Impact of Management and Reverse Logistics on Recycling in a War Scenario
Abstract
:1. Introduction
2. Literature Revision
2.1. The Impact of Reverse Logistics
2.2. The Sense of Green Logistics on the Times of War
2.3. A Description on Waste Recovery
2.4. Characterization in Waste Management
2.5. Valuation by Type of Waste
- The transformation of waste so that it serves a useful purpose, replacing other materials that would otherwise be used for a specific purpose;
- The preparation of waste for a particular purpose, in a facility or in the economy as a whole in a way that leverages the SC.
- Waste electrical and electronic equipment;
- Used lubricating oils;
- Used batteries and accumulators;
- End-of-life vehicles;
- Plant protection packaging waste;
- Packaging waste;
- Out-of-use medications;
- Used tires.
2.6. Definition of the Strategy and Process, for the Management of Reverse Logistics in WEEE
- Transport network planning is more complex;
- The lead times for delivery/provisioning are longer, since the time associated with picking up the products must now be included;
- More storage space is needed, since the products to be recovered have to be stored;
- More complex information systems are needed as they have to include “tracking/monitoring” of products in recovery;
2.7. Real Cases of Material Recycling
3. Case Study
3.1. Waste Management and Valorisation in the North of Portugal—Alto Minho
3.2. Materials and Methods
3.3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, Conception and Perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Bigum, M.; Brogaard, L.; Christensen, T.H. Metal Recovery from High-Grade WEEE: A Life Cycle Assessment. J. Hazard. Mater. 2012, 207, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Dey, B.K.; Sarkar, M.; Kim, S.J. A Smart Production System with an Autonomation Technology and Dual Channel Retailing. Comput. Ind. Eng. 2022, 173, 108607. [Google Scholar] [CrossRef]
- Kumar Singh, S.; Chauhan, A.; Sarkar, B. Supply Chain Management of E-Waste for End-of-Life Electronic Products with Reverse Logistics. Mathematics 2022, 11, 124. [Google Scholar] [CrossRef]
- Logística e Gestão Da Cadeia de Abastecimento, José Crespo de Carvalho-Livro-Bertrand. Available online: https://www.bertrand.pt/livro/logistica-e-gestao-da-cadeia-de-abastecimento-jose-crespo-de-carvalho/24387863 (accessed on 6 January 2023).
- Cao, J.; Chen, Y.; Shi, B.; Lu, B.; Zhang, X.; Ye, X.; Zhai, G.; Zhu, C.; Zhou, G. WEEE Recycling in Zhejiang Province, China: Generation, Treatment, and Public Awareness. J. Clean. Prod. 2016, 127, 311–324. [Google Scholar] [CrossRef]
- Hernández-Mejía, C.; Torres-Muñoz, D.; Inzunza-González, E.; Sánchez-López, C.; García-Guerrero, E.E. A Novel Green Logistics Technique for Planning Merchandise Deliveries: A Case Study. Logistics 2022, 6, 59. [Google Scholar] [CrossRef]
- Raja Santhi, A.; Muthuswamy, P. Pandemic, War, Natural Calamities, and Sustainability: Industry 4.0 Technologies to Overcome Traditional and Contemporary Supply Chain Challenges. Logistics 2022, 6, 81. [Google Scholar] [CrossRef]
- Wang, M.; Wang, B.; Chan, R. Reverse Logistics Uncertainty in a Courier Industry: A Triadic Model. MSCRA 2021, 3, 56–73. [Google Scholar] [CrossRef]
- Crespo de Carvalho, J.; Vilas-Boas, J.; Neill, H.O. Logistics and Supply Chain Management: An Area with a Strategic Service Perspective. AJIBM 2014, 4, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Cho, H.; Jones, A.; Lee, S.; Lee, S. Business Process Models for Integrated Supply Chain Planning in Open Business Environment. JSSM 2012, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Carlos Dias, J. Logística Global e Macrologística; Edições Sílabo: Lisboa, Portugal, 2005; ISBN 978-972-618-369-3. [Google Scholar]
- Schinckus, C.; Akbari, M.; Clarke, S. Corporate Social Responsibility in Sustainable Supply Chain Management: An Econo-Bibliometric Perspective. Theor. Econ. Lett. 2019, 9, 247–270. [Google Scholar] [CrossRef] [Green Version]
- Rigail-Cedeño, A.; Lazo, M.; Gaona, J.; Delgado, J.; Tapia-Bastidas, C.V.; Rivas, A.L.; Adrián, E.; Perugachi, R. Processability and Physical Properties of Compatibilized Recycled HDPE/Rice Husk Biocomposites. JMMP 2022, 6, 67. [Google Scholar] [CrossRef]
- Okwu, O.; Hursthouse, A.; Viza, E.; Idoko, L. Enhancement of WEEE Management Practices in MTN Phone Village, Rumukurushi, Port Harcourt, Nigeria. Recycling 2021, 6, 77. [Google Scholar] [CrossRef]
- United Nations University. The Global E-Waste Monitor 2020. In Proceedings of the E-Waste Monitor; 2020. [Google Scholar]
- National Association for Registration Annual Report on Municipal Waste, 2022, Lisbon. Available online: https://erp-recycling.org/pt-pt/wp-content/uploads/sites/16/2022/04/Relatorio-Anual-Atividades-REEE_2022-Resumo.pdf (accessed on 12 January 2023).
- Grigorescu, R.M.; Grigore, M.E.; Iancu, L.; Ghioca, P.; Ion, R.M. Waste Electrical and Electronic Equipment: A Review on the Identification Methods for Polymeric Materials. Recycling 2019, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Al-Helal, K.; Lazaro-Nebreda, J.; Patel, J.B.; Scamans, G.M. High-Shear De-Gassing and De-Ironing of an Aluminum Casting Alloy Made Directly from Aluminum End-of-Life Vehicle Scrap. Recycling 2021, 6, 66. [Google Scholar] [CrossRef]
- Campbell-Johnston, K.; Roos Lindgreen, E.; Mondello, G.; Gulotta, T.M.; Vermeulen, W.J.V.; Salomone, R. Thermodynamic Rarity of Electrical and Electronic Waste: Assessment and Policy Implications for Critical Materials. J. Ind. Ecol. 2023, 1, 1–14. [Google Scholar] [CrossRef]
- Islam, M.T.; Huda, N. Reverse Logistics and Closed-Loop Supply Chain of Waste Electrical and Electronic Equipment (WEEE)/E-Waste: A Comprehensive Literature Review. Resour. Conserv. Recycl. 2018, 137, 48–75. [Google Scholar] [CrossRef]
- Charles, R.G.; Douglas, P.; Hallin, I.L.; Matthews, I.; Liversage, G. An investigation of trends in precious metal and copper content of RAM modules in weee: Implications for long term recycling potential. Waste Manag. 2017, 60, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Lex Access to European Union Law (no Date) EU Law-EUR-Lex. Available online: https://eur-lex.europa.eu/homepage.html (accessed on 4 February 2023).
- Brooks, L.; Gaustad, G.; Gesing, A.; Mortvedt, T.; Freire, F. Ferrous and Non-Ferrous Recycling: Challenges and Potential Technology Solutions. Waste Manag. 2019, 85, 519–528. [Google Scholar] [CrossRef]
- Laurmaa, V.; Kers, J.; Tall, K.; Mikli, V.; Goljandin, D.; Vilsaar, K.; Peetsalu, P.; Saarna, M.; Tarbe, R.; Zhang, L. Mechanical Recycling of Electronic Wastes for Materials Recovery. In Recycling of Electronic Waste II; Zhang, L., Krumdick, G.K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 1–10. ISBN 978-1-118-08639-1. [Google Scholar]
- Sousa, P.C.d.; Galaço, A.R.B.S.; Serra, O.A. Rare earths: Periodic table, discovery, exploration in brazil and applications. Quím. Nova 2020, 42, 1208–1224. [Google Scholar] [CrossRef]
- Martinez-Ballesteros, G.; Valenzuela-García, J.L.; Gómez-Alvarez, A.; Encinas-Romero, M.A.; Mejía-Zamudio, F.A.; Rosas-Durazo, A.d.J.; Valenzuela-Frisby, R. Recovery of Ag, Au, and Pt from Printed Circuit Boards by Pressure Leaching. Recycling 2021, 6, 67. [Google Scholar] [CrossRef]
- Thürer, M.; Pan, Y.H.; Qu, T.; Luo, H.; Li, C.D.; Huang, G.Q. Internet of Things (IoT) Driven Kanban System for Reverse Logistics: Solid Waste Collection. J. Intell. Manuf. 2019, 30, 2621–2630. [Google Scholar] [CrossRef]
- Eurosat Electricity and Gas Prices in the First Half of 2022. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20221031-1 (accessed on 12 January 2023).
- Índice de Preços no Consumidor. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=540172974&DESTAQUESmodo=2 (accessed on 12 January 2023).
- European Recycling Platform. Available online: https://erp-recycling.org/ (accessed on 10 January 2023).
- Electrão|Confiar Para Reciclar. Available online: https://www.electrao.pt/?lang=en (accessed on 26 December 2022).
- Guias de Interpretação. Available online: https://apambiente.pt/residuos/guias-de-interpretacao (accessed on 13 January 2023).
- Jaiswal, A.; Samuel, C.; Patel, B.S.; Kumar, M. Go Green with WEEE: Eco-Friendly Approach for Handling E- Waste. Procedia Comput. Sci. 2015, 46, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Advanced Solutions International, I. CSCMP Supply Chain Management Definitions and Glossary. Available online: https://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx (accessed on 17 December 2022).
- Christopher, M. Logistics & Supply Chain Management; Pearson: London, UK, 2016; ISBN 978-1-292-08382-7. [Google Scholar]
- Gu, Y.; Liu, Q. Research on the Application of the Internet of Things in Reverse Logistics Information Management. JIEM 2013, 6, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Zizic, M.C.; Mladineo, M.; Gjeldum, N.; Celent, L. From Industry 4.0 towards Industry 5.0: A Review and Analysis of Paradigm Shift for the People, Organization and Technology. Energies 2022, 15, 5221. [Google Scholar] [CrossRef]
- Frederico, G.F. Supply Chain 4.0 to Supply Chain 5.0. Logistics 2021, 5, 49. [Google Scholar] [CrossRef]
- Waste Electrical and Electronic Equipment Recycling (WEEE). Available online: https://www.hse.gov.uk/waste/waste-electrical.htm (accessed on 9 January 2023).
- Mwanza, B.G.; Mbohwa, C.; Telukdarie, A. The Influence of Waste Collection Systems on Resource Recovery: A Review. Procedia Manuf. 2018, 21, 846–853. [Google Scholar] [CrossRef]
- Leao, S.; Bishop, I.; Evans, D. Assessing the Demand of Solid Waste Disposal in Urban Region by Urban Dynamics Modelling in a GIS Environment. Resour. Conserv. Recycl. 2001, 33, 289–313. [Google Scholar] [CrossRef]
- Sobczak, A.; Chomać-Pierzecka, E.; Kokiel, A.; Różycka, M.; Stasiak, J.; Soboń, D. Economic Conditions of Using Biodegradable Waste for Biogas Production, Using the Example of Poland and Germany. Energies 2022, 15, 5239. [Google Scholar] [CrossRef]
- Banja, M.; Jégard, M.; Motola, V.; Sikkema, R. Support for Biogas in the EU Electricity Sector–A Comparative Analysis. Biomass Bioenergy 2019, 128, 105313. [Google Scholar] [CrossRef]
- Relatório & Contas 2021. Available online: https://www.resulima.pt/media/c1vfnzui/relatorio_resulima_2021_v7_220804.pdf (accessed on 30 November 2022).
- Meggyes, A. Aggregating the World’s Open Access Research. Available online: https://core.ac.uk/search?q=Meggyes%2C+A. (accessed on 12 January 2023).
- APA-Portuguese Environment Agency. Available online: https://apambiente.pt/en (accessed on 26 December 2022).
- Evolução da Gestão de Equipamentos Elétricos e Eletrónicos e Resíduos de Equipamentos Elétricos e Eletrónicos. Available online: https://apambiente.pt/sites/default/files/_Residuos/FluxosEspecificosResiduos/REEE/Evolucao%20da%20Gestao%20de%20REEE.pdf (accessed on 27 December 2022).
- EuroStat Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics_-_electrical_and_electronic_equipment (accessed on 12 January 2023).
- Commission to the European Parliament-the European Economic and Social Committee and the Committee of the Regions. Available online: https://eur-lex.europa.eu/oj/direct-access.html?locale=pt (accessed on 12 January 2023).
- The war in Ukraine. Available online: https://www.journalofdemocracy.org/the-war-in-ukraine/ (accessed on 3 February 2023).
- Le Roux, J.; Szörfi, B.; Weißler, M. How Higher Oil Prices Could Affect Euro Area Potential Output; European Union: Brussels, Belgium, 2022. [Google Scholar]
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and Perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Pacesila, M.; Burcea, S.G.; Colesca, S.E. Analysis of Renewable Energies in European Union. Renew. Sustain. Energy Rev. 2016, 56, 156–170. [Google Scholar] [CrossRef]
- Carfora, A.; Pansini, R.V.; Scandurra, G. Energy Dependence, Renewable Energy Generation and Import Demand: Are EU Countries Resilient? Renew. Energy 2022, 195, 1262–1274. [Google Scholar] [CrossRef]
- Transport in the European Union: Current Trends and Issues. Available online: https://transport.ec.europa.eu/other-pages/transport-highlight/transport-european-union-current-trends-and-issues_en (accessed on 12 January 2023).
- Sokhanvar, A.; Bouri, E. Commodity Price Shocks Related to the War in Ukraine and Exchange Rates of Commodity Exporters and Importers. Borsa Istanb. Rev. 2022, 22, S2214845022000667. [Google Scholar] [CrossRef]
- Evangelopoulos, P.; Persson, H.; Kantarelis, E.; Yang, W. Performance Analysis and Fate of Bromine in a Single Screw Reactor for Pyrolysis of Waste Electrical and Electronic Equipment (WEEE). Process Saf. Environ. Prot. 2020, 143, 313–321. [Google Scholar] [CrossRef]
- Rosa, E.; Di Piazza, S.; Cecchi, G.; Mazzoccoli, M.; Zerbini, M.; Cardinale, A.M.; Zotti, M. Applied Tests to Select the Most Suitable Fungal Strain for the Recovery of Critical Raw Materials from Electronic Waste Powder. Recycling 2022, 7, 72. [Google Scholar] [CrossRef]
- Bundgaard, A.M.; Huulgaard, R.D. The Role of Standards in Support of Material Efficiency Requirements under the Ecodesign Directive. J. Clean. Prod. 2023, 385, 135599. [Google Scholar] [CrossRef]
- Rizos, V.; Bryhn, J. Implementation of Circular Economy Approaches in the Electrical and Electronic Equipment (EEE) Sector: Barriers, Enablers and Policy Insights. J. Clean. Prod. 2022, 338, 130617. [Google Scholar] [CrossRef]
Legal Categories | Description | Quantity of WEEE Collected (tons) |
---|---|---|
Cat. 1 | Temperature regulating equipment | 2752 |
Cat. 2 | Screens, monitors, and equipment with a surface greater than 100 cm2 | 1006 |
Cat. 3 | Lamps | 103 |
Cat. 4 | Large equipment (any external dimension greater than 50 cm) except for equipment in categories 1, 2 and 3 | 2716 |
Cat. 5 | Small equipment (no external dimension more than 50 cm) except for equipment in categories 1, 2 and 3 | 3517 |
Cat. 6 | Small IT and telecommunications equipment (no external dimension more than 50 cm) | 600 |
Total | 10,695 |
2005 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2020 | |
---|---|---|---|---|---|---|---|---|---|---|
Biogas-el (PJ) | 46.2 | 115.8 | 138.0 | 169.4 | 194.0 | 208.7 | 220.5 | 227.0 | 230.9 | 229.5 |
Biogas-th (PJ) | 30.5 | 64.9 | 88.0 | 90.7 | 109.6 | 124.2 | 137.1 | 150.5 | 163.7 | 188.4 |
Biogas-el capacity (MW) | 3113 | 6711 | 8289 | 9560 | 9883 | 10,456 | 10,986 | 11,410 | 11,821 | 11,128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, N.; Antunes, J.; Barreto, L. Impact of Management and Reverse Logistics on Recycling in a War Scenario. Sustainability 2023, 15, 3835. https://doi.org/10.3390/su15043835
Pereira N, Antunes J, Barreto L. Impact of Management and Reverse Logistics on Recycling in a War Scenario. Sustainability. 2023; 15(4):3835. https://doi.org/10.3390/su15043835
Chicago/Turabian StylePereira, Nuno, José Antunes, and Luís Barreto. 2023. "Impact of Management and Reverse Logistics on Recycling in a War Scenario" Sustainability 15, no. 4: 3835. https://doi.org/10.3390/su15043835
APA StylePereira, N., Antunes, J., & Barreto, L. (2023). Impact of Management and Reverse Logistics on Recycling in a War Scenario. Sustainability, 15(4), 3835. https://doi.org/10.3390/su15043835