 0.244 | 0.104 | 0.343 | 0.279 |
MU2 | 0.484 | 0.383 | 0.305 | 0.876 | 0.269 | 0.095 | 0.371 | 0.281 |
MU3 | 0.317 | 0.386 | 0.275 | 0.837 | 0.238 | 0.084 | 0.292 | 0.24 |
MU4 | 0.319 | 0.302 | 0.21 | 0.756 | 0.2 | 0.065 | 0.266 | 0.314 |
PCM1 | 0.219 | 0.056 | 0.139 | 0.173 | 0.735 | 0.118 | 0.293 | 0.313 |
PCM2 | 0.274 | 0.185 | 0.177 | 0.243 | 0.737 | 0.146 | 0.237 | 0.345 |
PCM3 | 0.223 | 0.101 | 0.136 | 0.216 | 0.793 | 0.261 | 0.255 | 0.336 |
PCM4 | 0.208 | 0.166 | 0.122 | 0.184 | 0.681 | 0.145 | 0.132 | 0.333 |
PCM5 | 0.228 | 0.122 | 0.052 | 0.234 | 0.733 | 0.226 | 0.202 | 0.308 |
PE1 | 0.239 | 0.055 | 0.061 | 0.161 | 0.195 | 0.701 | 0.161 | 0.177 |
PE2 | 0.152 | 0.005 | −0.079 | 0.026 | 0.13 | 0.777 | 0.13 | 0.12 |
PE3 | 0.219 | −0.034 | 0.042 | 0.053 | 0.262 | 0.842 | 0.217 | 0.225 |
PE4 | 0.133 | 0.024 | −0.039 | 0.056 | 0.119 | 0.701 | 0.136 | 0.187 |
SSQ1 | 0.425 | 0.245 | 0.231 | 0.307 | 0.226 | 0.159 | 0.814 | 0.156 |
SSQ2 | 0.458 | 0.277 | 0.297 | 0.362 | 0.249 | 0.195 | 0.806 | 0.27 |
SSQ3 | 0.401 | 0.209 | 0.15 | 0.232 | 0.193 | 0.213 | 0.746 | 0.187 |
SSQ4 | 0.431 | 0.251 | 0.277 | 0.349 | 0.309 | 0.22 | 0.775 | 0.295 |
SSQ5 | 0.277 | 0.182 | 0.171 | 0.203 | 0.174 | 0.031 | 0.729 | 0.126 |
TSE1 | 0.264 | 0.16 | 0.23 | 0.297 | 0.334 | 0.176 | 0.218 | 0.863 |
TSE2 | 0.315 | 0.072 | 0.21 | 0.278 | 0.364 | 0.211 | 0.249 | 0.715 |
TSE3 | 0.294 | 0.156 | 0.224 | 0.259 | 0.339 | 0.207 | 0.227 | 0.896 |
TSE4 | 0.209 | 0.122 | 0.136 | 0.224 | 0.38 | 0.17 | 0.178 | 0.686 |
Hypotheses (1 to14) | Path Coefficient | Standard Error | T-Value | p | f2 | Support |
---|---|---|---|---|---|---|
H1: MU → BI | 0.172 | 0.052 | 3.283 | *** | 0.098 | Yes |
H2: MEOU → BI | 0.078 | 0.073 | 1.071 | 0.284 | 0.021 | No |
H3: PCM → BI | 0.052 | 0.057 | 0.924 | 0.356 | 0.012 | No |
H4: PCM → PEJ | 0.251 | 0.057 | 4.394 | *** | 0.073 | Yes |
H5: PEJ → BI | 0.142 | 0.054 | 2.635 | 0.008 ** | 0.033 | Yes |
H6: MSE → BI | 0.265 | 0.076 | 3.499 | *** | 0.016 | Yes |
H7: MSE → MU | 0.19 | 0.063 | 3.005 | 0.003 ** | 0.054 | Yes |
H8: MSE → MEOU | 0.1 | 0.073 | 1.378 | 0.168 | 0.013 | No |
H9: TSE → BI | 0.069 | 0.061 | 1.123 | 0.262 | 0.019 | No |
H10: TSE → MU | 0.211 | 0.051 | 4.095 | *** | 0.05 | Yes |
H11: TSE → MEOU | 0.063 | 0.054 | 1.164 | 0.245 | 0.003t | No |
H12: SSQ → BI | 0.288 | 0.088 | 3.273 | *** | 0.081 | Yes |
H13: SSQ → MU | 0.272 | 0.065 | 4.161 | *** | 0.084 | Yes |
H14: SSQ → MEOU | 0.257 | 0.086 | 2.981 | 0.003 ** | 0.062 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Khan, S.; Cao, M.; Khan, S.U. Factors Determining Consumer Acceptance of NFC Mobile Payment: An Extended Mobile Technology Acceptance Model. Sustainability 2023, 15, 3664. https://doi.org/10.3390/su15043664
Zhang Q, Khan S, Cao M, Khan SU. Factors Determining Consumer Acceptance of NFC Mobile Payment: An Extended Mobile Technology Acceptance Model. Sustainability. 2023; 15(4):3664. https://doi.org/10.3390/su15043664
Chicago/Turabian StyleZhang, Qingyu, Salman Khan, Mei Cao, and Safeer Ullah Khan. 2023. "Factors Determining Consumer Acceptance of NFC Mobile Payment: An Extended Mobile Technology Acceptance Model" Sustainability 15, no. 4: 3664. https://doi.org/10.3390/su15043664
APA StyleZhang, Q., Khan, S., Cao, M., & Khan, S. U. (2023). Factors Determining Consumer Acceptance of NFC Mobile Payment: An Extended Mobile Technology Acceptance Model. Sustainability, 15(4), 3664. https://doi.org/10.3390/su15043664