Streamlining Building Energy Modelling Using Open Access Databases—A Methodology towards Decarbonisation of Residential Buildings in Sweden
Abstract
:1. Introduction
2. Methods
2.1. Overall Modelling Workflow
2.2. Building Geometry
2.3. Building Thermal Model
- The study evaluates the effect of using one thermal zone per floor instead of one per individual dwelling unit, as the necessary detailed plans for each floor are not available;
- Windows obtained as a ratio of the exterior façade (window-to-wall ratio) could be modelled as a single window per level and façade or distributed evenly;
- Depth or thickness of the existing façade and its relative position to the window was also evaluated;
- Impact of considering different radius distances for the modelling of the context (e.g., other buildings) around the building.
2.4. Case Studies
3. Results
3.1. Geometry Modelling of Case Studies
3.2. Thermal Modelling of Case Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
BETSI | Buildings’ Energy Use, Technical Status and Indoor Environment |
CAD | Computer Aided Design |
EPC | Energy Performance Certificate |
EU | European Union |
GET | Geodata Extraction Tool |
GIS | Geographic Information Systems |
HFA | Heated Floor Area |
HVAC | Heating, Ventilation, Air Conditioning |
LIDAR | Laser Imaging, Detection, and Ranging |
LOD | Level of Detail |
OSM | OpenStreetMap |
SHP | Shapefile |
SLU | Swedish University of Agricultural Sciences |
UBEM | Urban Building Energy Model |
WWR | Window-to-Wall Ratio |
References
- United Nations Environment Programme. Buildings and Climate Change: Summary for Decision Makers. 2009. Available online: https://wedocs.unep.org/xmlui/handle/20.500.11822/32152 (accessed on 7 November 2022).
- UNECE. A Commitment Trifecta|Delivering the 2030 Agenda and the Paris Agreement. 10 August 2021. Available online: https://unece.org/sed/documents/2021/08/commitment-trifecta (accessed on 25 November 2022).
- Energy Performance of Buildings Directive. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed on 5 July 2022).
- European Commission. Comprehensive Study of Building Energy Renovation Activities and Uptake of NZEB in the EU. European Commission: Brussel, Belgium, 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/97d6a4ca-5847-11ea-8b81-01aa75ed71a1/language-en/format-PDF/source-119528141 (accessed on 7 November 2022).
- Miljödepartementet. Klimatpolitiska Handlingsplanen. 2019. Available online: https://www.regeringen.se/4af76e/contentassets/fe520eab3a954eb39084aced9490b14c/klimatpolitiska-handlingsplanen-fakta-pm.pdf (accessed on 7 July 2022).
- Kordas, O. Programbeskrivning för Viable Cities. 2017. Available online: https://static1.squarespace.com/static/5dd54ca29c9179411df12b85/t/5ddd335ac833493f05702cb9/1574777699858/Programbeskrivning-Viable-Cities.pdf (accessed on 14 September 2020).
- Artola, I. Directorate General for Internal Policies Policy Department A: Economic and Scientific Policy Boosting Building Renovation: What Potential and Value for Europe? 2016. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwigvoOx1KX9AhUKCYgKHY1UCfIQFnoECA8QAQ&url=https%3A%2F%2Fwww.europarl.europa.eu%2FRegData%2Fetudes%2FSTUD%2F2016%2F587326%2FIPOL_STU(2016)587326_EN.pdf&usg=AOvVaw1XCV-S9SK_XdHspfmIjzcW (accessed on 14 September 2020).
- Economidou, M.; Atanasiu, B.; Despret, C.; Maio, J.; Nolte, I.; Rapf, O. Europe’s Buildings under the Microscope a Country-by-Country Review of the Energy Performance of Buildings a Country-by-Country Review of the Energy Performance of Buildings; Buildings Performance Institute Europe (BPIE): Brussels, Belgium, 2011. [Google Scholar]
- Meijer, F.; Itard, L.; Sunikka-Blank, M. Comparing European residential building stocks: Performance, renovation and policy opportunities. Build. Res. Inf. 2009, 37, 533–551. [Google Scholar] [CrossRef]
- Paci, D.; Panev, S.; Economidou, M.; Zangheri, P.; Ribeiro Serrenho, T.; Labanca, N.; Broc, J.-S.; Zancanella, P.; Castellazzi, L.; Joint Research Centre. Assessment of Second Long-Term Renovation Strategies under the Energy Efficiency Directive; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Ferreira, M.; Almeida, M. Benefits from energy related building renovation beyond costs, energy and emissions. Energy Procedia 2015, 78, 2397–2402. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, L.; Ruggeri, A.G. Developing a model for energy retrofit in large building portfolios: Energy assessment, optimization and uncertainty. Energy Build. 2019, 202, 109356. [Google Scholar] [CrossRef]
- Ang, Y.Q.; Berzolla, Z.M.; Reinhart, C.F. From concept to application: A review of use cases in urban building energy modeling. Appl. Energy 2020, 279, 115738. [Google Scholar] [CrossRef]
- Nagpal, S.; Mueller, C.; Aijazi, A.; Reinhart, C.F. A methodology for auto-calibrating urban building energy models using surrogate modeling techniques. J. Build. Perform. Simul. 2019, 12, 1–16. [Google Scholar] [CrossRef]
- Häfliger, I.F.; John, V.; Passer, A.; Lasvaux, S.; Hoxha, E.; Saade, M.R.M.; Habert, G. Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. J. Clean. Prod. 2017, 156, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, M.; Fabrizio, E.; Virgone, J.; Filippi, M. A simulation-based optimization method for cost-optimal analysis of nearly Zero Energy Buildings. Energy Build. 2014, 84, 442–457. [Google Scholar] [CrossRef]
- Conci, M.; Konstantinou, T.; van den Dobbelsteen, A.; Schneider, J. Trade-off between the economic and environmental impact of different decarbonisation strategies for residential buildings. Build. Environ. 2019, 155, 137–144. [Google Scholar] [CrossRef]
- Favi, C.; di Giuseppe, E.; D’Orazio, M.; Rossi, M.; Germani, M. Building retrofit measures and design: A probabilistic approach for LCA. Sustainability 2018, 10, 3655. [Google Scholar] [CrossRef] [Green Version]
- Swan, L.G.; Ugursal, V.I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renew. Sustain. Energy Rev. 2009, 13, 1819–1835. [Google Scholar] [CrossRef]
- Galimshina, A.; Moustapha, M.; Hollberg, A.; Padey, P.; Lasvaux, S.; Sudret, B.; Habert, G. Statistical method to identify robust building renovation choices for environmental and economic performance. Build. Environ. 2020, 183, 107143. [Google Scholar] [CrossRef]
- Ascione, F.; de Masi, R.; de Rossi, F.; Fistola, R.; Sasso, M.; Vanoli, G.P. Analysis and diagnosis of the energy performance of buildings and districts: Methodology, validation and development of Urban Energy Maps. Cities 2013, 35, 270–283. [Google Scholar] [CrossRef]
- Gholami, M.; Barbaresi, A.; Torreggiani, D.; Tassinari, P. Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis. Renew. Sustain. Energy Rev. 2020, 132, 110036. [Google Scholar] [CrossRef]
- Wang, L.; Lee, E.W.; Hussian, S.A.; Yuen, A.C.Y.; Feng, W. Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods. Appl. Energy 2021, 299, 117303. [Google Scholar] [CrossRef]
- Huo, T.; Ren, H.; Cai, W. Estimating urban residential building-related energy consumption and energy intensity in China based on improved building stock turnover model. Sci. Total Environ. 2019, 650, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, D.P.; Hoogwijk, M.; Barker, T.; Riahi, K.; Boeters, S.; Chateau, J.; Scrieciu, S.; van Vliet, J.; Masui, T.; Blok, K.; et al. Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials. Energy Policy 2009, 37, 5125–5139. [Google Scholar] [CrossRef]
- Trombetti, M.; Thunis, P.; Bessagnet, B.; Clappier, A.; Couvidat, F.; Guevara, M.; Kuenen, J.; López-Aparicio, S. Spatial inter-comparison of Top-down emission inventories in European urban areas. Atmos. Environ. 2018, 173, 142–156. [Google Scholar] [CrossRef]
- Aina, Y.A.; Wafer, A.; Ahmed, F.; Alshuwaikhat, H.M. Top-down sustainable urban development? Urban governance transformation in Saudi Arabia. Cities 2019, 90, 272–281. [Google Scholar] [CrossRef]
- Zhang, Q. Residential energy consumption in China and its comparison with Japan, Canada, and USA. Energy Build. 2004, 36, 1217–1225. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Davila, C.C. Urban building energy modeling—A review of a nascent field. Build. Environ. 2016, 97, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Ferrando, M.; Causone, F.; Hong, T.; Chen, Y. Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches. Sustain. Cities Soc. 2020, 62, 102408. [Google Scholar] [CrossRef]
- Eriksson, H.; Harrie, L. Versioning of 3D City Models for Municipality Applications: Needs, Obstacles and Recommendations. ISPRS Int. J. Geo-Inf. 2021, 10, 55. [Google Scholar] [CrossRef]
- Noardo, F.; Harrie, L.; Arroyo Ohori, K.; Biljecki, F.; Ellul, C.; Krijnen, T.; Eriksson, H.; Guler, D.; Hintz, D.; Jadidi, M.A.; et al. Tools for BIM-GIS integration (IFC georeferencing and conversions): Results from the GeoBIM benchmark 2019. ISPRS Int. J. Geoinf. 2020, 9, 502. [Google Scholar] [CrossRef]
- Harrie, L.; Kanters, J.; Mattisson, K.; Nezval, P.; Olsson, P.O.; Pantazatou, K.; Kong, G.; Fan, H. 3D City Models for Supporting Simulations in City Densifications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2021, 46, 73–77. [Google Scholar] [CrossRef]
- Sun, J.; Olsson, P.; Eriksson, H.; Harrie, L. Evaluating the geometric aspects of integrating BIM data into city models. J. Spat. Sci. 2020, 65, 235–255. [Google Scholar] [CrossRef] [Green Version]
- Lantmäteriet–vi Känner till Varenda Plats i Sverige|Lantmäteriet. Available online: https://www.lantmateriet.se/ (accessed on 30 October 2021).
- Cadastral and Land Registration Authority L. Swedish Mapping, S. The Swedish Maritime Administration, SGU. Geological Survey of Sweden, S. Statistics Sweden, and SLU. Swedish University of Agricultural Sciences. Search Digital Maps and Geodata. Available online: https://www.slu.se/en/subweb/library/use-the-library/search-and-find/digital-maps/ (accessed on 22 November 2022).
- OGC City Geography Markup Language (CityGML) Part 1: Conceptual Model Standard. Available online: https://docs.ogc.org/is/20-010/20-010.html#toc31 (accessed on 23 November 2022).
- Biljecki, F.; Stoter, J.; Ledoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D city models: State of the art review. ISPRS Int. J. Geoinf. 2015, 4, 2842–2889. [Google Scholar] [CrossRef] [Green Version]
- Kutzner, T.; Chaturvedi, K.; Kolbe, T.H. CityGML 3.0: New Functions Open Up New Applications. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Biljecki, F.; Ledoux, H.; Stoter, J. An improved LOD specification for 3D building models. Comput. Environ. Urban Syst. 2016, 59, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Agugiaro, G.; Benner, J.; Cipriano, P.; Nouvel, R. The Energy Application Domain Extension for CityGML: Enhancing interoperability for urban energy simulations. Open Geospat. Data Softw. Stand. 2018, 3, 2. [Google Scholar] [CrossRef]
- Nageler, P.; Koch, A.; Mauthner, F.; Leusbrock, I.; Mach, T.; Hochenauer, C.; Heimrath, R. Comparison of dynamic urban building energy models (UBEM): Sigmoid energy signature and physical modelling approach. Energy Build. 2018, 179, 333–343. [Google Scholar] [CrossRef]
- Johari, F.; Munkhammar, J.; Shadram, F.; Widén, J. Evaluation of simplified building energy models for urban-scale energy analysis of buildings. Build. Environ. 2022, 211, 108684. [Google Scholar] [CrossRef]
- EU Building Stock Observatory. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/eu-building-stock-observatory_en#the-database (accessed on 31 January 2023).
- Visscher, H.; Sartori, I.; Dascalaki, E. Towards an energy efficient European housing stock: Monitoring, mapping and modelling retrofitting processes: Special issue of Energy and Buildings. Energy Build. 2016, 132, 1–3. [Google Scholar] [CrossRef]
- Loga, T.; Stein, B.; Diefenbach, N. TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy Build. 2016, 132, 4–12. [Google Scholar] [CrossRef]
- Energy Performance Certificate—Boverket. Available online: https://www.boverket.se/en/start/building-in-sweden/contractor/inspection-delivery/energy-performance-certificate/ (accessed on 25 November 2022).
- EUR-Lex-52021PC0802-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0802&qid=1641802763889 (accessed on 25 November 2022).
- Revision of the Energy Performance of Buildings Directive. Available online: https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_6686 (accessed on 25 November 2022).
- Sveby|Branchstandard för Energi i Byggnader. Available online: https://www.sveby.org/ (accessed on 26 November 2022).
- Sveby Stockholm. Brukarindata Bostäder. 2012. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwih14aD1KX9AhXTBd4KHYZcCZAQFnoECA4QAw&url=https%3A%2F%2Fwww.sveby.org%2Fwp-content%2Fuploads%2F2012%2F10%2FSveby_Brukarindata_bostader_version_1.0.pdf&usg=AOvVaw3y8YKHTqjHlmPuJGcbvnlH (accessed on 25 November 2022).
- Li, W.; Zhou, Y.; Cetin, K.; Eom, J.; Wang, Y.; Chen, G.; Zhang, X. Modeling urban building energy use: A review of modeling approaches and procedures. Energy 2017, 141, 2445–2457. [Google Scholar] [CrossRef]
- Malhotra, A.; Bischof, J.; Nichersu, A.; Häfele, K.H.; Exenberger, J.; Sood, D.; Allan, J.; Frisch, J.; van Treeck, C.; O’Donnell, J.; et al. Information modelling for urban building energy simulation—A taxonomic review. Build. Environ. 2022, 208, 108552. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Lo, I.; Ma, J.; Tse, K.; Cheng, J.; Chan, C.M. Simulation optimisation towards energy efficient green buildings: Current status and future trends. J. Clean. Prod. 2020, 254, 120012. [Google Scholar] [CrossRef]
- Utkucu, D.; Sözer, H. Interoperability and data exchange within BIM platform to evaluate building energy performance and indoor comfort. Autom. Constr. 2020, 116, 103225. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, X.; Wei, S.; Du, S.; Shi, X. A review of data-driven building performance analysis and design on big on-site building performance data. J. Build. Eng. 2021, 41, 102706. [Google Scholar] [CrossRef]
- OpenStreetMap Wiki Contributors. Map Features, OpenStreetMap Wiki. 2021. Available online: https://wiki.openstreetmap.org/w/index.php?title=Map_features&oldid=2111805 (accessed on 5 July 2022).
- Grasshopper GitHub Topics GitHub. Available online: https://github.com/topics/grasshopper (accessed on 28 November 2022).
- Food4Rhino. Available online: https://www.food4rhino.com/en (accessed on 28 November 2022).
- Norlén, U.; Andersson, K. Bostadsbeståndets Inneklimat—ELIB Rapport nr 7; Statens institut för byggnadsforskning: Oslo, Norway, 1993; ISBN 9171110550. [Google Scholar]
Tool Name | Description | Function | Level of Automation |
---|---|---|---|
ELK | Grasshopper plug-in | Point and metadata from OSM files | Low, files uploaded manually |
URBANO | Grasshopper plug-in | Point and metadata from OSM, SHP and LAS files | Medium, OSM automated downloading |
VOLVOX | Grasshopper plug-in | Point cloud manipulation engine from LAS/LAZ files | Low, files uploaded manually |
Envelope Thermal Properties | Unit | Building Element | Type of Input | Source |
---|---|---|---|---|
Window to wall ratio (WWR) | % | North, east, south, west façades | Average | BETSI |
G-Value | Fraction | All windows | Average | BETSI |
U-Value glazing materials | W/m²K | Apertures | Average | BETSI |
U-Value opaque materials | W/m²K | Roof, façade, ground | Average | BETSI |
Thermal mass | No predefined thermal mass is assigned—“No mass material” is selected |
Building Program | Unit | Type of Input | Source |
---|---|---|---|
Occupancy density | People/m2 | Average | Boverket, Sveby |
Occupancy schedule | Hourly | Monitored/Archetype weighted | Sveby |
Lighting density | W/m2 | Recommended | Boverket, Sveby |
Lighting schedule | Hourly | Archetype weighted | Boverket, Sveby |
Equipment density | W/m2 | Recommended | Boverket, Sveby |
Equipment schedule | Hourly | Monitored/weighted | Sveby, ELIB [60] |
Infiltration rate | l/s | Monitored/weighted | Sveby, ELIB |
Infiltration schedule | Hourly | Constant | Boverket, Sveby, ELIB |
Ventilation rate | l/s/m2 HFA | Building code, Monitored/weighted | ELIB |
Ventilation schedule | Hourly | Constant | ELIB |
Ventilation system | l/s/m2 of façade | F, AF, FT, FTX | BETSI |
Heating setpoint | Celsius | Monitored/weighted | Sveby |
Heating schedule | Hourly | Constant heating season | Sveby |
Cooling setpoint | Celsius | Need 27° Celsius | Sveby |
Cooling schedule | hourly | None | Boverket, Sveby, ELIB |
Neighbourhood | Location | Building Typology | Number of Stories | Construction Year | Total HFA/m2 Building |
---|---|---|---|---|---|
| Lund | Low-rise slab | 2 | 1970 | 1257 |
| Gothenburg | Low-rise slab | 3 | 1970 | 1476 |
| Helsingborg | Low-rise slab | 4 | 1968 | 2948 |
| Gothenburg | High-rise slab | 7 | 1970 | 6211 |
| Malmö | High-rise slab | 9 | 1969 | 6800 |
| Lund | Non defined/Other | 5 | 1966 | 3026 |
Neighbourhood | Geometry Visualisation from SHP | Source | Total HFA m2 | Offset Needed cm | HFA Difference % | Relative Compactness Ratio | |
---|---|---|---|---|---|---|---|
A | Fagottgränden | EPC | 1257 | - | - | - | |
OSM | 1302 | 74 | 3.5 | 0.68 | |||
SHP | 1503 | 84 | 16.3 | 0.66 | |||
B | Markurellagatan | EPC | 3226 | - | - | - | |
OSM | 3549 | 32 | 6.2 | 0.65 | |||
SHP | 3256 | 0 | 1 | 0.65 | |||
C | Kadettgatan | EPC | 2948 | - | - | - | |
OSM | 3772 | 123 | 21 | 0.77 | |||
SHP | 3330 | 62 | 11.4 | 0.77 | |||
D | Siriusgatan | EPC | 6211 | - | - | - | |
OSM | 7593 | 116 | 18.2 | 0.82 | |||
SHP | 6858 | 51 | 9.4 | 0.77 | |||
E | Rosengård | EPC | 6800 | - | - | - | |
OSM | 8278 | 107 | 17.8 | 0.84 | |||
SHP | 6804 | 37 | 7.5 | 0.77 | |||
F | Ällingavägen | EPC | 3026 | - | - | - | |
OSM | 3549 | 68 | 15 | 0.78 | |||
SHP | 3256 | 30 | 7 | 0.75 |
Measure | Heating Energy Need Average Difference/% | Simulation Time Average Difference/% | ||
---|---|---|---|---|
OpenStreetMap | Shapefile | OpenStreetMap | Shapefile | |
A. Thermal zone per level | 0.9 | 1.2 | −625 | −728 |
B. Grouped windows | −0.6 | 0.1 | −35.4 | −14.7 |
C. Adding façade depth | 2.8 | 4.7 | 122 | 506.7 |
D10. Context 10 m | −1.6 | NP | 1.3 | NP |
D25. Context 25 m | −0.9 | NP | −1.1 | NP |
D50. Context 50 m | 0 * | NP | 0 * | NP |
D75. Context 75 m | 0.1 | NP | 0.9 | NP |
Neighbourhood Building Typology | Source | Heating Energy kWh/m2/y | Heating Energy Difference/% | Simulation Time/Seconds |
---|---|---|---|---|
| EPC | 126 | - | |
OSM | 121 | 4 | 14 | |
OSM offset | 127.4 | 1 | 14 | |
SHP | 125 | 0.9 | 55 | |
Low-rise slab | SHP offset | 133 | 5.2 | 60 |
| EPC | 81 | - | |
OSM | 123.5 | 10 | 9 | |
OSM offset | 126.4 | 7.5 | 9 | |
SHP | 126.7 | 7.2 | 53 | |
Low-rise slab | SHP offset | 128.1 | 6 | 52 |
| EPC | 65.5 | - | - |
OSM | 56.2 | 16.5 | 12 | |
OSM offset | 62.1 | 5.5 | 11 | |
SHP | 59.1 | 11 | 18 | |
Low-rise slab | SHP offset | 62.4 | 5 | 18 |
| EPC | 99 | - | - |
OSM | 71 | 39 | 32 | |
OSM offset | 79 | 25 | 33 | |
SHP | 79.5 | 24 | 792 | |
High-rise slab | SHP offset | 83 | 19 | 657 |
| EPC | 90 | - | - |
OSM | 70 | 29.4 | 50 | |
OSM offset | 77.5 | 16 | 52 | |
SHP | 81 | 11 | 516 | |
High-rise slab | SHP offset | 85.1 | 6 | 522 |
| EPC | 142 | - | - |
OSM | 96 | 47 | 66 | |
OSM offset | 102 | 39 | 72 | |
SHP | 99 | 43 | 222 | |
Others, Complex | SHP offset | 111 | 28 | 234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campamà Pizarro, R.; Bernardo, R.; Wall, M. Streamlining Building Energy Modelling Using Open Access Databases—A Methodology towards Decarbonisation of Residential Buildings in Sweden. Sustainability 2023, 15, 3887. https://doi.org/10.3390/su15053887
Campamà Pizarro R, Bernardo R, Wall M. Streamlining Building Energy Modelling Using Open Access Databases—A Methodology towards Decarbonisation of Residential Buildings in Sweden. Sustainability. 2023; 15(5):3887. https://doi.org/10.3390/su15053887
Chicago/Turabian StyleCampamà Pizarro, Rafael, Ricardo Bernardo, and Maria Wall. 2023. "Streamlining Building Energy Modelling Using Open Access Databases—A Methodology towards Decarbonisation of Residential Buildings in Sweden" Sustainability 15, no. 5: 3887. https://doi.org/10.3390/su15053887
APA StyleCampamà Pizarro, R., Bernardo, R., & Wall, M. (2023). Streamlining Building Energy Modelling Using Open Access Databases—A Methodology towards Decarbonisation of Residential Buildings in Sweden. Sustainability, 15(5), 3887. https://doi.org/10.3390/su15053887